Next Issue
Volume 9, August
Previous Issue
Volume 9, June
 
 

Gels, Volume 9, Issue 7 (July 2023) – 90 articles

Cover Story (view full-size image): The incorporation of small diameter and high surface area nanofibres into the silica matrix is an excellent strategy for improving the robustness of an aerogel’s structure and maintain its monolithicity. In this work, we embedded a mixture of aramid nanofibres and microfibres in a tetraethoxysilane/vinyltrimethoxysilane matrix for developing novel reinforced aerogel nanocomposites dried by ambient pressure. The aerogels’ bulk density and thermal conductivity were influenced by the type and amount of nanofibres and microfibres. The nanocomposites’ thermal and mechanical features correlated with their structural properties. The scale-up process of the samples and simulated tests of thermal cycling and vacuum outgassing indicate good compliance with space applications. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
13 pages, 3492 KiB  
Article
3D Co-Printing and Substrate Geometry Influence the Differentiation of C2C12 Skeletal Myoblasts
by Giada Loi, Franca Scocozza, Flaminia Aliberti, Lorenza Rinvenuto, Gianluca Cidonio, Nicola Marchesi, Laura Benedetti, Gabriele Ceccarelli and Michele Conti
Gels 2023, 9(7), 595; https://doi.org/10.3390/gels9070595 - 24 Jul 2023
Viewed by 1267
Abstract
Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic [...] Read more.
Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic differentiation process is not clear and needs to be further investigated. Here, we show that the 3D co-printing technique allows the realization of substrates. To test the influence of the co-printing technique on cellular behavior, we realized linear polycaprolactone substrates with channels in which a fibrinogen-based hydrogel loaded with C2C12 cells was deposited. Cell viability and differentiation were investigated up to 21 days in culture. The results suggest that this technology significantly improves the differentiation at 14 days. Therefore, we investigate the substrate geometry influence by comparing three different co-printed geometries—linear, circular, and hybrid structures (linear and circular features combined). Based on our results, all structures exhibit optimal cell viability (>94%), but the linear pattern allows to increase the in vitro cell differentiation, in particular after 14 days of culture. This study proposes an endorsed approach for creating artificial muscles for future skeletal muscle tissue engineering applications. Full article
(This article belongs to the Special Issue Hydrogelated Matrices: Structural, Functional and Applicative Aspects)
Show Figures

Graphical abstract

28 pages, 4600 KiB  
Review
Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review
by Popat Mohite, Pudji Rahayu, Shubham Munde, Nitin Ade, Vijay R. Chidrawar, Sudarshan Singh, Titilope J. Jayeoye, Bhupendra G. Prajapati, Sankha Bhattacharya and Ravish J. Patel
Gels 2023, 9(7), 594; https://doi.org/10.3390/gels9070594 - 24 Jul 2023
Cited by 8 | Viewed by 1932
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate [...] Read more.
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels’ overall efficacy, safety, and potential applications for managing dermal infections. This review’s primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field. Full article
(This article belongs to the Special Issue Designing Chitosan-Based Hydrogels for Tissue Engineering)
Show Figures

Graphical abstract

15 pages, 903 KiB  
Review
Injectable Poloxamer Hydrogels for Local Cancer Therapy
by Ana Camila Marques, Paulo Cardoso Costa, Sérgia Velho and Maria Helena Amaral
Gels 2023, 9(7), 593; https://doi.org/10.3390/gels9070593 - 24 Jul 2023
Cited by 4 | Viewed by 2370
Abstract
The widespread push to invest in local cancer therapies comes from the need to overcome the limitations of systemic treatment options. In contrast to intravenous administration, local treatments using intratumoral or peritumoral injections are independent of tumor vasculature and allow high concentrations of [...] Read more.
The widespread push to invest in local cancer therapies comes from the need to overcome the limitations of systemic treatment options. In contrast to intravenous administration, local treatments using intratumoral or peritumoral injections are independent of tumor vasculature and allow high concentrations of therapeutic agents to reach the tumor site with minimal systemic toxicity. Injectable biodegradable hydrogels offer a clear advantage over other delivery systems because the former requires no surgical procedures and promotes drug retention at the tumor site. More precisely, in situ gelling systems based on poloxamers have garnered considerable attention due to their thermoresponsive behavior, biocompatibility, ease of preparation, and possible incorporation of different anticancer agents. Therefore, this review focuses on the use of injectable thermoresponsive hydrogels based on poloxamers and their physicochemical and biological characterization. It also includes a summary of these hydrogel applications in local cancer therapies using chemotherapy, phototherapy, immunotherapy, and gene therapy. Full article
(This article belongs to the Special Issue Hydrogel-Based Novel Biomaterials: Achievements and Prospects)
Show Figures

Graphical abstract

26 pages, 6178 KiB  
Article
Development and Comparative Evaluation of Ciprofloxacin Nanoemulsion-Loaded Bigels Prepared Using Different Ratios of Oleogel to Hydrogels
by Rania Hamed, Wala’a Abu Alata, Mohammad Abu-Sini, Dina H. Abulebdah, Alaa M. Hammad and Rafa Aburayya
Gels 2023, 9(7), 592; https://doi.org/10.3390/gels9070592 - 23 Jul 2023
Cited by 3 | Viewed by 1241
Abstract
Nanoemulsions and bigels are biphasic delivery systems that can be used for topical applications. The aim of this study was to incorporate an oil-in-water ciprofloxacin hydrochloride nanoemulsion (CIP.HCl NE) into two types of bigels, Type I (oleogel (OL)-in-hydrogel (WH)) and Type II (WH-in-OL) [...] Read more.
Nanoemulsions and bigels are biphasic delivery systems that can be used for topical applications. The aim of this study was to incorporate an oil-in-water ciprofloxacin hydrochloride nanoemulsion (CIP.HCl NE) into two types of bigels, Type I (oleogel (OL)-in-hydrogel (WH)) and Type II (WH-in-OL) to enhance drug penetration into skin and treat topical bacterial infections. Bigels were prepared at various ratios of OL and WH (1:1, 1:2, and 1:4). Initially, CIP.HCl NE was prepared and characterized in terms of droplet size, zeta potential, polydispersity index, morphology, and thermodynamic and chemical stability. Then CIP.HCl NE was dispersed into the OL or WH phase of the bigel. The primary physical stability studies showed that Type I bigels were physically stable, showing no phase separation. Whereas Type II bigels were physically unstable, hence excluded from the study. Type I bigels were subjected to microstructural, rheological, in vitro release, antimicrobial, and stability studies. The microscopic images showed a highly structured bigel network with nanoemulsion droplets dispersed within the bigel network. Additionally, bigels exhibited pseudoplastic flow and viscoelastic properties. A complete drug release was achieved after 4–5 h. The in vitro and ex vivo antimicrobial studies revealed that bigels exhibited antimicrobial activity against different bacterial strains. Moreover, stability studies showed that the rheological properties and physical and chemical stability varied based on the bigel composition over three months. Therefore, the physicochemical and rheological properties, drug release rate, and antimicrobial activity of Type I bigels could be modified by altering the OL to WH ratio and the phase in which the nanoemulsion dispersed in. Full article
(This article belongs to the Special Issue Gel Encapsulated Nanoparticles)
Show Figures

Graphical abstract

49 pages, 1040 KiB  
Review
A Review of Metal Nanoparticles Embedded in Hydrogel Scaffolds for Wound Healing In Vivo
by Sara Sheikh-Oleslami, Brendan Tao, Jonathan D’Souza, Fahad Butt, Hareshan Suntharalingam, Lucas Rempel and Nafise Amiri
Gels 2023, 9(7), 591; https://doi.org/10.3390/gels9070591 - 22 Jul 2023
Cited by 1 | Viewed by 1573
Abstract
An evolving field, nanotechnology has made its mark in the fields of nanoscience, nanoparticles, nanomaterials, and nanomedicine. Specifically, metal nanoparticles have garnered attention for their diverse use and applicability to dressings for wound healing due to their antimicrobial properties. Given their convenient integration [...] Read more.
An evolving field, nanotechnology has made its mark in the fields of nanoscience, nanoparticles, nanomaterials, and nanomedicine. Specifically, metal nanoparticles have garnered attention for their diverse use and applicability to dressings for wound healing due to their antimicrobial properties. Given their convenient integration into wound dressings, there has been increasing focus dedicated to investigating the physical, mechanical, and biological characteristics of these nanoparticles as well as their incorporation into biocomposite materials, such as hydrogel scaffolds for use in lieu of antibiotics as well as to accelerate and ameliorate healing. Though rigorously tested and applied in both medical and non-medical applications, further investigations have not been carried out to bring metal nanoparticle–hydrogel composites into clinical practice. In this review, we provide an up-to-date, comprehensive review of advancements in the field, with emphasis on implications on wound healing in in vivo experiments. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use)
Show Figures

Graphical abstract

17 pages, 5165 KiB  
Article
Functional Hydrogels for Agricultural Application
by Romana Kratochvílová, Milan Kráčalík, Marcela Smilková, Petr Sedláček, Miloslav Pekař, Elke Bradt, Jiří Smilek, Petra Závodská and Martina Klučáková
Gels 2023, 9(7), 590; https://doi.org/10.3390/gels9070590 - 22 Jul 2023
Cited by 2 | Viewed by 1335
Abstract
Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing [...] Read more.
Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination. This study of stability was focused on utility properties in their application in soil—repeated drying/re-swelling cycles and possible freezing in winter. Lignohumate supported the water absorbency, while the addition of NPK caused a negative effect. Pore sizes decreased with NPK addition. Lignohumate incorporated into polymers resulted in a much miscellaneous structure, rich in different pores and voids of with a wide range of sizes. NPK fertilizer supported the elastic character of prepared materials, while the addition of lignohumate shifted their rheological behavior to more liquid. Both dynamic moduli decreased in time. The most stable samples appeared to contain only one fertilizer constituent (NPK or lignohumate). Repeated re-swelling resulted in an increase in elastic character, which was connected with the gradual release of fertilizers. A similar effect was observed with samples that were frozen and defrosted, except samples containing a higher amount of NPK without lignohumate. A positive effect of acrylamide on superabsorbent properties was not confirmed. Full article
(This article belongs to the Special Issue Advances in Smart and Tough Hydrogels)
Show Figures

Figure 1

14 pages, 3326 KiB  
Article
Controlled Release of Growth Factor from Heparin Embedded Poly(aldehyde guluronate) Hydrogels and Its Effect on Vascularization
by Yilan Zhao, Zezhong Lin, Wenqu Liu, Mingwei Piao, Junjie Li and Hong Zhang
Gels 2023, 9(7), 589; https://doi.org/10.3390/gels9070589 - 21 Jul 2023
Viewed by 957
Abstract
To deliver growth factors controllably for tissue regeneration, poly(aldehyde guluronate) (PAG) was obtained from alginate and covalently cross-linked with aminated gelatin (AG) to form PAG/AG hydrogel as a growth factors carrier. The prepared hydrogel exhibits a slow degradation rate and excellent cytocompatibility. Heparin [...] Read more.
To deliver growth factors controllably for tissue regeneration, poly(aldehyde guluronate) (PAG) was obtained from alginate and covalently cross-linked with aminated gelatin (AG) to form PAG/AG hydrogel as a growth factors carrier. The prepared hydrogel exhibits a slow degradation rate and excellent cytocompatibility. Heparin was conjugated with gelatin and embedded into the hydrogel to reserve and stabilize growth factors. Basic fibroblast growth factor (bFGF) was immobilized into the hydrogel and performed sustained release as the hydrogel degraded. The bFGF loaded hydrogel can improve vascularization effectively in a rat dorsal sac model. To summarize, heparin embedded PAG/AG hydrogels would serve as a promising biodegradable vehicle for the controlled delivery of growth factors and promoting vascularization in regenerative medicine. Full article
(This article belongs to the Special Issue Hydrogel Surface/Coating for Smart Drug Delivery and Medical Devices)
Show Figures

Graphical abstract

24 pages, 7726 KiB  
Review
Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering
by Hee Sook Hwang and Chung-Sung Lee
Gels 2023, 9(7), 588; https://doi.org/10.3390/gels9070588 - 21 Jul 2023
Cited by 10 | Viewed by 2504
Abstract
Hydrogel-based bone tissue engineering is a potential strategy for treating bone abnormalities and fractures. Hyaluronic acid (HA) is a natural polymer that is widely distributed in the human body and plays a significant role in numerous physiological processes such as cell migration, tissue [...] Read more.
Hydrogel-based bone tissue engineering is a potential strategy for treating bone abnormalities and fractures. Hyaluronic acid (HA) is a natural polymer that is widely distributed in the human body and plays a significant role in numerous physiological processes such as cell migration, tissue hydration, and wound healing. Hydrogels based on HA and its derivatives have gained popularity as potential treatments for bone-related diseases. HA-based hydrogels have been extensively studied for their ability to mimic the natural extracellular matrix of bone tissue and provide a suitable microenvironment for cell support and tissue regeneration. The physical and chemical properties of HA can be modified to improve its mechanical strength, biocompatibility, and osteogenic potential. Moreover, HA-based hydrogels combined with other biomaterials in the presence or absence of bioactive agents have been investigated as a means of improving the mechanical properties and bioactivity of the hydrogel scaffold. Therefore, HA-based hydrogels have shown great promise in bone tissue engineering due to their biocompatibility, osteogenic activity, and ability to mimic the natural extracellular matrix of bone tissue. Overall, this review provides a comprehensive overview of the current state of the art in HA-based hydrogels for bone tissue engineering, highlighting the key advances, challenges, and future directions in this rapidly evolving field. Full article
(This article belongs to the Special Issue Hydrogels for Bone Regeneration)
Show Figures

Figure 1

19 pages, 5546 KiB  
Article
Microemulsion-Based Keratin–Chitosan Gel for Improvement of Skin Permeation/Retention and Activity of Curcumin
by Jiangxiu Niu, Ming Yuan, Panpan Gao, Liye Wang, Yueheng Qi, Jingjing Chen, Kaiyue Bai, Yanli Fan and Xianming Liu
Gels 2023, 9(7), 587; https://doi.org/10.3390/gels9070587 - 21 Jul 2023
Cited by 2 | Viewed by 1089
Abstract
Curcumin (Cur) is a kind of polyphenol with a variety of topical pharmacological properties including antioxidant, analgesic and anti-inflammatory activities. However, its low water solubility and poor skin bioavailability limit its effectiveness. In the current study, we aimed to develop microemulsion-based keratin–chitosan gel [...] Read more.
Curcumin (Cur) is a kind of polyphenol with a variety of topical pharmacological properties including antioxidant, analgesic and anti-inflammatory activities. However, its low water solubility and poor skin bioavailability limit its effectiveness. In the current study, we aimed to develop microemulsion-based keratin–chitosan gel for the improvement of the topical activity of Cur. The curcumin-loaded microemulsion (CME) was formulated and then loaded into the keratin–chitosan (KCS) gel to form the CME-KCS gel. The formulated CME-KCS gel was evaluated for its characterization, in vitro release, in vitro skin permeation and in vivo activity. The results showed that the developed CME-KCS gel had an orange-yellow and gel-like appearance. The particle size and zeta potential of the CME-KCS gel were 186.45 ± 0.75 nm and 9.42 ± 0.86 mV, respectively. The CME-KCS gel showed desirable viscoelasticity, spreadability, bioadhesion and controlled drug release, which was suitable for topical application. The in vitro skin permeation and retention study showed that the CME-KCS gel had better in vitro skin penetration than the Cur solution and achieved maximum skin drug retention (3.75 ± 0.24 μg/cm2). In vivo experimental results confirmed that the CME-KCS gel was more effective than curcumin-loaded microemulsion (Cur-ME) in analgesic and anti-inflammatory activities. In addition, the CME-KCS gel did not cause any erythema or edema based on a mice skin irritation test. These findings indicated that the developed CME-KCS gel could improve the skin penetration and retention of Cur and could become a promising formulation for topical delivery to treat local diseases. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels)
Show Figures

Graphical abstract

4 pages, 218 KiB  
Editorial
Special Issue: Bioceramics, Bioglasses, and Gels for Tissue Engineering
by Arish Dasan and Ashokraja Chandrasekar
Gels 2023, 9(7), 586; https://doi.org/10.3390/gels9070586 - 21 Jul 2023
Cited by 1 | Viewed by 895
Abstract
Undoubtedly, biomaterials such as bioceramics, bioactive glasses, and gels have attracted a wide range of research interest in the field of tissue engineering (TE), as they facilitate the essential support and environment for cells to grow, differentiate, and, specifically, regenerate new tissues [...] [...] Read more.
Undoubtedly, biomaterials such as bioceramics, bioactive glasses, and gels have attracted a wide range of research interest in the field of tissue engineering (TE), as they facilitate the essential support and environment for cells to grow, differentiate, and, specifically, regenerate new tissues [...] Full article
(This article belongs to the Special Issue Bioceramics, Bioglasses and Gels for Tissue Engineering)
38 pages, 11551 KiB  
Review
Gel Polymer Electrolytes: Advancing Solid-State Batteries for High-Performance Applications
by Kanakaraj Aruchamy, Subramaniyan Ramasundaram, Sivasubramani Divya, Murugesan Chandran, Kyusik Yun and Tae Hwan Oh
Gels 2023, 9(7), 585; https://doi.org/10.3390/gels9070585 - 21 Jul 2023
Cited by 8 | Viewed by 6662
Abstract
Gel polymer electrolytes (GPEs) hold tremendous potential for advancing high-energy-density and safe rechargeable solid-state batteries, making them a transformative technology for advancing electric vehicles. GPEs offer high ionic conductivity and mechanical stability, enabling their use in quasi-solid-state batteries that combine solid-state interfaces with [...] Read more.
Gel polymer electrolytes (GPEs) hold tremendous potential for advancing high-energy-density and safe rechargeable solid-state batteries, making them a transformative technology for advancing electric vehicles. GPEs offer high ionic conductivity and mechanical stability, enabling their use in quasi-solid-state batteries that combine solid-state interfaces with liquid-like behavior. Various GPEs based on different materials, including flame-retardant GPEs, dendrite-free polymer gel electrolytes, hybrid solid-state batteries, and 3D printable GPEs, have been developed. Significant efforts have also been directed toward improving the interface between GPEs and electrodes. The integration of gel-based electrolytes into solid-state electrochemical devices has the potential to revolutionize energy storage solutions by offering improved efficiency and reliability. These advancements find applications across diverse industries, particularly in electric vehicles and renewable energy. This review comprehensively discusses the potential of GPEs as solid-state electrolytes for diverse battery systems, such as lithium-ion batteries (LiBs), lithium metal batteries (LMBs), lithium–oxygen batteries, lithium–sulfur batteries, zinc-based batteries, sodium–ion batteries, and dual-ion batteries. This review highlights the materials being explored for GPE development, including polymers, inorganic compounds, and ionic liquids. Furthermore, it underscores the transformative impact of GPEs on solid-state batteries and their role in enhancing the performance and safety of energy storage devices. Full article
(This article belongs to the Special Issue Gel-Based Electrolytes for Solid-State Electrochemical Devices)
Show Figures

Figure 1

13 pages, 21489 KiB  
Article
Photodynamic Therapy with Aminolevulinic Acid Enhances the Cellular Activity of Cells Cultured on Porcine Acellular Dermal Matrix Membranes Used in Periodontology
by Morena Petrini, Emira D’Amico, Tania Vanessa Pierfelice, Gitana Maria Aceto, Maryia Karaban, Pietro Felice, Adriano Piattelli, Antonio Barone and Giovanna Iezzi
Gels 2023, 9(7), 584; https://doi.org/10.3390/gels9070584 - 20 Jul 2023
Cited by 2 | Viewed by 995
Abstract
This study aims to test a photodynamic protocol based on a gel containing aminolevulinic acid followed by red-LED (ALAD-PDT) irradiation on human gingival fibroblasts (hGFs) and osteoblasts (hOBs) cultured on a porcine acellular dermal matrix membrane (PADMM). In the previous literature, ALAD-PDT showed [...] Read more.
This study aims to test a photodynamic protocol based on a gel containing aminolevulinic acid followed by red-LED (ALAD-PDT) irradiation on human gingival fibroblasts (hGFs) and osteoblasts (hOBs) cultured on a porcine acellular dermal matrix membrane (PADMM). In the previous literature, ALAD-PDT showed solid antibacterial activity and proliferative induction on HGFs cultured on plates and HOBs cultured on a cortical lamina. PADMMs are used in dentistry and periodontology to treat gingival recessions and to increase the tissue thickness in the case of a thin biotype without the risks or postoperative discomfort associated with connective tissue grafts. However, one of the possible complications in this type of surgery is represented by bacterial invasion and membrane exposition during the healing period. We hypothesized that the addition of ALAD-PDT to PADMMs could enhance more rapid healing and decrease the risks connected with bacterial invasion. In periodontal surgery, PADMMs are inserted after a full-thickness flap elevation between the bone and the flap. Consequently, all procedures were performed in parallel on hOBs and hGFs obtained by dental patients. The group control (CTRL) was represented by the unexposed cells cultured on the membranes, group LED (PDT) were the cells subjected to 7 min of red LED irradiation, and ALAD-PDT were the cells subjected to 45 min of ALAD incubation and then to 7 min of red LED irradiation. After treatments, all groups were analyzed for MTT assay and subjected to histological examination at 3 and 7 days and to the SEM observations at 3, 7, and 14 days. Different bone mineralization assays were performed to quantify the effects of ALAD-PDT on hOBs: ALP activity, ALP gene expression, osteocalcin, and alizarin red. The effects of ALAD-PDT on hGFs were evaluated by quantifying collagen 1, fibronectin, and MMP-8. Results showed that ALAD-PDT promoted cellular induction, forming a dense cellular network on hOBs and hGFs, and the assays performed showed statistically significantly higher values for ALAD-PDT with respect to LED alone and CTRLs. In conclusion, ALAD-PDT could represent a promising aid for enhancing the healing of gingival tissues after PADMM applications. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents)
Show Figures

Figure 1

31 pages, 10347 KiB  
Article
Levofloxacin HCl-Loaded Eudragit L-Based Solvent Exchange-Induced In Situ Forming Gel Using Monopropylene Glycol as a Solvent for Periodontitis Treatment
by Setthapong Senarat, Sarun Tuntarawongsa, Nutdanai Lertsuphotvanit, Catleya Rojviriya, Thawatchai Phaechamud and Takron Chantadee
Gels 2023, 9(7), 583; https://doi.org/10.3390/gels9070583 - 18 Jul 2023
Cited by 4 | Viewed by 1309
Abstract
Solvent exchange-induced in situ forming gel (ISG) is currently an appealing dosage form for periodontitis treatment via localized injection into the periodontal pocket. This study aims to apply Eudragit L and Eudragit S as matrix components of ISG by using monopropylene glycol as [...] Read more.
Solvent exchange-induced in situ forming gel (ISG) is currently an appealing dosage form for periodontitis treatment via localized injection into the periodontal pocket. This study aims to apply Eudragit L and Eudragit S as matrix components of ISG by using monopropylene glycol as a solvent for loading levofloxacin HCl for periodontitis treatment. The influence of Eudragit concentration was investigated in terms of apparent viscosity, rheological behavior, injectability, gel-forming behavior, and mechanical properties. Eudragit L-based formulation presented less viscosity, was easier to inject, and could form more gel than Eudragit S-based ISG. Levofloxacin HCl-loading diminished the viscosity of Eudragit L-based formulation but did not significantly change the gel formation ability. Higher polymer loading increased viscosity, force-work of injectability, and hardness. SEM photographs and µCT images revealed their scaffold formation, which had a denser topographic structure and less porosity attained owing to higher polymer loading and less in vitro degradation. By tracking with fluorescence dyes, the interface interaction study revealed crucial information such as solvent movement ability and matrix formation of ISG. They prolonged the drug release for 14 days with fickian drug diffusion kinetics and increased the release amount above the MIC against test microbes. The 1% levofloxacin HCl and 15% Eudragit L dissolved in monopropylene glycol (LLM15) was a promising ISG because of its appropriate viscosity (3674.54 ± 188.03 cP) with Newtonian flow, acceptable gel formation and injectability (21.08 ± 1.38 N), hardness (33.81 ± 2.3 N) and prolonged drug release with efficient antimicrobial activities against S. aureus (ATCC 6538, 6532, and 25923), methicillin-resistant S. aureus (MRSA) (S. aureus ATCC 4430), E. coli ATCC 8739, C. albicans ATCC 10231, P. gingivalis ATCC 33277, and A. actinomycetemcomitans ATCC 29522; thus, it is the potential ISG formulation for periodontitis treatment by localized periodontal pocket injection. Full article
(This article belongs to the Special Issue Properties and Applications of Biomaterials Related to Gels)
Show Figures

Graphical abstract

16 pages, 4013 KiB  
Article
Polypyrrole Aerogels: Efficient Adsorbents of Cr(VI) Ions from Aqueous Solutions
by Patrycja Bober, Islam M. Minisy, Zuzana Morávková, Helena Hlídková, Jiří Hodan, Jiřina Hromádková and Udit Acharya
Gels 2023, 9(7), 582; https://doi.org/10.3390/gels9070582 - 17 Jul 2023
Cited by 1 | Viewed by 1120
Abstract
Three-dimensional and porous polypyrrole (PPy) aerogels were prepared using a facile two-step procedure in which cryogels were synthesized via the cryopolymerization of pyrrole with iron (III) chloride in the presence of supporting water-soluble polymers (poly(N-vinylpyrrolidone), poly(vinyl alcohol), gelatin, methylcellulose or hydroxypropylcellulose), [...] Read more.
Three-dimensional and porous polypyrrole (PPy) aerogels were prepared using a facile two-step procedure in which cryogels were synthesized via the cryopolymerization of pyrrole with iron (III) chloride in the presence of supporting water-soluble polymers (poly(N-vinylpyrrolidone), poly(vinyl alcohol), gelatin, methylcellulose or hydroxypropylcellulose), followed by freeze-drying to obtain aerogels. The choice of supporting polymers was found to affect the morphology, porosity, electrical conductivity, and mechanical properties of PPy aerogels. PPy aerogels were successfully used as adsorbents to remove toxic Cr(VI) ions from aqueous solutions. Full article
(This article belongs to the Special Issue Recent Advances in Aerogels)
Show Figures

Figure 1

19 pages, 4623 KiB  
Article
Biosorption of Escherichia coli Using ZnO-Trimethyl Chitosan Nanocomposite Hydrogel Formed by the Green Synthesis Route
by Ibrahim Birma Bwatanglang, Faruq Mohammad, John Nahadi Janet, Wasmia Mohammed Dahan, Hamad A. Al-Lohedan and Ahmed A. Soleiman
Gels 2023, 9(7), 581; https://doi.org/10.3390/gels9070581 - 17 Jul 2023
Viewed by 1077
Abstract
In this study, we tested the biosorption capacity of trimethyl chitosan (TMC)-ZnO nanocomposite (NC) for the adsorptive removal of Escherichia coli (E. coli) in aqueous suspension. For the formation of ZnO NPs, we followed the green synthesis route involving Terminalia mantaly [...] Read more.
In this study, we tested the biosorption capacity of trimethyl chitosan (TMC)-ZnO nanocomposite (NC) for the adsorptive removal of Escherichia coli (E. coli) in aqueous suspension. For the formation of ZnO NPs, we followed the green synthesis route involving Terminalia mantaly (TM) aqueous leaf extract as a reducing agent, and the formed ZnO particles were surface-coated with TMC biopolymer. On testing of the physicochemical characteristics, the TM@ZnO/TMC (NC) hydrogel showed a random spherical morphology with an average size of 31.8 ± 2.6 nm and a crystal size of 28.0 ± 7.7 nm. The zeta potential of the composite was measured to be 23.5 mV with a BET surface area of 3.01 m2 g−1. The spectral profiles of TM@ZnO/TMC NC hydrogel on interaction with Escherichia coli (E. coli) revealed some conformational changes to the functional groups assigned to the stretching vibrations of N-H, C-O-C, C-O ring, and C=O bonds. The adsorption kinetics of TM@ZnO/TMC NC hydrogel revealed the pseudo-second-order as the best fit mechanism for the E. coli biosorption. The surface homogeneity and monolayer adsorption of the TM@ZnO/TMC NC hydrogel reflects majorly the entire adsorption mechanism, observed to display the highest correlation for Jovanovic, Redlich–Peterson, and Langmuir’s isotherm models. Further, with the use of TM@ZnO/TMC NC hydrogel, we measured the highest adsorption capacity of E. coli to be 4.90 × 10 mg g−1, where an in-depth mechanistic pathway was proposed by making use of the FTIR analysis. Full article
(This article belongs to the Special Issue Gel Encapsulated Nanoparticles)
Show Figures

Figure 1

16 pages, 4045 KiB  
Article
Poly(vinyl alcohol)/Pullulan Composite Hydrogels as a Potential Platform for Wound Dressing Applications
by Ioana-Alexandra Plugariu, Maria Bercea, Luiza Madalina Gradinaru, Daniela Rusu and Alexandra Lupu
Gels 2023, 9(7), 580; https://doi.org/10.3390/gels9070580 - 16 Jul 2023
Cited by 3 | Viewed by 1421
Abstract
Hydrogels are 3D networks with an excellent ability to retain a high amount of water or biological fluids, representing suitable candidates for wound dressing applications. They can provide a protective barrier and a moist environment, facilitating wound treatment. The present paper focuses on [...] Read more.
Hydrogels are 3D networks with an excellent ability to retain a high amount of water or biological fluids, representing suitable candidates for wound dressing applications. They can provide a protective barrier and a moist environment, facilitating wound treatment. The present paper focuses on physical hydrogels obtained from poly(vinyl alcohol) (PVA) and pullulan (PULL) mixtures in different weight ratios by using the freezing/thawing method. Hybrid hydrogels of similar polymer compositions were prepared in the presence of 0.5% Laponite® RD. The influence of polysaccharide and clay addition on the properties of PVA hydrogels was investigated. Scanning electron microscopy showed evidence of the inner porous structure. The viscoelastic properties were investigated in different shear conditions and revealed the influence of the hydrogel composition on the network strength. The swelling behavior was followed in physiological saline solutions at 37 °C and pH = 7.4. For all samples, a quasi-Fickian diffusion mechanism was found. The delivery of neomycin sulfate was studied in similar conditions as for the swelling tests (0.15 M NaCl solutions; 37 °C; pH = 7.4) and different kinetic models were used to determine the release mechanism. The Peppas–Sahlin approach described very well the in vitro drug release mechanism from the polymeric hydrogels in the absence of clay. However, the hybrid polymer/clay hydrogels showed the best fit with the Korsmeyer–Peppas model. According to the present study, the porous membranes containing 40–60% PULL (in absence of clay) are suitable for the release of therapeutic agents at wound sites in physiological conditions. Full article
(This article belongs to the Special Issue Physically Cross-Linked Gels and Their Applications)
Show Figures

Figure 1

15 pages, 4051 KiB  
Article
The Effect of Temperature on the Mechanical Properties of Alginate Gels in Water/Alcohol Solutions
by Haniyeh Malektaj, Aleksey D. Drozdov and Jesper deClaville Christiansen
Gels 2023, 9(7), 579; https://doi.org/10.3390/gels9070579 - 16 Jul 2023
Viewed by 1150
Abstract
Alginate organohydrogels prepared in water/alcohol mixtures play an important role in electronic and superconductor applications in low-temperature environments. The study deals with the preparation of Ca-alginate organohydrogels and the analysis of their equilibrium swelling and mechanical properties at sub-zero temperatures. It is shown [...] Read more.
Alginate organohydrogels prepared in water/alcohol mixtures play an important role in electronic and superconductor applications in low-temperature environments. The study deals with the preparation of Ca-alginate organohydrogels and the analysis of their equilibrium swelling and mechanical properties at sub-zero temperatures. It is shown that the equilibrium degree of swelling at room temperature is noticeably affected by the concentration of co-solvents (methanol, ethanol, and 2-propanol) in the mixtures and the number of carbon atoms in the co-solvent molecules. Mechanical properties are studied in small-amplitude oscillatory tests. The data are fitted with a model that involves three material parameters. The influence of temperature is investigated in temperature-sweep oscillatory tests under a cooling-heating program, where a noticeable difference is observed between the storage and loss moduli under cooling and heating (the hysteresis curves). The hysteresis areas are affected by the cooling/heating rate and the number of carbon atoms in the co-solvents. Full article
Show Figures

Figure 1

10 pages, 2253 KiB  
Article
Gel Protein Extraction’s Impact on Conformational Epitopes of Linear Non-Tagged MPT64 Protein
by Sri Agung Fitri Kusuma, Muhammad Fadhlillah, Tina Rostinawati, Intan Timur Maisyarah, Raden Indah Puspita Syafitri and Toto Subroto
Gels 2023, 9(7), 578; https://doi.org/10.3390/gels9070578 - 14 Jul 2023
Viewed by 932
Abstract
The production and purification of recombinant proteins are crucial to acquiring pure MPT64 protein. Due to the fact that protein epitopes may undergo conformational changes during purification, this study, therefore, investigated an effective rapid purification method to produce highly intracellular pure MPT64 protein [...] Read more.
The production and purification of recombinant proteins are crucial to acquiring pure MPT64 protein. Due to the fact that protein epitopes may undergo conformational changes during purification, this study, therefore, investigated an effective rapid purification method to produce highly intracellular pure MPT64 protein without causing conformational changes in the epitope under denaturing conditions. MPT64 was isolated from E. coli and electrophoresed using gel SDS-PAGE. Then, the desired protein bands were excised and purified with two methods: electroelution and passive elution. The isolated protein was identified via peptide mass fingerprinting using MALDI-TOF MS and reacted with IgG anti-MPT64, and the cross-reactivity of the isolated protein with IgY anti-MPT64 was confirmed using Western blot. The results show that both of these methods produced pure MPT64 protein, and the MPT64 protein was confirmed based on the MALDI-TOF MS results. Neither of these two methods resulted in epitope changes in the MPT64 protein so it could react specifically with both antibodies. The yield of MPT64 protein was higher with electroelution (2030 ± 41 µg/mL) than with passive elution (179.5 ± 7.5 µg/mL). Thus, it can be inferred that the electroelution method is a more effective method of purifying MPT64 protein and maintaining its epitope than the passive elution method. Full article
Show Figures

Figure 1

16 pages, 8486 KiB  
Article
Piperine-Loaded In Situ Gel: Formulation, In Vitro Characterization, and Clinical Evaluation against Periodontitis
by Poornima K. Gopalakrishna, Rajamma Abburu Jayaramu, Sateesha Shivally Boregowda, Shruthi Eshwar, Nikhil V. Suresh, Amr Selim Abu Lila, Afrasim Moin, Hadil Faris Alotaibi, Ahmad J. Obaidullah and El-Sayed Khafagy
Gels 2023, 9(7), 577; https://doi.org/10.3390/gels9070577 - 14 Jul 2023
Cited by 1 | Viewed by 1337
Abstract
Periodontitis is an inflammatory disorder associated with dysbiosis and characterized by microbiologically related, host-mediated inflammation that leads to the damage of periodontal tissues including gingiva, connective tissues, and alveolar bone. The aim of this study was to develop an in situ gel consisting [...] Read more.
Periodontitis is an inflammatory disorder associated with dysbiosis and characterized by microbiologically related, host-mediated inflammation that leads to the damage of periodontal tissues including gingiva, connective tissues, and alveolar bone. The aim of this study was to develop an in situ gel consisting of piperine. Eight in situ gel formulations were designed by varying the concentration of deacylated gellan gum cross-linked with sodium tripolyphosphate, and poloxamer-407. The prepared gels were evaluated for gelation temperature, gelation time, viscosity, piperine-loading efficiency, and piperine release. Finally, the optimized formula was evaluated for anti-inflammatory effectiveness among human patients during a 14-day follow-up. The optimized in situ gel formulation exhibited a gelation temperature of 35 ± 1 °C, gelling of 36 ± 1 s, excellent syringeability, and piperine loading of 95.3 ± 2.3%. This formulation efficiently sustained in vitro drug release for up to 72 h. In vivo studies revealed an efficient sol-to-gel transformation of optimized in situ gel formulation at physiological conditions, permitting an efficient residence time of the formulation within a periodontitis pocket. Most importantly, a clinical study revealed that treatment with the optimized formulation elicited a significant reduction in the mean plaque score (p = 0.001), gingival index (p = 0.003), and pocket depth (p = 0.002), and exerted a potent anti-inflammatory potential, compared to the control group. Collectively, piperine-loaded in situ gel might represent a viable therapeutic approach for the management of gingival and periodontal diseases. Full article
(This article belongs to the Special Issue Design and Optimization of Pharmaceutical Gels)
Show Figures

Graphical abstract

19 pages, 8470 KiB  
Article
Solid Lipid Nanoparticles Embedded Hydrogels as a Promising Carrier for Retarding Irritation of Leflunomide
by Hawra Mohammed Alhelal, Sidharth Mehta, Varsha Kadian, Vandita Kakkar, Himanshi Tanwar, Rekha Rao, Bandar Aldhubiab, Nagaraja Sreeharsha, Pottathil Shinu and Anroop B. Nair
Gels 2023, 9(7), 576; https://doi.org/10.3390/gels9070576 - 14 Jul 2023
Cited by 2 | Viewed by 1619
Abstract
Leflunomide (LEF), a disease-modifying anti-rheumatic drug, has been widely explored for its anti-inflammatory potential in skin disorders such as psoriasis and melanoma. However, its poor stability and skin irritation pose challenges for topical delivery. To surmount these issues, LEF-loaded solid lipid nanoparticles (SLNs) [...] Read more.
Leflunomide (LEF), a disease-modifying anti-rheumatic drug, has been widely explored for its anti-inflammatory potential in skin disorders such as psoriasis and melanoma. However, its poor stability and skin irritation pose challenges for topical delivery. To surmount these issues, LEF-loaded solid lipid nanoparticles (SLNs) integrated with hydrogels have been developed in the present investigation. SLNs developed by microemulsion techniques were found ellipsoidal with 273.1 nm particle size and −0.15 mV zeta potential. Entrapment and total drug content of LEF-SLNs were obtained as 65.25 ± 0.95% and 93.12 ± 1.72%, respectively. FTIR and XRD validated the successful fabrication of LEF-SLNs. The higher stability of LEF-SLNs (p < 0.001) compared to pure drug solution was observed in photostability studies. Additionally, in vitro anti-inflammatory activity of LEF-SLNs showed good potential in comparison to pure drugs. Further, prepared LEF-SLNs loaded hydrogel showed ideal rheology, texture, occlusion, and spreadability for topical drug delivery. In vitro release from LEF-SLN hydrogel was found to follow the Korsmeyer-Peppas model. To assess the skin safety of fabricated lipidic formulation, irritation potential was performed employing the HET-CAM technique. In conclusion, the findings of this investigation demonstrated that LEF-SLN hydrogel is capable of enhancing the photostability of the entrapped drug while reducing its skin irritation with improved topical delivery characteristics. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Controlled Drug Delivery)
Show Figures

Figure 1

21 pages, 4284 KiB  
Review
Nanostructured Bioaerogels as a Potential Solution for Particulate Matter Pollution
by Wafa Mustafa Saleh, Mardiana Idayu Ahmad, Esam Bashir Yahya and Abdul Khalil H.P.S.
Gels 2023, 9(7), 575; https://doi.org/10.3390/gels9070575 - 14 Jul 2023
Cited by 3 | Viewed by 1622
Abstract
Particulate matter (PM) pollution is a significant environmental and public health issue globally. Exposure to high levels of PM, especially fine particles, can have severe health consequences. These particles can come from a variety of sources, including natural events like dust storms and [...] Read more.
Particulate matter (PM) pollution is a significant environmental and public health issue globally. Exposure to high levels of PM, especially fine particles, can have severe health consequences. These particles can come from a variety of sources, including natural events like dust storms and wildfires, as well as human activities such as industrial processes and transportation. Although an extensive development in air filtration techniques has been made in the past few years, fine particulate matter still poses a serios and dangerous threat to human health and to our environment. Conventional air filters are fabricated from non-biodegradable and non-ecofriendly materials which can cause further environmental pollution as a result of their excessive use. Nanostructured biopolymer aerogels have shown great promise in the field of particulate matter removal. Their unique properties, renewable nature, and potential for customization make them attractive materials for air pollution control. In the present review, we discuss the meaning, properties, and advantages of nanostructured aerogels and their potential in particulate matter removal. Particulate matter pollution, types and sources of particulate matter, health effect, environmental effect, and the challenges facing scientists in particulate matter removal are also discussed in the present review. Finally, we present the most recent advances in using nanostructured bioaerogels in the removal of different types of particulate matter and discuss the challenges that we face in these applications. Full article
Show Figures

Graphical abstract

22 pages, 1869 KiB  
Review
Cellulose Nanocrystal (CNC) Gels: A Review
by Sérgio R. S. Veloso, Ana G. Azevedo, Paulo F. Teixeira and Célio B. P. Fernandes
Gels 2023, 9(7), 574; https://doi.org/10.3390/gels9070574 - 14 Jul 2023
Cited by 2 | Viewed by 1836
Abstract
The aim of this article is to review the research conducted in the field of aqueous and polymer composites cellulose nanocrystal (CNC) gels. The experimental techniques employed to characterize the rheological behavior of these materials will be summarized, and the main advantages of [...] Read more.
The aim of this article is to review the research conducted in the field of aqueous and polymer composites cellulose nanocrystal (CNC) gels. The experimental techniques employed to characterize the rheological behavior of these materials will be summarized, and the main advantages of using CNC gels will also be addressed in this review. In addition, research devoted to the use of numerical simulation methodologies to describe the production of CNC-based materials, e.g., in 3D printing, is also discussed. Finally, this paper also discusses the application of CNC gels along with additives such as cross-linking agents, which can represent an enormous opportunity to develop improved materials for manufacturing processes. Full article
(This article belongs to the Special Issue New Era Application of Cellulose-Based Gels)
Show Figures

Graphical abstract

14 pages, 3909 KiB  
Article
Evaluation of Osteogenic Potential of Fucoidan Containing Chitosan Hydrogel in the Treatment of Periodontal Intra-Bony Defects—A Randomized Clinical Trial
by Shruthi Eshwar, Kranti Konuganti, Supriya Manvi, Aarya N. Bharadwaj, Sudarshan Sajjan, Sateesha Shivally Boregowda and Vipin Jain
Gels 2023, 9(7), 573; https://doi.org/10.3390/gels9070573 - 13 Jul 2023
Cited by 1 | Viewed by 1412
Abstract
Periodontal diseases significantly impact about half of the global population, and their treatment often encompasses relieving symptoms as well as regenerating the destroyed tissues. Revolutionary research in the management of periodontal disease includes biomaterials, a boon to re-generative dentistry owing to their excellent [...] Read more.
Periodontal diseases significantly impact about half of the global population, and their treatment often encompasses relieving symptoms as well as regenerating the destroyed tissues. Revolutionary research in the management of periodontal disease includes biomaterials, a boon to re-generative dentistry owing to their excellent biological properties: non-toxicity, anti-inflammatory, biocompatibility, biodegradability, and adhesion. This study aimed to fabricate an injectable fucoidan containing chitosan hydrogel and prove its effectiveness in periodontal bone regeneration. The injectable hydrogel was prepared using the sol-gel method and was subjected to various physical, chemical, and biological characterizations to understand its efficacy in formation of new bone. The effectiveness of the developed hydrogel was assessed in periodontal bony defects to study the soft and hard tissue changes. A total of 40 periodontitis patients with bony defects were recruited and randomized into two groups to receive fucoidan-chitosan hydrogel and concentrated growth factor, respectively. Customized acrylic stents were used to guide the hydrogel placement into the defect site. Post-surgical changes in clinical parameters were assessed at 3, 6, and 9 months to appreciate the soft and hard tissue changes using repeated measures analysis of variance and Bonferroni’s post hoc test. Significance was kept at 5%. The porosity, water uptake of the prepared hydrogel showed good efficacy, with particle size of the fucoidan containing chitosan hydrogel of 6.000 nm. The MG-63 osteoblasts cell line revealed biocompatibility, biodegradability and showed slow and sustained drug release, increased cell proliferation, and enhanced alkaline phosphatase secretion. Mineralization assay was greatest in the fucoidan containing chitosan hydrogel. Clinically, it exhibited significantly lower probing depth values and a higher mean improvement in clinical attachment level as compared to the concentrated growth factor (CGF) group at the end of 3 and 6 months (p < 0.05). The mean of the defect fills in the fucoidan containing chitosan group was 1.20 at the end of 9 months (p < 0.001) as compared with defect fills observed in the CGF group. The presence of fucoidan in the hydrogel significantly contributed to bone regeneration in humans, thus strengthening its potential in tissue engineering. Fucoidan-chitosan will be a promising biomaterial for bone tissue regeneration. Full article
Show Figures

Graphical abstract

23 pages, 7504 KiB  
Article
Moxifloxacin HCl-Incorporated Aqueous-Induced Nitrocellulose-Based In Situ Gel for Periodontal Pocket Delivery
by Setthapong Senarat, Catleya Rojviriya, Katekeaw Sarunyakasitrin, Juree Charoentreeraboon, Wiwat Pichayakorn and Thawatchai Phaechamud
Gels 2023, 9(7), 572; https://doi.org/10.3390/gels9070572 - 13 Jul 2023
Cited by 2 | Viewed by 1478
Abstract
A drug delivery system based on an aqueous-induced in situ forming gel (ISG) consists of solubilizing the drug within an organic solution of a polymer using a biocompatible organic solvent. Upon contact with an aqueous medium, the solvent diffuses out and the polymer, [...] Read more.
A drug delivery system based on an aqueous-induced in situ forming gel (ISG) consists of solubilizing the drug within an organic solution of a polymer using a biocompatible organic solvent. Upon contact with an aqueous medium, the solvent diffuses out and the polymer, designed to be insoluble in water, solidifies and transforms into gel. Nitrocellulose (Nc), an aqueous insoluble nitrated ester of cellulose, should be a promising polymer for an ISG using water induction of its solution to gel state via phase inversion. The aim of this investigation was to develop and evaluate a moxifloxacin HCl (Mx)-incorporated aqueous-induced Nc-based ISG for periodontitis treatment. The effects of different solvents (N-methyl pyrrolidone (NMP), DMSO, 2-pyrrolidone (Py), and glycerol formal (Gf)) on the physicochemical and bioactivity properties of the ISGs were investigated. The viscosity and injection force of the ISGs varied depending on the solvent used, with Gf resulting in higher values of 4631.41 ± 52.81 cPs and 4.34 ± 0.42 N, respectively. All ISGs exhibited Newtonian flow and transformed into a gel state upon exposure to the aqueous phase. The Nc formulations in DMSO showed lower water tolerance (12.50 ± 0.72%). The developed ISGs were easily injectable and demonstrated water sensitivity of less than 15.44 ± 0.89%, forming a gel upon contact with aqueous phase. The transformed Nc gel effectively prolonged Mx release over two weeks via Fickian diffusion, with reduced initial burst release. Different solvent types influenced the sponge-like 3D structure of the dried Nc ISGs and affected mass loss during drug release. Incorporating Nc reduced both solvent and drug diffusion, resulting in a significantly narrower zone of bacterial growth inhibition (p < 0.05). The Mx-incorporated Nc-based ISGs exhibited efficient antibacterial activity against four strains of Staphylococcus aureu and against periodontitis pathogens including Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. This study suggests that the developed Mx-incorporated Nc-based ISGs using DMSO and NMP as the solvents are the most promising formulations. They exhibited a low viscosity, ease of injection, and rapid transformation into a gel upon aqueous induction, and they enabled localized and prolonged drug release with effective antibacterial properties. Additionally, this study represents the first reported instance of utilizing Nc as the polymer for ISG. Further clinical experiments are necessary to evaluate the safety of this ISG formulation. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications)
Show Figures

Graphical abstract

27 pages, 6239 KiB  
Review
Controllable Preparation and Research Progress of Photosensitive Antibacterial Complex Hydrogels
by Zhijun Wang, Lili Fu, Dongliang Liu, Dongxu Tang, Kun Liu, Lu Rao, Jinyu Yang, Yi Liu, Yuesheng Li, Huangqin Chen and Xiaojie Yang
Gels 2023, 9(7), 571; https://doi.org/10.3390/gels9070571 - 13 Jul 2023
Cited by 1 | Viewed by 1209
Abstract
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, [...] Read more.
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-based photoresponsive materials in microbial inactivation is discussed, including the challenges faced in their application. The advantages of photosensitive antibacterial complex hydrogels are highlighted, and their application and research progress in various fields are introduced in detail. Full article
(This article belongs to the Special Issue Designing Gels for Catalysts)
Show Figures

Figure 1

17 pages, 19564 KiB  
Article
Thymol@Natural Zeolite Nanohybrids for Chitosan/Polyvinyl-Alcohol-Based Hydrogels Applied as Active Pads
by Constantinos E. Salmas, Eleni Kollia, Learda Avdylaj, Anna Kopsacheili, Konstantinos Zaharioudakis, Stavros Georgopoulos, Areti Leontiou, Katerina Katerinopoulou, George Kehayias, Anastasios Karakassides, Charalampos Proestos and Aris E. Giannakas
Gels 2023, 9(7), 570; https://doi.org/10.3390/gels9070570 - 12 Jul 2023
Cited by 2 | Viewed by 1913
Abstract
Currently, food saving, a circular economy, and zero environmental fingerprints are of major interest. Scientific efforts for enhanced food preservation using “green” methods have been intensified. Even though chemicals could achieve such targets effectively, the global trend against the “greenhouse effect” suggests the [...] Read more.
Currently, food saving, a circular economy, and zero environmental fingerprints are of major interest. Scientific efforts for enhanced food preservation using “green” methods have been intensified. Even though chemicals could achieve such targets effectively, the global trend against the “greenhouse effect” suggests the use of environmentally friendly biobased materials for this purpose. In this study, the promising biopolymer chitosan is incorporated with the promising biodegradable polymer polyvinyl alcohol to produce an improved biopolymeric matrix. This biodegradable biopolymer was further mixed homogeneously with 15% thymol/nano-zeolite nanohybrid material. The properties of the final developed film were improved compared to the relevant values of chitosan/polyvinyl alcohol film. The mechanical properties were enhanced significantly, i.e., there was a 34% increase in Young’s modulus and a 4.5% increase in the ultimate tensile strength, while the antioxidant activity increased by 53.4%. The antibacterial activity increased by 134% for Escherichia coli, 87.5% for Staphylococcus aureus, 32% for Listeria monocytogenes, and 9% for Salmonella enterica. The water vapor diffusion coefficient and the oxygen permeability coefficient decreased to −51% and −74%, respectively, and thus, the water vapor and oxygen barrier increased significantly. The active pads were used in strawberries, and the antimicrobial activity evaluation against the mold of fungi was carried out. The visual evaluation shows that the active pads could extend the shelf life duration of strawberries. Full article
(This article belongs to the Special Issue Recent Developments in Chitosan Hydrogels)
Show Figures

Graphical abstract

16 pages, 2705 KiB  
Article
Fiber Enrichment of 3D Printed Apricot Gel Snacks with Orange By-Products
by Carmen Molina-Montero, Diana Vicente-Jurado, Marta Igual, Javier Martínez-Monzó and Purificación García-Segovia
Gels 2023, 9(7), 569; https://doi.org/10.3390/gels9070569 - 12 Jul 2023
Cited by 2 | Viewed by 1101
Abstract
Concern about food waste has become a major global concern. The waste generated by the agri-food industry poses an environmental challenge. However, the development of 3D printing technology offers an opportunity to address this problem. By incorporating food waste into inks, it can [...] Read more.
Concern about food waste has become a major global concern. The waste generated by the agri-food industry poses an environmental challenge. However, the development of 3D printing technology offers an opportunity to address this problem. By incorporating food waste into inks, it can create personalized food tailored to individual needs. The aim of this study is the valorization of orange by-products (OBP) in 3D printed gels to obtain a final product in the form of a fiber-enriched snack. Gelatin gels were printed with different concentrations of apricot pulp (30, 50, and 70%) and OBP was added. These gels were subjected to a freeze-drying process. The rheology of the gels before and after printing, the printing precision, and the post-treatment of the freeze-dried product, including color, shear force, and the presence of bioactive compounds, were evaluated. The addition of OBP resulted in an increase in the elasticity (997–1242u) of the samples and improved the printability of them. However, an increase in the hardness (173–184u) was observed in the freeze-dried samples. The use of OBP not only improves the printability of the gels but also enables obtaining fiber-enriched snacks, which could contribute to the reduction in food waste and the promotion of healthy and sustainable food. Full article
(This article belongs to the Special Issue Recent Advance in Food Gels)
Show Figures

Graphical abstract

11 pages, 7326 KiB  
Article
An Angle-Independent Multi-Color Display Electro-Responsive Hydrogel Film
by Huan Jiang, Yujiao Li, Fangfang Liu, Liping Sheng, Cheng-an Tao and Jianfang Wang
Gels 2023, 9(7), 568; https://doi.org/10.3390/gels9070568 - 12 Jul 2023
Viewed by 1000
Abstract
In nature, some organisms have the ability to camouflage to adapt to environmental changes; they blend with the environment by changing their skin colors. Such a phenomenon is of great significance for the research of adaptive camouflage materials. In this study, we propose [...] Read more.
In nature, some organisms have the ability to camouflage to adapt to environmental changes; they blend with the environment by changing their skin colors. Such a phenomenon is of great significance for the research of adaptive camouflage materials. In this study, we propose a novel design scheme for the study of angle-independent photonic materials and successfully prepare an electrically tunable multi-color display angle-independent inverse opal photonic gel (IOPG). After photopolymerization of hydroxyethyl methacrylate with ionizable monomer acrylic acid (AA) in a long-range disordered opal template and etching, the angle-independent inverse opal photonic gel is obtained, presenting a single structural color. The electrically responsive color changes can be achieved at different angles. The color of the disordered AA-IOPG changes from green to blue-green when applying +4 V bias voltage and from green to orange when applying −4 V bias voltage. The electrochromism of the disordered AA-IOPG is mainly due to the local pH change caused by water electrolysis under bias voltage, which leads to a change of the swelling ratio. The disordered AA-IOPG shows high color tunability and durability through repeated opposite bias voltage tests, indicating that it is a promising conductive photonic material. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Polymer Gels)
Show Figures

Graphical abstract

18 pages, 12108 KiB  
Article
Flexible Topical Hydrogel Patch Loaded with Antimicrobial Drug for Accelerated Wound Healing
by Sana Saeed, Kashif Barkat, Muhammad Umer Ashraf, Maryam Shabbir, Irfan Anjum, Syed Faisal Badshah, Muhammad Aamir, Nadia Shamshad Malik, Akash Tariq and Riaz Ullah
Gels 2023, 9(7), 567; https://doi.org/10.3390/gels9070567 - 12 Jul 2023
Viewed by 2142
Abstract
A hydrogel topical patch of neomycin was developed by using sodium alginate (SA) and hydroxyethylcellulose (HEC) as polymers. Free radical polymerization in an aqueous medium was initiated by using acrylic acid (AA) and N,N′-methylenebisacrylamide (MBA). Prepared hydrogels were characterized for pH sensitivity and [...] Read more.
A hydrogel topical patch of neomycin was developed by using sodium alginate (SA) and hydroxyethylcellulose (HEC) as polymers. Free radical polymerization in an aqueous medium was initiated by using acrylic acid (AA) and N,N′-methylenebisacrylamide (MBA). Prepared hydrogels were characterized for pH sensitivity and sol–gel analysis. In addition, the effect of reactant contents on the developed formulation was evaluated by swelling behavior. SEM assay showed the rough structure of the hydrogel-based polymeric matrix, which directly enhances the ability to uptake fluid. FTIR spectra revealed the formation of a new polymeric network between reactant contents. TGA and DSC verified that fabricated polymeric patches were more thermodynamically stable than pure components. Gel fractions increased with increases in polymer, monomer, and cross-linker contents. The swelling study showed the pH-dependent swelling behavior of patches at pH 5.5, 6.5, and 7.4. The release pattern of the drug followed zero-order kinetics, with diffusion-controlled drug release patterns according to the Korsmeyer–Peppas (KP) model. Ex vivo studies across excised rabbit skin verified the drug retention in the skin layers. The hydrogel patch effectively healed the wounds produced on the rabbit skin, whereas the formulation showed no sign of irritation on intact skin. Therefore, neomycin hydrogel patches can be a potential candidate for controlled delivery for efficient wound healing. Full article
(This article belongs to the Special Issue Advances in Chemistry and Physics of Hydrogels)
Show Figures

Graphical abstract

15 pages, 5158 KiB  
Article
Investigation of the 3D Printing Process Utilizing a Heterophase System
by Natalia Menshutina, Andrey Abramov, Maria Okisheva and Pavel Tsygankov
Gels 2023, 9(7), 566; https://doi.org/10.3390/gels9070566 - 12 Jul 2023
Viewed by 984
Abstract
Direct ink writing (DIW) requires careful selection of ink composition with specific rheological properties, and it has limitations, such as the inability to create overhanging parts or branched geometries. This study presents an investigation into enhancing the 3D printing process through the use [...] Read more.
Direct ink writing (DIW) requires careful selection of ink composition with specific rheological properties, and it has limitations, such as the inability to create overhanging parts or branched geometries. This study presents an investigation into enhancing the 3D printing process through the use of a heterophase system, aiming to overcome these limitations. A modification was carried out in the 3D printer construction, involving adjustments to the structural elements responsible for the extrusion device’s movement. Additionally, a method for obtaining a heterophase system based on gelatin microparticles was developed to enable the 3D printing process with the upgraded printer. The structure and rheological properties of the heterophase system, varying in gelatin concentration, were thoroughly examined. The material’s viscosity ranged from 5.4 to 32.8 kPa·s, exhibiting thixotropic properties, pseudoplastic behavior, and long-term stability at 20 °C. The developed 3D printing technology was successfully implemented using a heterophase system based on different gelatin concentrations. The highest product quality was achieved with a heterophase system consisting of 4.5 wt.% gelatin, which exhibited a viscosity of 22.4 kPa·s, enabling the production of products without spreading or compromising geometrical integrity. Full article
(This article belongs to the Special Issue Aerogel Materials and Their Advanced Applications)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop