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Abstract: Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good
biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental
protection, agriculture, and other fields. This paper summarizes the typical complex materials of
photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic
mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-
based photoresponsive materials in microbial inactivation is discussed, including the challenges
faced in their application. The advantages of photosensitive antibacterial complex hydrogels are
highlighted, and their application and research progress in various fields are introduced in detail.

Keywords: controlled preparation; photosensitive antibacterial; hydrogel; application

1. Introduction
1.1. Bacterial Infections and Their Drug Resistance

Bacterial infection is a common problem with the potential to cause significant harm
in China and globally [1]. Bacterial infections can cause a variety of diseases, including:
(1) respiratory tract infection [2], such as pneumonia and bronchitis, which can lead to
respiratory failure in severe cases. (2) Digestive tract infection [3], such as dysentery and
cholera, which can lead to dehydration, electrolyte disorders, and other complications in
severe cases. (3) Urinary tract infections [4], such as cystitis, pyelonephritis, which can lead
to kidney damage in severe cases. (4) Skin and soft tissue infection [5], such as cellulitis and
furuncle, which can lead to sepsis in severe cases. (5) Blood infection [6], such as sepsis and
septic shock, which is a critical condition with a high fatality rate. Bacterial infections are
harmful because they can cause serious illness that deteriorates rapidly, posing a serious
threat to the patient’s health. Moreover, bacterial infections can be difficult to treat.

Bacterial infections are also harmful due to an overuse and misuse of antibiotics,
causing bacteria to become increasingly resistant to them. This makes it more difficult to
treat bacterial infections, which in turn have become one of the world’s biggest public health
problems [7,8]. Figure 1 shows the current classification of antibacterial drugs and part of
the history of antibacterial drugs. It shows that no matter the type of antibacterial drug,
bacteria develop resistance within just a few years. This is because bacteria have a high
degree of genetic variation and can produce environmentally adapted mutations within a
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short period. When bacteria encounter drugs such as antibiotics, the bacteria that are not
affected by antibiotics have a greater chance of survival, and they can reproduce and pass
on this resistance to future generations of bacteria [9]. As a result, overuse of antibiotics
can make it easier for bacteria to develop resistance, which is one of the reasons that
antibiotic resistance is growing globally. The emergence of new drug resistance in bacteria
has also prompted an urgent search for new, efficient antibacterial materials that are non-
toxic, sterile, and biocompatible in contact with humans. To overcome this problem, some
novel antimicrobial agents, such as carbon nanotubes [10,11], metal nanoparticles [12,13],
polymers [14,15], peptides [16,17], and hydrogels [18,19], have been developed.
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1.2. Advantages of Antibacterial Hydrogels

Compared with other antimicrobial agents, antibacterial hydrogels have the follow-
ing advantages: (1) antibacterial hydrogels have low costs and are easy to obtain [20–22].
Photosensitive antibacterial complex hydrogels with different antibacterial activities and
mechanical strength can be obtained using the method of controllable preparation [23–25].
Hydrogels with high antibacterial activity can be obtained by adjusting the process pa-
rameters [26]. These hydrogels can avoid resistance by killing the bacteria quickly [27].
(2) Antibacterial hydrogels have a simple method of administration. They have good
adhesion for external use and can adhere to the surface of injured organs and tissues [28].
Antibacterial hydrogels also have good injectability for internal use. They can be injected
through a needle syringe for minimally invasive treatment of obstructed areas [29,30]. In
addition, compared with traditional medical dressings, antibacterial hydrogels can more
effectively reduce the risk of wound infection and promote rapid wound healing [31,32].
(3) Hydrogels are excellent carriers. Hydrogels have certain similarities with human tissues
in terms of composition, structure, and properties; therefore, they have good biocompati-
bility and biodegradability, and the release of embedded hydrogels into body fluids can
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be maintained or controlled [33,34]. Hydrogels are good drug carriers and can reduce the
stimulation to the human body [35,36].

1.3. Antibacterial Mechanism
1.3.1. Endogenous Sterilization

The endogenous sterilization of materials refers to the ability of a material itself to
inhibit or kill bacteria, fungi, viruses, and other microorganisms. This bactericidal effect
comes from the chemical or physical properties inside the material. It does not require
the intervention of external media, and it is a naturally occurring process [37]. A common
internal bactericidal material is Ag [38]. Ag has a broad-spectrum antibacterial effect,
allowing it to inhibit the growth of a variety of bacteria and fungi. It also has a killing effect
on some viruses. In the fields of medical devices, water treatment, and food packaging,
materials containing Ag ions are often used to achieve bactericidal effects. In addition,
some natural plant extracts also have endogenous bactericidal effects. For example, tea
tree oil and peppermint oil have antibacterial, antifungal, and antiviral effects and can
be used in oral care, skin care, and cleaning products [39,40]. In addition, the physical
properties of some materials can also achieve internal sterilization. For example, some
nanomaterials have a large specific surface area and special surface properties, which can
inhibit the growth of bacteria through physical adsorption and charge action [41].

1.3.2. Exogenous Sterilization

Exogenous sterilization refers to the use of external stimuli, such as light [42–45],
magnetic fields [46–48], ultrasonic waves [49–51], electric fields [52–54], microwaves [55,56],
and other exogenous antibacterial methods (Table 1) to stimulate materials. Materials can be
excited to produce ROS (reactive oxygen species) or heat to achieve the effect of sterilization.

Table 1. Characteristics and antibacterial mechanisms of exogenous photosensitive antibacterial
complex hydrogels.

Excitation Source Characteristics Mechanisms Refs

Light

(1) Fast, efficient, and not prone to antibiotic
resistance;
(2) Green, environmentally friendly, poor tissue
penetration depth force, unavoidable
shortcomings of light treatment for tissue
damage.

(1) Photodynamic therapy: photosensitizers produce
cytotoxic ROS under light excitation of a certain
wavelength, thus causing oxidative damage to bacteria;
(2) Photothermal therapy: photothermic agents
generate high temperatures through non-radiative
relaxation of electrons excited under light irradiation,
resulting in thermal ablation of bacteria.

[42–45]

Magnetic field

(1) Safe, controllable, good penetration depth of
tissue;
(2) By using inexpensive, recyclable, and
biocompatible superparamagnetic nanoparticles,
the intensity and position of the magnetic field
can be controlled to achieve targeted
sterilization.

(1) Bacteria are captured through electrostatic
interactions;
(2) Radiation frequency-mediated physical disturbance
and bacterial cell membrane dysfunction;
(3) Magnetic loss under a magnetic field is converted
into heat, and bacteria and biofilms are inactivated by
thermal stress.

[46–48]

Ultrasonic Wave

(1) Good biocompatibility and safety;
(2) Good tissue permeability (>10 cm), and
ultrasound energy can be precisely focused on
the target, significantly reducing damage to
normal surrounding tissues.

(1) Sonodynamic therapy like photodynamic therapy
and sonosensitive agents produce ROS under
ultrasonic excitation, resulting in oxidative damage;
(2) Ultrasonic cavitation can produce shear forces that
destroy biofilms and cell membranes.

[49–51]

Electric field

(1) High energy utilization efficiency and
antibacterial activity;
(2) Degradation of electrodes in both
electrochemical (direct oxidation or ROS
generation) and non-electrochemical
(electroporation) processes may result in the
release of harmful components.

(1) ROS generation and local electric field enhancement
are caused by the unique catalytic activity and physical
properties (high conductivity and sharp structure) of
the electric field active material;
(2) Irreversible electroporation damage caused by a
strong electric field to the cell membrane.

[52–54]

Microwave

(1) Strong penetration, minor side effects;
(2) The energy is much lower than that required
to excite any kind of material to induce ROS
production.

(1) Excellent thermal conversion efficiency, which can
cause thermal ablation of bacteria;
(2) Some materials have been proved to mediate the
generation of ROS through microwave-induced
photodynamics.

[55,56]
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In recent years, microwave spectrum therapy [57], sonodynamic therapy [58], and
photoactivation therapy [59] have attracted the attention of researchers as effective and
rapid antibacterial methods. Compared with other antibacterial methods, the advantages
of exogenous sterilization include convenience, swiftness, strong controllability, a wide
application range, a fast reaction speed, environmental protection, energy savings, accurate
targeting, and good biocompatibility [60]. This technique can avoid resistance by killing the
bacteria quickly without damaging other organs or surrounding tissues [61]. By combining
new antibacterial hydrogel materials with photosensitive antibacterial materials, a stronger
antibacterial effect can be achieved under the stimulation of exogenous light [62,63], leading
to the development of photosensitive antibacterial complex hydrogels. Photosensitive
antibacterial complex hydrogels have many advantages. Firstly, they have a broad spectrum
of antibacterial activities, which can effectively inhibit the growth of a variety of bacteria,
including drug-resistant bacteria. Secondly, they have no toxic side effects on the human
body and can be used safely. Finally, due to the water-based matrix of the gel, the material
has good biocompatibility and can be widely used in fields such as wound healing and
medical device disinfection. Photosensitive antibacterial complex hydrogels have wide
application prospects in medical, hygienic, and biotechnology fields. They can be used in
the preparation of antibacterial dressings, medical device coatings, and oral care products,
which can effectively prevent and treat infectious diseases. In addition, these gels can also
be used in areas such as environmental hygiene and food safety to improve hygiene levels
and food antibacterial effects. Overall, photosensitive antibacterial complex hydrogels
are a new antibacterial material with a wide range of application prospects, and can play
important roles in the medical, health, and biotechnology fields.

This review introduces the controllable preparation and research progress of photo-
sensitive antibacterial complex hydrogels composed of photosensitive antibacterial ma-
terials combined with hydrogels. Firstly, the classification and technical principles of
photosensitive antibacterial complex hydrogels are summarized, including photothermal
therapy-based photosensitive antibacterial complex hydrogels, photodynamic therapy-
based photosensitive antibacterial complex hydrogels, and photothermal photodynamic
synergistic photoantibacterial complex hydrogels. Secondly, the controllable preparation
of photosensitive antibacterial complex hydrogels and their antibacterial activities are
reviewed, including radiation, chemical crosslinking, and physical crosslinking. Thirdly,
the characteristics of the three methods for preparing photosensitive antibacterial complex
hydrogels are summarized. Subsequently, the application of photosensitive antibacterial
compound hydrogels in biomedicine, food safety, and other fields is introduced. Finally,
the existing problems of photosensitive antibacterial complex hydrogels are discussed, and
prospective future efforts are proposed.

2. Classification and Technical Principles of Photosensitive Antibacterial
Complex Hydrogels

According to their mechanism of action, photosensitive antibacterial complex hydro-
gels can be divided into photothermal therapy-based photosensitive antibacterial complex
hydrogels, photodynamic therapy-based photosensitive antibacterial complex hydrogels,
and photothermal photodynamic synergistic photoantibacterial complex hydrogels.

Figure 2 illustrates the biological mechanism of action of photodynamic therapy
(PDT) [64], and Figure 3 shows hyperthermia-based photothermal therapy (PTT) [65].
Both treatments range from ultraviolet (UV) to near-infrared (NIR; NIR is an electro-
magnetic wave between visible and medium infrared light). A suitable light-activated
light-responsive material is selected (usually near-infrared) to quickly and effectively kill
bacteria by absorbing light energy to produce reactive oxygen species and/or overheating
conditions [66].
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2.1. Photosensitive Antibacterial Complex Hydrogels Based on PTT

After being stimulated by light, a variety of materials can convert light energy into
heat energy. This process leads to the denaturation of internal proteins of bacteria, damage
to cell membranes, and ultimately results in direct killing of bacteria. Examples of such
materials include precious metal nanomaterials, metal oxides, and polymer nanocom-
plexes [67,68]. In addition, resistance does not develop without the transmission of genetic
information within bacteria, and structural disruption can effectively prevent the forma-
tion of biofilms [27,69]. Therefore, this method can directly eliminate the bacteria in the
infected part of the wound and promote wound healing. This treatment strategy is known
as PTT [70], and the materials used are referred to as photothermal agents (PTAs) [71].
Depending on their source, common PTAs can be divided into three categories: inorganic
Ptas (IPTAs) (four categories: metal materials [72–74], metal-oxide materials [75], metal–
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inorganic materials [76,77], and carbon-based materials [78,79]), organic PTA (OPTAs) [80],
and organic–inorganic hybrid PTAs (O-I PTAs) [81]. The controllable preparation method
of hydrogels combines PTAs and hydrogels, resulting in the preparation of photosensitive
antibacterial complex hydrogels based on PTT. These hydrogels can absorb NIR light and
generate heat, leading to damage of the bacterial structure through local hyperthermia.
This ultimately disrupts membrane permeability and causes bacterial death [82,83]. PTT
photosensitive antibacterial complex hydrogels have the advantages of a broad antibacterial
spectrum and the absence of bacterial resistance or side effects [84,85].

Despite its effectiveness, Kuo et al. found that PTT alone is sometimes not effective
in removing bacteria, and its therapeutic effect varies among patients [86]. Ibelli et al.
found that light scattering and absorption effects were unavoidable, thus reducing the
efficiency of photothermal conversion [87]. In addition, the thermal ablation temperature
of eukaryotic cells exceeded 45 ◦C, while that of prokaryotic cells exceeded 65 ◦C. As a
result, the temperature was likely to exceed the limits of tolerance of healthy tissue, causing
cell damage. This is especially true when fighting drug-resistant bacteria or eliminating
biofilms that have formed. The damage to normal tissue caused by direct photothermal
therapy is still an urgent problem.

2.2. Photosensitive Antibacterial Complex Hydrogels Based on PDT

Controllable preparation of photosensitive antibacterial complex hydrogels based on
PDT involves crosslinking or grafting photosensitizers (PSs) with hydrogels. When light
of the right wavelength hits the photosensitive antibacterial complex hydrogels, reactive
oxygen species (ROS) are produced. Subsequently, a series of photochemical reactions
are triggered. Oxidative stress, which occurs when ROS concentrations exceed the limits
of a cell’s antioxidant defense system, causes damage to the nucleic acids, proteins, and
lipids of bacteria [88]. Currently, commonly used PSs include porphyrins [89], organic
dyes [90], conjugated polymers [91], zinc oxide [92], molybdenum disulfide [93], black
phosphorus [94], and graphene and its derivatives [95]. PSs produce ROS under light
irradiation of the appropriate wavelength to achieve the purpose of killing bacteria. A
large number of studies have proved that PSs have an excellent bactericidal effect on both
Gram-positive and Gram-negative bacteria [96–98]. However, there are also problems, such
as low biocompatibility, potential toxicity, low solubility, easy aggregation, and a limited
utilization efficiency of visible light [42,99].

2.3. PTT and PDT Synergistic Photosensitive Antibacterial Complex Hydrogels

In the photosensitive antibacterial complex hydrogels synergized with PTT and PDT,
the combined use of PTT and PDT can realize complementary advantages, which are
reflected in the following aspects [100–103]: (1) Stronger antibacterial effect: PTT is a
photothermal agent that converts light energy into heat energy under light stimulation,
which can directly kill bacteria by inducing protein denaturation and damaging their cell
membranes, resulting in an antibacterial effect. PDT kills bacteria by injecting photosen-
sitizers into them and then photostimulating the reactive oxygen species produced by
the photosensitizers. The combined use of the two methods can complement each other
and achieve a better sterilization effect. (2) Wider treatment range: PDT and PTT have
different treatment ranges. PDT kills microorganisms such as bacteria, viruses, and fungi,
while PTT is mainly used to treat diseases such as tumors. Therefore, the combined use
of PTT and PDT can complement each other in terms of the therapeutic range, and can
be used to treat diseases such as bacterial infections more comprehensively. (3) Reduced
usage of photosensitizers. The amount of photosensitizer used is a limiting factor for the
application of PDT and PTT. The combination of PTT and PDT can reduce the amount of
photosensitizer, thus reducing discomfort and side effects in patients. In conclusion, the
combination of PTT and PDT in synergistic photosensitive antibacterial complex hydrogels
can realize complementary advantages in terms of antibacterial effect, therapeutic range,
and photosensitizer dosage.
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3. Controllable Preparation of Photosensitive Antibacterial Complex Hydrogels and
Their Antibacterial Activity

The preparation methods of photosensitive antibacterial complex hydrogels include ra-
diation crosslinking, chemical crosslinking, and physical crosslinking [104]. The preparation
of radiation involves crosslinking photosensitive antibacterial complex hydrogels. The free
radicals generated by water radiolysis generate macromolecular free radicals by seizing the
hydrogen on the polymer chain, initiating the crosslinking reaction [105–107]. The prepa-
ration of photosensitive antibacterial complex hydrogels using the physical crosslinking
method mainly depends on the physical crosslinking force between molecules. Crosslinks
are formed by interactions between non-covalent bonds, such as electrostatic attraction,
van der Waals forces, and hydrogen bonds between molecules [108–110]. The preparation
of photosensitive antibacterial complex hydrogels through chemical crosslinking mainly
depends on the forming force of covalent bonds. In the process of preparing hydrogels,
covalent bonds are formed between polymer chains through chemical reactions. These
reactions cause the polymer chains to be firmly cross-linked together to form a 3D network
structure, then the hydrogels are formed [111–113]. Table 2 shows the preparation methods,
properties, and applications of various photosensitive antibacterial complex hydrogels.

Table 2. Preparation methods, properties, and applications of various photosensitive antibacterial
hydrogels.

Classification Species of Hydrogels Materials Antimicrobial
Capability Applications Ref.

Radiation
crosslinking

Nano TiO2/CMCS/PVA ternary
photosensitive antibacterial

complex hydrogel

Polyvinyl alcohol (PVA),
Carboxymethyl Chitosan (CMCS),

nano-titanium Dioxide (TiO2)

E. coli,
S. aureus

Photosensitive
antibacterial [12]

g-C3N4/CMCS/PVA ternary
photosensitive antibacterial

complex hydrogel

g-C3N4 (Graphitic carbon nitride),
CMCS, PVA E. coli Photosensitive

antibacterial [114]

NIPAAm/HHPC/Fe3O4
complex hydrogel

NIPAAm
(N-isopropylacrylamide), HHPC

(Hypersubstituted hydroxypropyl
cellulose), Fe3O4

E. coli,
S. aureus Wound dressing [115]

PVA/Agar/ZnO hydrogel PVA, Agar, ZnO nanoparticles B. subtilis bacteria Wound dressing [116]

Ag/PVA hydrogel PVA, AgNO3 E. coli, S. aureus Wound dressing [117]

ZnO/PVA hydrogel ZnO, PVA E. coli, S. aureus Wound dressing [118]

AgNP/gelatin/PVA hydrogel Gelatin, PVA, AgNO3

E. coli, S. aureus,
Methicillin-resistant
Staphylococcus aureus

(MRSA)
Wound dressing [119]

P-PVA hydrogel
6-chlorobenzo[d]oxazol-2(3H)-
one, phosphorus oxychloride,

PVA

Aspergillus fumigatus,
Geotrichum candidum,

Candida albicans,
Syncephal-astrum

racemosum,
Staphylococcus aureus,

Bacillis subtilis,
Pseudomonas

aeruginosa, E. coli

Drug delivery,
Wound healing [120]

Chemical
crosslinking

Ag-TOC hydrogel
(Ag9Ti4 hydrogel)

[Ag(CH3CN)3][Ag8Ti4(SA)12
(CH3CN)2](Ag9Ti4),Ti(OiPr)4,

Salicylic acid, PVA, DA

E. coli,
S. aureus

Treatment of healing
wounds [121]

AgPOM Multifunctional
injectable hydrogel

Gelatin (gel), Tea polyphenol (TP),
urea, AgPOM nanoparticles S. aureus, MRSA Wound dressing [100]

CuS@C Photosensitive
antibacterial complex hydrogel

carboxymethyl cellulose,
hydroxypropyl trimethyl

ammonium chloride chitosan
(HACC), curcumin, CuS

nanospheres

E. coli, S. aureus Wound dressing [32]

Physical
crosslinking

QCS-MoS2/PVA hydrogel MoS2, chitosan quatenary
ammonium salt (QCS), PVA E. coli, S. aureus

Biomedical materials,
Photothermal
antibacterial

[122]

PVA-CS-PDI/TA hydrogel Chitosan (CS), PVA, PDI-Ala,
tannic acid (TA) E.coli, S. aureus Wound dressing,

Cancer treatment [34]
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3.1. Preparation and Antibacterial Activities of Photosensitive Antibacterial Complex Hydrogels
Using Radiation

Radiation sources commonly used for the preparation of hydrogels include 60Co [123]
and an electron accelerator [124]. γ-rays are extremely penetrating, whereas electron beams
are less penetrating [125,126]. The methods of radiation preparation of hydrogels include
solid radiation polymerization, aqueous radiation polymerization, and monomer radiation
graft copolymerization. Photosensitive antibacterial complex hydrogels are a combination
of photosensitive nanoparticles and hydrogels that are formed using radiation technology,
which endows hydrogels with remarkable antibacterial properties.

3.1.1. Electron Beam Radiation Preparation

Li Yuesheng et al. conducted a study using polyvinyl alcohol (PVA), carboxymethyl
chitosan (CMCS), and nano-titanium dioxide (TiO2) as raw materials. They treated the
materials with 30 kGy absorption dose irradiation using physical freeze–thaw and an elec-
tron beam with an energy of 1 MeV [20]. Nano-TiO2/CMCS/PVA ternary photosensitive
antibacterial complex hydrogels were prepared. The antibacterial activity and cytotoxicity
of the complex hydrogels were determined using the antibacterial ring method, plate
counting method, and cell density method. Figure 4 demonstrates the hydrogel’s signifi-
cant antibacterial activity against both Escherichia coli (E. coli) and Staphylococcus aureus (S.
aureus). The synergistic effect between nano-TiO2 and the polymer is helpful for improving
the antibacterial performance. For E. coli, the antibacterial effect of the PVA/CMCS/TiO2
photosensitive antibacterial complex hydrogels decreased from the highest concentration
of bacteria in PVA hydrogels, 1.8 × 106 cfu/mL (colony forming units), to 1 × 106 cfu/mL.
For S. aureus, the antibacterial effect of the PVA/CMCS/TiO2 photosensitive antibacterial
complex hydrogel decreased from the highest concentration of bacteria in the PVA hydro-
gel of 1.6 × 105 cfu/mL to almost 0. Moreover, the mechanical properties of hydrogels
can be accurately regulated by controlling the polymer components and irradiation con-
ditions, which can give hydrogels better water absorption, flexibility, biocompatibilities,
effectiveness, and safety. When complex hydrogels are used as photocatalytic agents, the
hydrogels can provide an extremely favorable photosensitive synergistic catalytic platform
for photocatalysis, which further enhances their antibacterial effects. The hydrogel is made
of biodegradable natural polysaccharide material. While the material is slowly degraded,
the retained nano-TiO2 can be recycled, which achieves the purpose of recycling and further
saves on production costs. The combination of photosensitivity and antibacterial properties
can change the mechanical properties, physiological properties, biochemical properties,
and service life of hydrogels. The synergistic enhancement of the multicomponent complex
also changes the photocatalytic pathway, maximizing the effect of nano-TiO2.
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Li Tingting et al. also prepared carbon nitride (g-C3N4)/CMCS/PVA ternary pho-
tosensitive antibacterial complex hydrogels using cyclic freeze–thaw and electron beam
radiation (absorbed dose 30 kGy) [114]. The antibacterial activity of g-C3N4/CMCS/PVA
hydrogels against E. coli was superior to that of single-component PVA hydrogels. The
CMCS/PVA hydrogels were measured using the antibacterial zone method and plate
counting method (Figure 5). The results showed that g-C3N4/CMCS/PVA photosensitive
antibacterial complex hydrogels had excellent antibacterial activity against E. coli. However,
the disadvantage of these hydrogels is that the antibacterial activity against the Gram-
positive bacteria S. aureus is low, similar to that of pure PVA hydrogels, and its antibacterial
spectrum needs further improvement in the later stage.
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Liu Guo et al. used an electronic device with an energy of 1 MeV to carry out ra-
diation treatment of hydrogels and photothermal agents, resulting in a total absorbed
dose of 50 kGy [115]. An N-isopropyl acrylamide/highly substituted hydroxypropyl cellu-
lose/ferric oxide (NIPAAm/HHPC/Fe3O4) complex hydrogel with a pH/temperature/
magnetic synergistic response was prepared. The hydrogel contained Fe3O4 as a doped
photothermal agent that interacted with a magnetic field. This complex hydrogel not only
has a great application prospect in controlled release and drug delivery systems, but also
has a good antibacterial effect on E. coli and S. aureus, which is expected to be applied in
the field of skin trauma.

Arab et al. dissolved 3.5 g of PVA in 90 mL of distilled water at 90 ◦C. Subsequently,
1 g of agar was added to the PVA solution and stirred for 1 h. The photosensitizer, zinc
oxide nanoparticles (ZnO) with different weight ratios (0.05%, 0.1%, 0.2%), was added to
the solution [116]. The solution was placed in an ultrasonic bath at 80 ◦C for 20 min to
remove bubbles, then poured into a mold. Polyvinyl alcohol (PVA)/AGAR/ZnO hydrogels
were prepared using a 10 MeV accelerator with a total absorbed dose of 25 kGy. The
antibacterial experiments showed that ZnO nanoparticles with different mass ratios had no
significant difference in antibacterial action on Bacillus subtilis. An analysis of its mechanical
properties showed that 0.2% ZnO nanoparticles had the best mechanical properties, and
the elongation could reach 140%. The hydrogels had enough strength to resist tearing and
are expected to be applied in wound dressings.

3.1.2. γ-ray Radiation Preparation

Swaroop et al. used γ-rays for radiation crosslinking of PVA and silver nitrate (AgNO3).
Ag+ was reduced into AgNPs, which were coated with a polyethylene (PVA) matrix [117].
The results showed that Ag/PVA hydrogels showed obvious antibacterial activity against
E. coli and S. aureus, but pure PVA hydrogels showed no antibacterial activity against
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either bacteria (Figure 6). Swaroop et al. prepared photosensitive zinc oxide (ZnO) and
PVA complex hydrogels using γ-rays radiation and studied the antibacterial activity of the
complex hydrogels in vitro [118]. The results showed that ZnO/PVA hydrogels had a good
killing effect on both Gram-positive and Gram-negative bacteria. Their antibacterial effects
might be due to the direct interaction or electrostatic interaction between zinc oxide and
the cell surface.
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Leawhiran et al. mixed gelatin solutions with PVA solutions of different weight ratios
of 100:0, 80:20, and 60:40, respectively, and irradiated them with γ-rays of 30 kGy, 40 kGy,
and 50 kGy [119]. The physical performance test showed that when the absorbed dose of
irradiation was 30 kGy, the effect of the hydrogel with a mass-to-mass ratio of 60:40 was the
best, and the addition of PVA could improve the durability and mechanical integrity. When
0.25%, 0.50%, 0.75%, or 1.00% (according to the solid content) of AgNO3 was added, after γ-
rays irradiation, AgNPs were formed, which improved the antibacterial performance of the
complex hydrogels. Antibacterial experiments showed that when the AgNP content was
1.00%, the antibacterial effect was the best. The characterization of the physical properties,
cytotoxicity, and antibacterial activity of the AgNP/gelatin/PVA hydrogels showed that
they had appropriate physical properties, non-cytotoxicity, could inhibit the growth of
measured bacteria, and could be used as an antibacterial wound dressing.

Mohdy et al. initially prepared 6-chlorobenzo[d]oxazol-2(3H)-one and phospho-
rus oxychloride, resulting in 6-chloro-2-oxobenzo[d]oxazol-3(2H)-ylphosphonic dichlo-
ride [120]. Subsequently, the PVA prepared by crosslinking with a 60Co source was stirred
and dissolved in a DMF solution. After the solvent was removed, the P-PVA hydrogel was
obtained through vacuum drying. Firstly, the photosensitivity of the P-PVA hydrogel was
studied using ultraviolet spectroscopy. Secondly, the antibacterial activity of the P-PVA
hydrogel against different fungal and bacterial strains was tested using the bacteriostatic
zone method. The fungal strains included Aspergillus fumigatum, Aspergillus albicans, and
Diplocephalus racemosus, while the bacterial strains included S. aureus, Bacillus subtilis (as
gram-positive bacteria), Pseudomonas aeruginosa, and E. coli (as Gram-negative bacteria).
The results showed that the P-PVA hydrogels had higher activity against fungi and bacteria
than PVA hydrogels.

3.2. Preparation and Antibacterial Activity of Photosensitive Antibacterial Complex Hydrogels
through Chemical Crosslinking

Luo et al. used [Ag(CH3CN)3][Ag8Ti4(SA)12(CH3CN)2] (Ag9Ti4) (SA = salicylic dian-
ion), Ti(OiPr)4, salicylic acid, Polyvinyl alcohol (PVA), and Dopamine hydrochloride (DA)
to prepare Ag-TOC (Ag9Ti4-Gel) hydrogels using the one-step solvothermal method [121].
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Subsequently, the plate method was used to measure the effectiveness of the samples on
Gram-positive (E. coli) and Gram-negative bacteria (S. aureus). The results showed that
the antibacterial rate of Ag9Ti4-Gel against S. aureus and E. coli was higher than that of
Ag9Ti4, which further indicated that the Ag9Ti4 hydrogels had better antibacterial effects
(Figure 7). To evaluate the application of Ag9Ti4-Gel in the photothermal field, a mouse
wound model was established. After 12 days, the Ag9Ti4-Gel + NIR group was the first
to heal, and the wound area was smaller than that of the Ag9Ti4-Gel and Ag9Ti4 groups.
The results showed that the photothermal effect of Ag9Ti4-Gel can effectively improve
the antibacterial activity of the prepared hydrogel. In addition, hematoxylin–eosin (H&E)
staining was used to analyze the wound contraction and epithelial cell conditions. The
test results indicated that the Ag9Ti4-Gel + NIR group had faster wound contractions and
the best wound healing effects under NIR exposure. Furthermore, cytokines were selected
as indicators for the study. The results indicated that the process of wound healing medi-
ated by Ag9Ti4-Gel under NIR exposure may have been caused by the anti-inflammatory
environment provided by Ag9Ti4-Gel, which greatly increased the concentration of cells
related to angiogenesis during skin formation, thus leading to an increase in the number of
blood vessels.
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Huang et al. initially prepared polyformaldehyde nanoparticles using the one-step
oxidation method [101]. Mo2C was dispersed into deionized water, a H2O2 solution was
added, and the resulting solution was centrifuged. The supernatant liquid, containing
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POM nanoparticles, was frozen and dried. In the next step, the POM nanoparticles were
dispersed into deionized water, potassium nitrate and a silver nitrate solution were added,
and the KCl solution and stirred overnight. Dark blue AgPOM nanoparticles were obtained
by freeze-drying the solution after 24 h of dialysis. Finally, the injectable hydrogel was
synthesized. Gelatin was dissolved in deionized water, then tea polyphenols (TPs) and urea
were added to obtain a T-G-U gel. AgPOM nanoparticles were then added to the resulting
T-G-U gel to create an injectable tissue adhesive hydrogel for photothermal/chemodynamic
synergistic antibacterial and wound healing promotion. Firstly, AgPOM nanoparticles
were incubated with MRSA to evaluate their antibacterial properties in vitro. The results
showed that approximately 40% of the MRSA under laser irradiation was killed, while
approximately 70% of the MRSA under H2O2 irradiation was killed, indicating that the ROS
produced using AgPOM and H2O2 significantly enhanced the bactericidal effect. Combined
with the photothermal effect of AgPOM, it was able to kill nearly 90% of the bacteria. Then,
the prepared hydrogel was used as a wound dressing to observe its antibacterial effect
and promote wound healing. The results showed that after three days of near-infrared
irradiation, the wound healing rate of the gel group was the highest, exceeding 50% and
significantly surpassing the other three groups. In summary, a hydrogel for the synergistic
photothermal/chemical kinetic treatment of bacterial infection and to promote wound
healing was successfully synthesized and quantitatively evaluated.

Wang et al. used carboxymethyl cellulose (CMC), hydroxypropyl trimethyl am-
monium chloride chitosan (HACC), curcumin, and CuS nanospheres prepared via the
solvothermal method as raw materials to successfully prepare a biodegradable and self-
healing photocontrolled antibacterial hydrogel containing CuS@C nanospheres based on
CMCBA and HACC [32]. First, in vitro and in-animal antibacterial experiments were per-
formed on cultures of E. coli (ATCC 10536) and S. aureus (ATCC25923). The results showed
that the CuS@C photosensitive antibacterial complex hydrogel had the highest antibacterial
properties against E. coli and S. aureus under 808 nm near-infrared laser irradiation. The
antibacterial activity of the hydrogel against E. coli and S. aureus was evaluated using
live/dead fluorescence staining. The effect of the hydrogel on the permeability of the
bacterial membrane was measured using ONPG (higher cellular permeability can lead to
protein leakage and thus bacterial death). The antibiofilm activity of the hydrogel was
measured using crystal violet staining. The results also proved the excellent antibacterial
activity of the CuS@C photosensitive antibacterial complex hydrogel. Finally, a model of
back-infected wounds was established to simulate the process of wound healing of the
sample, and the results showed that CuS@C hydrogel had the best antibacterial and wound
healing ability in vivo. H&E staining and Jimsa staining, which were used to confirm the
antibacterial properties and wound-healing activity of the hydrogels, also showed that the
CuS@C hydrogels had an excellent ability to promote wound healing, along with good
in vivo biosafety.

3.3. Preparation of Photosensitive Antibacterial Complex Hydrogels and Their Antibacterial
Activity via Physical Crosslinking

Yan et al. first synthesized nano-sized molybdenum disulfide using the hydrothermal
method, then coated nano-sized MoS2 with chitosan quaternary ammonium salt (QCS),
and finally added QCs-MOS2 to PVA to prepare QCs-MOS2/PVA hydrogels via the cyclic
freeze–thaw method [122]. QCS-MOS2 can be used as an excellent photothermal agent of
the near-infrared light response. The antibacterial activity of the QCS-MOS2/PVA hydrogel
against E. coli and S. aureus was determined using the bacteriostatic zone method. The
results showed that the QCs-MOS2/PVA hydrogel had extensive antibacterial activity
against E. coli and S. aureus (Figure 8). Under 808 nm near-infrared light irradiation, the
hydrogel had an excellent antibacterial effect. In conclusion, the QCS-MOS2/PVA hydrogel
is an excellent photosensitive antibacterial compound hydrogel.
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Azadikhah et al. first mixed chitosan (CS) dissolved in acetic acid solution with a PVA
solution at a ratio of 1:4 to produce a PVA/chitosan solution. Then they added PDI-Ala
solution (PDI-Ala as photosensitizer) followed by tannic acid (TA) [34]. A PVA-CS-PDI/TA
hydrogel was obtained through freezing and thawing. The antibacterial properties of
the hydrogel against E. coli and S. aureus were measured using the bacteriostatic zone
method. The results showed that the PVA-CS-PDI/TA photosensitive antibacterial complex
hydrogel had excellent antibacterial properties and could effectively kill bacteria.

4. Characteristics of Controllable Preparation of Photosensitive Antibacterial
Complex Hydrogels

The characteristics and disadvantages of different hydrogel preparation methods
(chemical crosslinking, physical crosslinking, and radiation crosslinking) are shown in
Table 3.



Gels 2023, 9, 571 14 of 27

Table 3. Characteristics and disadvantages of different hydrogel preparation methods.

Excitation Source Characteristics Disadvantages Ref.

Chemical crosslinking

A three-dimensional network is formed
through cross-linking with covalent
bonds, resulting in stable properties and
a durable structure.

(1) The catalyst and initiator remain in
the hydrogel. The composition of
hydrogel is complicated, and the
performance of hydrogel is affected;
(2) If the initiator or catalyst is toxic, it
will further limit the application of
hydrogels in the biomedical field.

[127–129]

Physical crosslinking

Non-covalent bond forces, such as
hydrophobic association forces, hydrogen
bonds, electrostatic interactions,
coordination bonds, and van der Waals
forces, result in cross-linking to obtain a
three-dimensional network structure.

(1) Since the chains are reversible and
maintain in a steady state, they will
recover when heated;
(2) Poor mechanical strength.

[130–132]

Radiation crosslinking

1. Fast and efficient
2. Extremely low cost
3. Good biocompatibility
4. Mild reaction conditions and good
production controllability
5. Green environmental protection and
pollution-free
Free radicals (·OH, ·H, etc.) generated by
water radiation capture hydrogen on the
polymer chain to generate
macromolecular free radicals, thus
triggering cross-linking reactions without
adding initiator. The resulting product is
pure, with adjustable reaction conditions
such as a safe dose and dose rate, high
controllability, large range of monomer
selection, or it can be directly synthesized
from the polymer.

(1) 60Co radiation source is extremely
radioactive. Improper operation will
cause harm to the human body;
(2) Electron accelerators are expensive.

[63,133–143]

4.1. Characteristics of Photosensitive Antibacterial Complex Hydrogels Prepared via
Chemical Crosslinking

Photosensitive antibacterial complex hydrogels prepared through chemical crosslink-
ing are irreversible once they are prepared, as their interior consists of a three-dimensional
network structure formed by covalent bonds [127]. Therefore, the photosensitive antibacte-
rial complex hydrogels prepared using this method are usually stable. However, chemical
crosslinking agents (such as catalysts and initiators) are often added to hydrogels prepared
via chemical crosslinking [128], and their cytotoxicity and incompatibility with the body
greatly affect their biological applications [129].

4.2. Characteristics of Photosensitive Antibacterial Complex Hydrogels Prepared via
Physical Crosslinking

Photosensitive antibacterial complex hydrogels prepared via physical crosslinking can
avoid the use of crosslinking agents that may be cytotoxic, as used in chemical crosslinking
methods [130]. Therefore, they have the advantage of good compatibility with biological
systems. However, due to the three-dimensional grid structure formed by the non-covalent
bond connection between the internal molecules, they are generally reversible, and the
solution will be restored when heated [131]. Therefore, the mechanical strength of the
photosensitive antibacterial complex hydrogels obtained using this method is poor [132].
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4.3. Characteristics of Photosensitive Antibacterial Complex Hydrogels Prepared through
Radiation Crosslinking

Compared with the above two methods, the photosensitive antibacterial complex
hydrogels prepared using the radiation method have the following advantages:

4.3.1. Fast and Efficient

The reason for the rapid and efficient preparation of hydrogels prepared using ra-
diation is that radiation triggers chemical reactions that facilitate the gelation process.
Specifically, radiation can trigger a crosslinking reaction of monomers or polymers [133],
causing them to form a network structure, thus forming a gel. Hydrogels prepared through
the radiation method do not require the addition of any chemical reactants, and only need
to be exposed to a monomer or polymer under appropriate radiation conditions. These
conditions can quickly form a gel, thus greatly improving the preparation efficiency and
shortening the production time. Therefore, the preparation of hydrogels using radiation
method has the advantages of being fast and efficient.

Yang et al. prepared an inorganic/organic hybrid poly n-isopropylacrylamide (PNIPAM)
hydrogel with polyhedral oligosasiloxane (POSS) using the γ-ray one-step method [134].
Radiation-induced crosslinking is one of the most environmentally friendly, fast, and
effective ways to prepare PNIPAM-based hydrogels, as it can be performed without free
radical initiators and catalysts.

4.3.2. Extremely Low Cost

The primary reason for the extremely low cost of the method of preparing hydrogels
using radiation is because the radiation equipment is a one-time capital investment that
can be used multiple times without a large increase in production costs, and the product
throughput rate is high. The radiation preparation method for hydrogels can also use
conventional raw materials, without the use of expensive catalysts, solvents, and other
high-cost raw materials. At the same time, the method is simple to operate and requires
less professional equipment, so it can also reduce the cost of preparation.

Alcântara et al. prepared a hydrogel using a simple, elegant, and low-cost 60Co source
γ-ray process using poly (n-vinyl-2-pyrrolidone) and polyvinyl alcohol (PVA) as the main
polymers [135].

4.3.3. Good Biocompatibility

The reason for the good biocompatibility of hydrogels prepared using radiation is that,
compared with the chemical crosslinking method, hydrogels prepared using radiation do
not need chemical crosslinking agents, do not produce harmful by-products [63], and do
not produce organic residue in the preparation process. At the same time, the radiation
dose is controlled at an extremely low level, which will not cause too much damage to
the properties of the material itself or the tissues and cells of the organism. Since no
exogenous chemicals are introduced into the gel prepared using this method, the gel has
higher chemical stability and is not prone to decomposition, variation, toxicity, and other
problems [136]. Therefore, it is easier to achieve long-term biological applications. In
addition, the crosslinking formation of radiation-prepared hydrogels is the formation of
covalent bonds between monomer molecules. Compared with chemical crosslinking, the
number of crosslinking points is smaller, and the interaction between the crosslinking
points is smaller. The water molecules in the gel can be diffused better, making the gel
more breathable, transparent, and conducive to tissue growth.

Relleve et al. crosslinked carboxymethyl hyaluronic acid (CMHA) hydrogels using
radiation without adding any initiator or crosslinking agent [137]. The CMHA hydrogels
prepared under different radiation doses did not show any cytotoxic effects and had good
biocompatibility and broad market prospects. Szafulera et al. made glucan-based hydrogels
through the coupling of glycide methacrylate with a glucan structure, which was triggered
by ionizing radiation [138]. The results of the cytotoxicity evaluation (cell proliferation and
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cell viability tests), showed that the hydrogel prepared through radiation crosslinking had
no cytotoxicity, which indirectly proved that the hydrogel prepared using irradiation in an
aqueous solution has a high degree of biocompatibility and has good application in the
medical field.

4.3.4. Mild Reaction Conditions and Good Production Controllability

The main reasons for the good controllability of the production of hydrogels prepared
using radiation are as follows: (1) The method of preparing hydrogels using radiation is
a purely physical method, which can accurately control the radiation dose, irradiation
time, irradiation temperature, and other parameters to control the physical and chemical
properties of the hydrogels. All these methods can ensure reaction efficiency while reducing
the damage to monomer molecules as much as possible. (2) The method of radiation
preparation of hydrogels can be prepared by using radiation of different energies (such
as gamma rays, electron beams, etc.), so different radiation sources and energies can
be selected according to the parameters needed to control the morphology, structure,
and properties of the hydrogels [139]. (3) There is no need to add chemical reagents in
the preparation process of radiation-prepared hydrogels, which avoids the problems of
chemical reaction instability and composition impurities, thus improving the controllability
of production. (4) The radiation preparation method for hydrogels can realize continuous
production with high efficiency. Meanwhile, the quality of the hydrogels can be monitored
and controlled in real-time during the production process, thus improving the production
controllability.

Bustamante-Torres et al. proposed a new pH-sensitive hydrogel design that combines
acrylic acid (AAc) and AGAR through graft polymerization (gamma ray) copolymeriza-
tion [140]. The formation of crosslinked hydrogel film was controlled by the radiation
intensity and concentration of raw material. It was found that a high radiation dose could
improve the degree of crosslinking, and stronger structures could be obtained when the
content of the raw material AAc was increased. Ghobashy et al. used dimethylamine ethyl
methacrylate/polyoxyethylene oxide (DMAEM/PEO) as the raw material and irradiation
crosslinking to obtain a hydrogel film for wound dressing [141]. A (50:50% v/v) volume
ratio and a 20 kGy irradiation dose were used to obtain the best hydrogel film. The above
hydrogels with the best performance can be controlled by the production conditions.

4.3.5. Green Environmental Protection and Pollution-Free

Radiation preparation of hydrogels is a green preparation method because it does not
require the use of organic solvents and a large number of chemical substances, eliminating
the environmental release of volatile organic solvents. This method involves preparing
hydrogels by irradiating polymer monomers in aqueous solution. In the process of irradia-
tion, no by-products are generated, and no waste gas, wastewater, and other pollutants
are produced [142]. Therefore, it is a very environmentally friendly preparation method.
In addition, the physical and chemical properties of hydrogels can be precisely controlled,
and the quality and performance of hydrogels can be improved by using the radiation
preparation method.

Kanbua et al. successfully prepared Ca2+-loaded polyacrylic acid and polyethylene
glycol diacrylate (PAA-PEGDA-Ca2+) hydrogels using γ-ray irradiation technology [143].
FTIR spectroscopy proved that PAA and PEGDA were successfully cross-linked without
byproducts. The whole reaction process has no byproducts, which is a very green and
sustainable way to prepare hydrogels.

Overall, compared with the other methods (Table 2) the photosensitive antibacterial
complex hydrogels prepared using the radiation method have higher purity, no initiator
and catalyst residue, and are more environmentally friendly. Additionally, the produced
product has better biocompatibility. Secondly, the production process does not require
heating, and the reaction conditions are mild. The crosslinking degree and stability of
hydrogels prepared using radiation are higher. Finally, the hydrogel is sterilized using
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radiation in the radiation synthesis process, which reduces the cost. The irradiation is
uniform, the preparation process is simple and convenient for batch preparation, and the
preparation cost is lower. Combining the above advantages, the photosensitive antibacterial
complex hydrogels prepared using the radiation method are more suitable for industrial
scale-up production and applications in daily life.

5. Applications

Photosensitive antibacterial complex hydrogels represent a new class of materials
with photosensitive, antibacterial, and high biocompatibility. Photosensitive antibacterial
complex hydrogels are mainly used in the biomedical field, food safety field, environment
protection field, and agriculture field (Figure 9).
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Figure 9. Applications of photosensitive antibacterial hydrogels. (A) A LS-CuS@PVA complex
hydrogel has been prepared. The hydrogel has near-infrared activated photothermal, photodynamic
and peroxide-like properties. Under the conditions of near-infrared (NIR) light irradiation and the
presence of H2O2, the bactericidal effect on E. coli and S. aureus was significant, and the improvement
was attributed to the synergistic effect of high temperature and reactive oxygen species (ROS). Open
access [144]. (B) Inactivation of Listeria innocua incubated on a turmeric–gelatin hydrogel (TGH) or on
a cassava–gelatin hydrogel (CGH) and exposed (L+) or not exposed (L−) to UV-A light at 23 ◦C and
4 ◦C. (a,b) represent CGH at 23 ◦C and at 4 ◦C, respectively; (c,d) represent TGH at 23 ◦C and 4 ◦C,
respectively. The control hydrogel (K) consists of a cassava–gelatin hydrogel without the addition of
curcumin. The initial bacterial load was 6 log CFU/mL. The limit of detection was 5 log CFU/mL
of bacterial inactivation. Reprinted with permission from [145]. (C) Representative fluorescence
microscope images of E. coli K12 accumulated on polyCBNA (a–c), polyTMA (d–f), and polyCBMA
(g–i) hydrogels. The left column (a,d,g) shows bacterial accumulation on the pristine hydrogels
without UV treatment. The middle column (b,e,h) shows hydrogels first incubated with bacteria
subsequently treated with UV irradiation. The right column (c,f,i) shows hydrogels first treated with
UV irradiation then incubated with bacteria. Open access [146]. (D) (a) Photocatalytic activities for
the decomposition of Rh B (1 × 10−5 mol·L−1, 10 mL) under UV light irradiation. (b) Absorption
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spectral changes of Rh B solution under UV light irradiation in the presence of (PAA-co-PAM-
CMC)/TiO2(0.6) (inset: photographs of Rh B under UV light irradiation for different time lengths).
(c) Antibacterial properties of the different hydrogels. Images of bacterial colony distributions of
different hydrogels on E. coli: (d) bare PAA-co-PAM, (e) PAA-co-PAM-CMC, (f) (PAA-co-PAM)/TiO2,
and nanocomplex hydrogels with different TiO2 contents: (g) 0.4, (h) 0.6, and (i) 0.8 wt%. Reprinted
with permission from [147].

5.1. Biomedical Field

At present, the overuse of antibiotics has led to the development of bacterial resistance,
promoting the exploration of excellent biocompatible hydrogels. Historically, photosensi-
tive antibacterial complex hydrogels prepared in a controllable manner were developed
in the medical field [148,149], such as in the field of the wound dressing. In the 1990s,
hydrogel wound dressings were prepared in China using the radiation crosslinking method.
The clinical curative effect showed that hydrogel dressings could play a role in drug re-
lease, and long-term use could effectively relieve pain, reduce wound exudation, accelerate
wound healing, and reduce the number of dressing changes compared to conventional
dressings [150].

Xie et al. successfully prepared a LS-CuS@PVA photosensitive antibacterial complex
hydrogel by introducing lignin sulfide copper (LS-CuS) nanocomposites into a polyvinyl
alcohol (PVA) hydrogel [144]. The hydrogel had near-infrared activated photothermal, pho-
todynamic, and peroxide-like properties. Through the determination of the photothermal,
photokinetic, peroxidase, and antibacterial properties of the LS-CuS@PVA hydrogel, the
results showed that the CuS@PVA hydrogel activated using near-infrared could effectively
kill bacteria under the synergistic action of photothermal, photodynamic, and peroxidase
activities. This work provides a new strategy for treating drug-resistant bacteria. Xu et al.
first modified the surface of AgNPs using n-butylamine and oleic acid, then embedded
the AgNPs into a calcium alginate (CA) hydrogel and successfully obtained a CA/Ag
photosensitive antibacterial complex hydrogel [45]. In vitro, antibacterial tests showed that
the CA/Ag hydrogels had photoinduced antibacterial activity against common bacteria
and even drug-resistant strains. In vivo, an anti-infection performance test showed that
the hydrogel had obvious anti-infection activity in vivo under visible light irradiation.
Therefore, the synthesized multifunctional CA/Ag photosensitive antibacterial complex
hydrogel is a promising wound dressing. Du et al. first synthesized a photosensitive an-
tibacterial complex hydrogel (PSPG) [151]. Then, in vitro and in vivo experiments showed
that the release of PTT, PDT, and NO induced by near-infrared had a synergistic effect
on killing bacteria. The proposed photosensitive antibacterial compound hydrogel can
effectively kill bacteria and provide a new way to inhibit bacterial resistance.

Professor Li Yuesheng et al. proposed a natural polysaccharide/nano-TiO2 com-
plex hydrogel photosensitive antibacterial dressing and radiation synthesis method (ZL
201410313534.X) [152]. The advantages of this invention are that the reaction condition is
mild, and the reaction process does not add crosslinking agents, initiators, or any toxic
substances to the human body. Additionally, the hydrogels will not have adverse effects
on the skin, and they provide of moisturizing and cooling functions as well as hemosta-
sis and astringency functions and bactericidal and bactericidal functions. The hydrogels
promote wound healing, absorb wound exudate, and keep the wound environment moist.
They are especially suitable for moisture-preserving beauty whitening masks, cooling and
antipyretic paste, burns, scalds, and treating sugar urine disease ulcers. The hydrogels can
also be used for protection and healing of other wounds, preventing the formation of a
scab in the healing process and reducing the formation of scars. Hydrogel preparation,
shaping, and sterilization processes can be completed synchronously, greatly simplifying
the production process, saving costs, and improve the shelf life and service life of products.

In conclusion, incorporating a breathable backing layer and complex photosensitive
antibacterial enhanced hydrogel dressing in direct contact with the skin is an effective
way to solve the inherent shortcomings of conventional dressings. This complex hydrogel
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dressing provides a moist, breathable, and antibacterial environment for the wound, and
can fully buffer the impact force of external forces on the wound. These practical advantages
of the material present promising real-world application prospects.

5.2. Food Safety Field

Photosensitive antibacterial complex hydrogels can be used as natural, low-toxicity,
and high-efficiency antibacterial agents in the field of food safety. Their main function is to
kill bacteria, fungi, and other microorganisms in food through photosensitization, as well as
to extend the shelf life of food and prevent food deterioration. Specifically, photosensitive
antibacterial complex hydrogels can be applied to various food preservation, preservative,
and disinfection methods, as well as other aspects. For example, in the processing of meat
products, a layer of photosensitive antibacterial complex hydrogels can be applied to the
surface of meat pieces, and the bacteria on the surface of the meat pieces can be killed using
ultraviolet irradiation to achieve the purposes of preservation and preservative.

Juliano V. Tosati et al. first prepared hydrogels with turmeric residue, gelatin or tapioca
starch, and gelatin, then added pure curcumin to prepare practical hydrogel coatings with
strong antibacterial activity when combined with UV-A light [145]. The coatings were ap-
plied to the surface of cooked sausages and evaluated for their ability to prevent Listeria in-
nocua cross-contamination. The results show that the combination of curcumin-supported
hydrogel coating with UV-A light had great potential as a photosensitive antibacterial
coating to prevent cross-contamination of Listeria innocua in frozen sausages. It should
be noted that the application of photosensitive antibacterial complex hydrogels should be
carried out in strict accordance with the prescribed concentration and application methods
to avoid damage to human health.

At the same time, it is also necessary to pay attention to the treatment of residues
and ultraviolet radiation of photosensitive antibacterial complex hydrogels to ensure food
safety and environmental protection.

5.3. Environment Protection Field

Photosensitive antibacterial complex hydrogels are a new material with a wide range of
application prospects. At present, their application in the field of environmental protection
is mainly for sewage treatment. Photosensitive antibacterial complex hydrogels can absorb
organic matter and heavy metal ions in sewage, and they have antibacterial abilities, which
can effectively purify sewage.

Liu et al. first synthesized a photoresponsive polycbNA hydrogel [146]. Cationic
hydrogels as precursors can effectively kill attached bacteria, then quickly change into a
zionized anti-fouling form through photolysis. This transformation releases the attached
bacteria from the surface and prevents further attachment of bacteria. The smart photo-
sensitive CBNA polymer has antibacterial and antifouling properties. Abubshait et al.
first prepared PVA/CoZnO NC photosensitive antibacterial complex hydrogels using the
coprecipitation method. The results of the antibacterial test showed that the ternary photo-
sensitive antibacterial complex hydrogel had the highest antibacterial activity [153]. The
stability of the PVA/CoZnO NC photosensitive antibacterial complex hydrogel to dye pho-
todegradation was verified through recycling experiments. The synthetic photosensitive
antibacterial hydrogel can effectively degrade organic pollutants in sewage and can also be
used for water disinfection. Mo et al. first synthesized amphiphilic Janus silica particles
using the template method, then applied them to the outer surface of hydrogels [154].
Since Janus silica particles contain PDA, the photothermal antibacterial properties of the
photosensitive antibacterial hydrogel can be used for antibacterial purposes under light
irradiation. This study plays a certain role in the application of hydrogels to environmental
antifouling and bacterialization.
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5.4. Agriculture Field

Photosensitive antibacterial complex hydrogels can play an important role in the
field of agricultural control. They are mainly used in the improvement of water quality,
as photosensitive antibacterial complex hydrogels can be used as water quality amend-
ments to promote the growth and propagation of soil microorganisms and enhance the
resistance of crops to disease. Wang et al. synthesized functional nanocomplex hydrogels
using the method of UV-induced free radical polymerization and selected the materials
with antifouling function, using acrylamide (AM) and acrylic acid (AA) as the carriers of
TiO2 NPs [147]. Based on the basket model, these photosensitive antibacterial compound
hydrogels have comprehensive photocatalytic, antibacterial, and self-healing functions
under sunlight irradiation. The immobilized TiO2 NPs provide photoactivity, while the
nanocomplex hydrogel matrix offers synergistic antibacterial activity. These photosensitive
antibacterial complex hydrogels with comprehensive functions have promising application
prospects for maintaining the water quality of crops under solar irradiation.

In addition, they can also be used as sustained release agents of pesticides, and to
prolong the action time of pesticides, improve the utilization rate of pesticides, reduce
environmental pollution, and improve crop quality. Xing et al. synthesized a new type of
polypyrrole@gelatin/poly (acrylic acid) hydrogel with a semi-interpenetrating network
structure using gelatin, polypyrrole, and acrylic acid [155]. The photoresponsive release-
controlled properties, water absorption properties, and photothermal properties were
systematically studied. The results showed that the photosensitive antibacterial complex
hydrogels not only had excellent photothermal properties, but also good water retention
and photoresponsive pesticide release control performance. These hydrogels have broad
application prospects in agricultural applications, and are an effective way to improve
pesticide efficiency and reduce environmental pollution.

In conclusion, the application potential of photosensitive antibacterial complex hydro-
gels in the field of agricultural control is significant, which can provide effective support
and guarantee agricultural production.

6. Conclusions and Prospects

At present, the methods for controllable preparation of photosensitive antibacterial
complex hydrogels primarily include radiation crosslinking, chemical crosslinking, and
physical crosslinking. Although chemical crosslinking preparation is stable, the catalyst
and initiator can remain in the hydrogel, which has certain biological toxicity. Although
the biological toxicity of physical crosslinking preparations is very low, the photosensi-
tive antibacterial complex hydrogels prepared using this method also greatly restrict the
practical application of this method due to their instability and poor mechanical strength.
Photosensitive antibacterial complex hydrogels prepared using radiation technology have
various advantages, including a simple method, a wide range of monomer selection, and a
pure product. However, there are some problems with these hydrogels. The photosensitive
antibacterial effect needs to be improved, and the interfacial coupling mechanism between
inorganic nano-antibacterial particles and hydrogels is still unclear. The photothermal
synergistic antibacterial mechanism of inorganic nano-antibacterial particles and hydrogels
remains to be further explored. At present, there are still some shortcomings in the research
on the technology used to produce hydrogel products in China through radiation crosslink-
ing modulations. Moreover, the initial investment cost of an electron accelerator and cobalt
source is significant, and radiation protection measures need to be applied to the workplace.
There is still significant room for improvement in the industrial-scale production efficiency
of hydrogel products, which also restricts the marketing and promotion progress of new
products prepared using radiation to some extent.

The proposed future directions of this work are as follows: (1) Environmental pro-
tection: photosensitive antibacterial complex hydrogels can be designed to detect water
quality by adsorbing specific pollutants in water and reacting with them. Additionally,
these hydrogels can be designed for water purification and pathogen control in aquacul-
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ture, reducing pollution to the water environment. They can also be used as a new type
of soil remediation agent by adsorbing and degrading contaminated substances to treat
and remediate polluted soil. Furthermore, photosensitive antibacterial complex hydrogels
can be designed for air purification by adsorbing and decomposing harmful substances in
the air, thereby reducing air pollution. (2) Agriculture: These hydrogels can be used for
the prevention and control of fruit tree diseases. Photosensitive antibacterial compound
hydrogels can be designed as protective agents for the leaves and surfaces of fruit trees
to prevent and control fruit tree diseases. Using its antibacterial effect, it can effectively
prevent bacterial and fungal infections on the leaves and surfaces of fruit trees, thus im-
proving fruit quality and yield. Moreover, the hydrogels can be designed to be sprayed on
crop surfaces to prevent and control crop diseases. For example, in vegetable cultivation,
photosensitive antibacterial complex hydrogels can be designed to control leaf vegetable
diseases, root vegetable diseases, and fruit vegetable diseases. (3) Personal care: Photo-
sensitive antibacterial complex hydrogels can be used for hand disinfection. By adding
them to hand sanitizer and other products, their antibacterial ability is strengthened, ef-
fectively preventing hand infections. Additionally, these hydrogels can be added to skin
care products, such as creams and masks, to effectively kill bacteria on the skin surface
to achieve the effect of skin care. They can also be added to oral care products, such as
toothpaste and mouthwash, to effectively prevent problems such as oral infections and
cavities. In summary, photosensitive antibacterial complex hydrogels have great potential
for application in daily life and production. It is hoped that their controlled preparation,
especially those prepared by radiation, can be widely used in these fields.
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