Chemical Composition and Sources of Particles in the Atmosphere

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Aerosols".

Deadline for manuscript submissions: closed (28 April 2023) | Viewed by 14930

Special Issue Editors

Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
Interests: aerosols; source apportionment; nitrogen-containing organic aerosols; aerosol hygroscopicity
Special Issues, Collections and Topics in MDPI journals
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Interests: organic aerosol; volatility; source apportionment; mass spectrometer; secondary formation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The atmosphere of Earth is rich in aerosols. Their presence has a strong impact on air quality, human health, and the climate, which has been reported for several decades. Since the early 1960s, instruments have been available to characterize the aerosol in detail. With the development of measurement techniques in recent years, the contribution of aerosols from different chemical compositions has started to be recognized, yet it is still far from clear. For example, there are thousands of organic molecular compounds in particles that cannot be distinguished by one instrument. Recent breakthroughs for recognizing highly oxygenated organic molecules (HOMs), organic nitrates (ONs), organic sulfates (OSs), and amines have helped to understand their chemical and physical properties, facilitating  the elucidation of their environmental impact. The aerosols in the atmosphere can be derived from primary emissions, which are a direct transfer of particles to the air. Primary emissions include natural activity, such as sea spray drifts, volcanic eruptions, as well as forest or brush burnings, blowing dust or soils, and pollen spread, which were the main source of aerosol in the pre-industrial period. Since the industrial revolution began in the 18th century, the influence of human activity on aerosols greatly changed the chemical composition in urban and suburban areas; the predominant anthropogenic-derived primary sources of aerosols include vehicles exhausts, industrial emission, coal burning, biomass burning, and cooking, etc., which substantially contribute black carbon, nitrate, sulfate, and organic aerosols to the ambient air, thus, changing the air quality and atmospheric impact of aerosols. Aerosols in the atmosphere can also be produced from secondary chemical processes. The secondary formation mechanism of aerosols is very complex due to their complicated precursors and formation pathways, which has become a rapidly developing field in recent decades. In general, the fraction of different chemical components and the source contributions to aerosols in the atmosphere varied at different times and locations. A better characterization of aerosol chemical composition and source is key to elucidating their atmospheric fate, mitigating climate change, and protecting human health. For this Special Issue, the topics of interest include but are not limited to:

  • Chemical and physical properties of aerosols
  • Chemical components and their mass fraction in aerosols
  • Different source contribution to aerosols
  • Formation and evolution mechanism of aerosols
  • The environmental impact of different components of aerosols.

Dr. Shan Huang
Dr. Wei Wei Hu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • chemical composition
  • source apportionment
  • organic aerosol
  • secondary formation
  • environmental impact
  • primary emission
  • anthropogenic/biogenic
  • chemical evolution
  • inorganic species

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

15 pages, 3895 KiB  
Article
Exploring Sources and Health Risks in Beijing PM2.5 in 2019 and 2020
by Jing Yuan, Hanfei Zuo, Yuchun Jiang, Puzhen Zhang, Ziqi Wang, Chen Guo, Zhanshan Wang, Qing Wen, Ye Chen, Yongjie Wei and Xiaoqian Li
Atmosphere 2023, 14(7), 1060; https://doi.org/10.3390/atmos14071060 - 22 Jun 2023
Viewed by 1364
Abstract
The various industries, sectors, and citizens’ daily lives have undergone significant changes after the outbreak of the COVID-19 pandemic. The researchers collected and analyzed PM2.5 samples including secondary inorganic ions (SO42−, NO3, and NH4+ [...] Read more.
The various industries, sectors, and citizens’ daily lives have undergone significant changes after the outbreak of the COVID-19 pandemic. The researchers collected and analyzed PM2.5 samples including secondary inorganic ions (SO42−, NO3, and NH4+, namely SNA), organic carbon (OC), elemental carbon (EC), and other 16 metal elements in Beijing in 2019 (before the pandemic) and 2020 (after the pandemic). The particulate matter (PM2.5) concentration in the autumn and winter of 2020 is 21.16 µg/m3 and 14.05 µg/m3 lower than in 2019, respectively. The contribution of six sources of pollution, including coal combustion, secondary sources, transportation-related sources, dust, Industrial I, and Industrial II, were analyzed using the Positive Matrix Factorization (PMF) model. Due to the impacts of the COVID-19 pandemic, more and more people are choosing private transportation, such as private cars, instead of public transportation. As a result, the contribution of PM2.5 pollution related to transportation increased after the pandemic. The metal elements measured during the sampling period represent only a very small fraction (1%) of PM2.5. However, their health risk to humans cannot be ignored because of the toxicity of some metallic elements, and the carcinogenic risks induced by metal elements in PM2.5 exceeded the safety threshold (>10−6) during the autumn and winter of 2019 and 2020. Arsenic (As) contributes the most to carcinogenic risk, so controlling arsenic emissions is the primary approach to reducing cancer risk in Beijing. Considering the contribution to the health risk from various sources obtained in PMF, coal combustion is the most significant contributor to cancer risk. Therefore, serious consideration should be given to controlling coal combustion at the local and regional levels to reduce health risks in Beijing. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

13 pages, 3819 KiB  
Article
Potential Source Area and Transport Route of Atmospheric Particulates in Xi’an, China
by Binhua Zhao, Bingze Hu, Peng Li, Tanbao Li, Caiwen Li, Ying Jiang and Yongxia Meng
Atmosphere 2023, 14(5), 811; https://doi.org/10.3390/atmos14050811 - 29 Apr 2023
Viewed by 1031
Abstract
Atmospheric particulate pollution is one of the most common pollution related issues and poses a serious threat to human health. PM2.5 and PM10 are important indicators of atmospheric particulate pollution currently. Based on the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) [...] Read more.
Atmospheric particulate pollution is one of the most common pollution related issues and poses a serious threat to human health. PM2.5 and PM10 are important indicators of atmospheric particulate pollution currently. Based on the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the hourly 72 h backward trajectory of particulate matter in Xi’an from March 2019 to February 2022 was calculated, and the main path of air flow to Xi’an was studied by cluster analysis. Combined with hourly concentration monitoring data of PM2.5 and PM10 at each station, the potential source area of particles in Xi’an was calculated by potential source contribution factor analysis and concentration weighted trajectory analysis. The results show that Xi’an was most polluted in winter, followed by autumn and spring, and cleanest in the summer. The annual average mass concentrations of PM2.5 and PM10 are 48.5 ± 28.7 μg/m3 and 89.2 ± 39.2 μg/m3, respectively, both exceeding the national secondary standard for ambient air quality. On an annual basis, back-trajectory analysis showed that predominantly transport was rapid from the northwest (44%). Transport from the other sectors were 24%, 19%, and 14% from the northeast, southeast, and southwest, respectively, and featured lower windspeeds on average. The potential source areas of particulate matter in Xi’an in the spring are mainly located at the junction of Chongqing, Hunan, and Hubei, and parts of the southeast and north of Sichuan. This study provides context for air quality and atmospheric transport conditions in this region of China. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

18 pages, 2004 KiB  
Article
Analysis of Size Distribution, Chemical Composition, and Optical Properties of Mineral Dust Particles from Dry Deposition Measurement in Tenerife: Determined by Single-Particle Characterization
by Andebo Waza, Kilian Schneiders, Johannes Heuser and Konrad Kandler
Atmosphere 2023, 14(4), 700; https://doi.org/10.3390/atmos14040700 - 10 Apr 2023
Viewed by 2470
Abstract
In this paper, individual particle analysis by automated scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) was used to assess the size-resolved information of composition, size distribution, complex refractive index, and mixing state of mineral dust aerosol particles collected using different passive [...] Read more.
In this paper, individual particle analysis by automated scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) was used to assess the size-resolved information of composition, size distribution, complex refractive index, and mixing state of mineral dust aerosol particles collected using different passive and active samplers. In the study, over 120,000 particles from 53 samples were analyzed. Results show that dust particles are the dominating mineral particle type during this campaign, comprising different classes of silicates, Si-rich (quartz-like), Ca-rich (calcite-like), CaMg-rich (dolomite-like), and CaS-rich (gypsum-like). The results also show that there is no significant difference in composition between suspended and deposited dust particles. By using the particle composition, the size-resolved complex refractive index of dust particles was calculated. The real part of the refractive index varied between 1.71 and 1.53 for wavelengths in the range of 370 to 950 nm. The imaginary part of the refractive index, determined mostly by iron oxide, varied between 3.28×104 and 7.11×105 for wavelengths ranging from 250 nm to 1640 nm. In addition, the refractive index values showed a slight decrease with increasing particle size. We also analyzed the potential for buffering of the acid mobilization of iron by other dust compounds. For particles which contain both iron (Fe) and (unprocessed) calcium (Ca), acids that are able to dissolve insoluble Fe particles can react with the Ca particles before reacting with Fe, but eventually, with longer processing time, the Fe particles could be processed. By analyzing the ratio of sulfate mass to the total aerosol mass of individual particles, the mixing state of sulfate particles to the total dust particles was investigated. The analysis showed that the finer dust particles were associated with higher content of sulfate, while the coarse dust particles correspond to lower sulfate contents, revealing that only fine mode sulfate is more internally mixed with mineral dust aerosol particles. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

17 pages, 3941 KiB  
Article
Seasonal Variability in Fine Particulate Matter Water Content and Estimated pH over a Coastal Region in the Northeast Arabian Sea
by Garima Shukla, A. K. Sudheer, Sachin S. Gunthe, Gufran Beig and Ashwini Kumar
Atmosphere 2023, 14(2), 259; https://doi.org/10.3390/atmos14020259 - 28 Jan 2023
Cited by 2 | Viewed by 1533
Abstract
The acidity of atmospheric particles can promote specific chemical processes that result in the production of extra condensed phases from lesser volatile species (secondary fine particulate matter), change the optical and water absorption characteristics of particles, and enhance trace metal solubility that can [...] Read more.
The acidity of atmospheric particles can promote specific chemical processes that result in the production of extra condensed phases from lesser volatile species (secondary fine particulate matter), change the optical and water absorption characteristics of particles, and enhance trace metal solubility that can function as essential nutrients in nutrient-limited environments. In this study, we present an estimated pH of fine particulate matter (FPM) through a thermodynamic model and assess its temporal variability over a coastal location in the northeast Arabian Sea. Here, we have used the chemical composition of FPM (PM2.5) collected during the period between 2017–2019. Chemical composition data showed large variability in water-soluble ionic concentrations (WSIC; range: 2.3–39.9 μg m−3) with higher and lower average values during the winter and summer months, respectively. SO42− ions were predominant among anions, while NH4+ was a major contributor among cations throughout the season. The estimated pH of FPM from the forward and reverse modes exhibits a moderate correlation for winter and summer samples. The estimated pH of FPM is largely regulated by SO42− content and strongly depends on the relative ambient humidity, particularly in the forward mode. Major sources of FPM assessed based on Positive matrix factorization (PMF) and air-mass back trajectory analyses demonstrate the dominance of natural sources (sea salt and dust) during summer months, anthropogenic sources in winter months and mixed sources during the post-monsoon season. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

11 pages, 1554 KiB  
Article
Secondary Organic Aerosol Formation from Semi-Volatile and Intermediate Volatility Organic Compounds in the Fall in Beijing
by Yuan Zhang, Jingsen Fan, Kai Song, Yuanzheng Gong, Daqi Lv, Zichao Wan, Tianyu Li, Chaoyi Zhang, Sihua Lu, Shiyi Chen, Limin Zeng and Song Guo
Atmosphere 2023, 14(1), 94; https://doi.org/10.3390/atmos14010094 - 31 Dec 2022
Cited by 2 | Viewed by 1782
Abstract
Intermediate volatility organic compounds (IVOCs) and semi-volatile organic compounds (SVOCs) have recently been proposed as important precursors of secondary organic aerosol (SOA). In the present work, 97 volatile organic compounds (VOCs) and 80 intermediate volatility and semi-volatile organic compounds (IVOCs and SVOCs) were [...] Read more.
Intermediate volatility organic compounds (IVOCs) and semi-volatile organic compounds (SVOCs) have recently been proposed as important precursors of secondary organic aerosol (SOA). In the present work, 97 volatile organic compounds (VOCs) and 80 intermediate volatility and semi-volatile organic compounds (IVOCs and SVOCs) were measured by online gas chromatography-mass spectrometer/flame ionization detection (GC-MS/FID), and offline thermal desorption gas chromatography-mass spectrometer (TD-GC-MS), respectively. The average concentration of speciated VOCs, IVOCs, and SVOCs were 22.36 ± 9.02 μg m−3, 1.01 ± 0.32 μg m−3, and 0.10 ± 0.17 μg m−3. Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the main compounds of total S/IVOCs. With the increase in molecular weight, the concentrations decreased in the gas phase, while increasing in the particle phase. Vehicular emission is the most significant source according to the carbon preference index (CPI) and the carbon of the most abundant alkane (Cmax). The yield method was used to estimate SOA from the oxidation of VOCs and S/IVOCs. The estimated SOA mass from IVOCs and SVOCs (0.70 ± 0.57 μg m−3) was comparable to that of VOCs (0.62 ± 0.61 μg m−3), and the oxidation of PAHs and alkanes took up 28.70 ± 8.26% and 51.97 ± 20.77% of the total SOA estimation, respectively. Compared to previous work, our study provided detailed molecular information of ambient S/IVOC species and elucidated their importance on SOA formation. Despite their low concentration, S/IVOCs species are important SOA precursors which shared comparable contribution compared with VOCs. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

18 pages, 3054 KiB  
Article
Research on Rapid Identification Technology of Sand and Dust Characteristic Monitoring Data Based on Optimized K-Means Clustering
by Hao Zheng, Zhen Yang, Jianhua Yang, Linlin Zhang and Yanan Tao
Atmosphere 2022, 13(10), 1720; https://doi.org/10.3390/atmos13101720 - 19 Oct 2022
Cited by 1 | Viewed by 1170
Abstract
The criteria-based sand and dust weather determination method has the problem ofbeing a cumbersome and time-consuming process when processing a large amount of raw data, and cannot avoid the problems of repeatability and reproducibility. On the basis of statistical analysis of the air [...] Read more.
The criteria-based sand and dust weather determination method has the problem ofbeing a cumbersome and time-consuming process when processing a large amount of raw data, and cannot avoid the problems of repeatability and reproducibility. On the basis of statistical analysis of the air automatic monitoring data in the cities affected by sand and dust, this paper proposes a k-means optimization algorithm (MDPD-k-means) based on maximum density and percentage distance, which can quickly filter the characteristic data of sand and dust in a short time, and identify the days affected by sand and dust. This method effectively improves the data processing efficiency, solves the problems of poor reproducibility and large artificial error of traditional methods, and can support the business application of sand and dust data elimination. This paper uses the method to identify the sand and dust data of 10 cities in Shaanxi Province from 2016 to 2022, determines a total of 1107 sand and dust days, and points out that the number of days affected by sand and dust is increasing year by year. After excluding the effect of sand and dust, the urban PM10 concentration decreases by 18.42~1.41% respectively, which provides important data information for accurately evaluating the effectiveness of air pollution prevention and control. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

15 pages, 2140 KiB  
Article
A Closure Study of Secondary Organic Aerosol Estimation at an Urban Site of Yangtze River Delta, China
by Zichao Wan, Kai Song, Wenfei Zhu, Ying Yu, Hui Wang, Ruizhe Shen, Rui Tan, Daqi Lv, Yuanzheng Gong, Xuena Yu, Shiyi Chen, Limin Zeng, Shengrong Lou, Yijun Yu and Song Guo
Atmosphere 2022, 13(10), 1679; https://doi.org/10.3390/atmos13101679 - 14 Oct 2022
Cited by 3 | Viewed by 1604
Abstract
Secondary organic aerosols (SOA) are crucial components of ambient particulate matters. However, their composition and formation mechanisms remain uncertain. To investigate the SOA formation and evaluate various SOA estimation approaches, a comprehensive measurement was conducted at an urban site, Changzhou, in Yangtze River [...] Read more.
Secondary organic aerosols (SOA) are crucial components of ambient particulate matters. However, their composition and formation mechanisms remain uncertain. To investigate the SOA formation and evaluate various SOA estimation approaches, a comprehensive measurement was conducted at an urban site, Changzhou, in Yangtze River Delta (YRD) region. 98 kinds of volatile organic compounds (VOCs) were measured by an online gas chromatography-mass spectrometer/flame ionization detector (GC-MS/FID). Non-refractory submicron particulate matters (NR-PM1) were measured by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). Both bottom-up approaches, i.e., VOCs oxidation yield method, and top-down approaches, i.e., elemental carbon (EC) tracer method and ACSM, combined with positive matrix factorization (PMF) method, were utilized to estimate SOA. ACSM-PMF method estimated the highest SOA concentration, followed by EC tracer method. SOA from VOCs oxidation yield method accounted for 43.2 ± 41.9% of that from EC tracer method, suggesting the existence of missing SOA precursors, e.g., semivolatile organic compounds. The influencing factors of SOA formation were investigated and a good correlation of SOA with odd oxygen rather than aerosol liquid water content was found, suggesting the importance of photochemical formation of SOA. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

16 pages, 3000 KiB  
Article
Characterizing Atmospheric Brown Carbon and Its Emission Sources during Wintertime in Shanghai, China
by Linyuan Zhang, Jung Hyun Son, Zhe Bai, Wei Zhang, Ling Li, Lina Wang and Jianmin Chen
Atmosphere 2022, 13(6), 991; https://doi.org/10.3390/atmos13060991 - 20 Jun 2022
Cited by 7 | Viewed by 1755
Abstract
Atmospheric brown carbon (BrC) is a kind of organic aerosol that efficiently absorbs ultraviolet-visible light and has an impact on climate forcing. We conducted an in-depth field study on ambient aerosols at a monitoring point in Shanghai, China, aiming to investigate the potential [...] Read more.
Atmospheric brown carbon (BrC) is a kind of organic aerosol that efficiently absorbs ultraviolet-visible light and has an impact on climate forcing. We conducted an in-depth field study on ambient aerosols at a monitoring point in Shanghai, China, aiming to investigate the potential emission sources, molecular structures, and the contributions to light absorptions of ambient BrC chromophores. The results indicated that nine molecules were identified as nitroaromatic compounds, five of which (4-nitrophenol, 4-nitrocatechol, 2-nitro-1-naphthol, 3-methyl-4-nitrocatechol, and 2-methyl-4-nitrophenol) usually came from biomass burning or were produced from the photo-oxidation of anthropogenic volatile organic compounds (e.g., toluene, benzene) under high-NOx conditions. 4-nitrophenol was the strongest BrC chromophore and accounted for 13% of the total aerosol light absorption at λ = 365 nm. The estimated light absorption of black carbon was approximately three times the value of methanol-soluble BrC at λ = 365 nm. The ratios of K+/OC and K+/EC, and the correlations with WSOC, OC, HULIS-C and K+, and MAE values of methanol extracts also indicated that the primary emissions from biomass burning contributed more aerosol light absorption compared to the secondary formation during the wintertime in Shanghai. Therefore, biomass burning control is still the most urgent strategy for reducing BrC in Shanghai. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

Other

Jump to: Research

11 pages, 2296 KiB  
Technical Note
Development and Field Testing of an Online Monitoring System for Atmospheric Particle-Bound Reactive Oxygen Species (ROS)
by Yuan Liu, Xiancheng Tang, Zhiwei Zhang, Ling Li and Jianmin Chen
Atmosphere 2023, 14(6), 924; https://doi.org/10.3390/atmos14060924 - 25 May 2023
Viewed by 1144
Abstract
Excessive accumulation of reactive oxygen species (ROS) in the body can lead to a redox imbalance and result in cellular and tissue damage. Since ROS are highly reactive, traditional offline methods may underestimate their true concentration. In this study, we developed an online [...] Read more.
Excessive accumulation of reactive oxygen species (ROS) in the body can lead to a redox imbalance and result in cellular and tissue damage. Since ROS are highly reactive, traditional offline methods may underestimate their true concentration. In this study, we developed an online monitoring system for particle-bound ROS based on the fluorescent probe 2′,7′-dichlorofluorescin (DCFH), which consists of an Aerosol Collector and a Fluorescence Detector. The performance of the system was evaluated in terms of collection efficiency, instrument calibration, and comparison with offline methods. The results demonstrate that the collection efficiency of the system is over 93%, the calibration correlation coefficient (R2) is 99.75%, and the online system reduces ROS loss due to offline methods by more than 60%. The system has a temporal resolution of 20 min and the limit of detection of the system was 1.9 nmol H2O2/m3. Field observations revealed that particle-bound ROS exhibited similar diurnal variations to O3, and photochemical reactions were the main factors affecting its diurnal variation. Full article
(This article belongs to the Special Issue Chemical Composition and Sources of Particles in the Atmosphere)
Show Figures

Figure 1

Back to TopTop