Novel Antioxidants for Animal Nutrition—2nd Edition

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 498

Special Issue Editors


E-Mail Website
Guest Editor
Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell’Università 6, 26900 Lodi, Italy
Interests: functional nutrition; feed additives; animal nutrition; innovative additives; alternatives to antibiotics; nutrition and health; gut microbiota; animal science; phytogenics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, Via Dell’Università 6, 26900 Lodi, Italy
Interests: animal nutrition; alternatives to antimicrobial; innovative additives; natural extracts; phytochemicals; antioxidants; functional feed; antimicrobial resistance; medical molecular farming; plant-based edible vaccines
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Although antimicrobials are a fundamental and irreplaceable resource to treat the onset of diseases, more restrictions have been recently applied on their use in veterinary medicine due to the rising problem of antimicrobial resistance. Dietary antioxidants can decrease the risk of pathology development and the aging process, and recently, antioxidant therapy has seen renewed interest in cancer research. Nowadays, our understanding of the importance of nutrition has increased considerably, and the role of antioxidants has become fundamental in animal health, since they are pivotal for developing functional diets. Antioxidants can be found in microorganisms, animals, and plants or can be chemically synthesized in laboratories. One of the most cost-effective opportunities in nutrition is represented by using by-products from the agroindustry that can be exploited to supplement functional compounds in diets. The dietary supplementation of antioxidants is fundamental for developing functional diets to cope with oxidative stress, prevent pathologies, and decrease therapeutic treatments in livestock and pets.

Due to the success of the first edition, we are glad to guest-edit the second edition of this Special Issue on innovative antioxidants for animal nutrition. We are seeking papers related to the aforementioned topic.

Dr. Matteo Dell'Anno
Prof. Dr. Luciana Rossi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nutrition
  • functional diets
  • innovative antioxidants
  • feed additives
  • natural extracts
  • disease prevention
  • oxidative stress
  • one health

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

34 pages, 1618 KiB  
Review
Bioactive Compounds Protect Mammalian Reproductive Cells from Xenobiotics and Heat Stress-Induced Oxidative Distress via Nrf2 Signaling Activation: A Narrative Review
by Muhammad Zahoor Khan, Adnan Khan, Bingjian Huang, Ren Wei, Xiyan Kou, Xinrui Wang, Wenting Chen, Liangliang Li, Muhammad Zahoor and Changfa Wang
Antioxidants 2024, 13(5), 597; https://doi.org/10.3390/antiox13050597 - 13 May 2024
Viewed by 314
Abstract
Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body’s antioxidant defenses. It poses a significant threat to the physiological function of reproductive cells. Factors such as xenobiotics and heat can worsen this stress, [...] Read more.
Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body’s antioxidant defenses. It poses a significant threat to the physiological function of reproductive cells. Factors such as xenobiotics and heat can worsen this stress, leading to cellular damage and apoptosis, ultimately decreasing reproductive efficiency. The nuclear factor erythroid 2–related factor 2 (Nrf2) signaling pathway plays a crucial role in defending against oxidative stress and protecting reproductive cells via enhancing antioxidant responses. Dysregulation of Nrf2 signaling has been associated with infertility and suboptimal reproductive performance in mammals. Recent advancements in therapeutic interventions have underscored the critical role of Nrf2 in mitigating oxidative damage and restoring the functional integrity of reproductive cells. In this narrative review, we delineate the harmful effects of heat and xenobiotic-induced oxidative stress on reproductive cells and explain how Nrf2 signaling provides protection against these challenges. Recent studies have shown that activating the Nrf2 signaling pathway using various bioactive compounds can ameliorate heat stress and xenobiotic-induced oxidative distress and apoptosis in mammalian reproductive cells. By comprehensively analyzing the existing literature, we propose Nrf2 as a key therapeutic target for mitigating oxidative damage and apoptosis in reproductive cells caused by exposure to xenobiotic exposure and heat stress. Additionally, based on the synthesis of these findings, we discuss the potential of therapies focused on the Nrf2 signaling pathway to improve mammalian reproductive efficiency. Full article
(This article belongs to the Special Issue Novel Antioxidants for Animal Nutrition—2nd Edition)
Show Figures

Figure 1

Back to TopTop