Next Issue
Volume 7, February
Previous Issue
Volume 6, December
 
 

J. Fungi, Volume 7, Issue 1 (January 2021) – 66 articles

Cover Story (view full-size image): As biotechnological applications expand, it becomes necessary to explore novel expression hosts as more efficient and robust microbial cell factories are demanded. The yeast Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. However, C. jadinii is still lagging behind when compared to other non-Saccharomyces yeasts, mainly due to the inexistence of extensive knowledge on its metabolism, regulatory networks, and transport mechanisms. In this review, we compile the existing knowledge on this yeast and highlight the future challenges to achieve full exploitation of this industrially valuable microorganism. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 2591 KiB  
Article
High-Throughput Volatilome Fingerprint Using PTR–ToF–MS Shows Species-Specific Patterns in Mortierella and Closely Related Genera
by Anusha Telagathoti, Maraike Probst, Iuliia Khomenko, Franco Biasioli and Ursula Peintner
J. Fungi 2021, 7(1), 66; https://doi.org/10.3390/jof7010066 - 19 Jan 2021
Cited by 10 | Viewed by 3071
Abstract
In ecology, Volatile Organic Compounds (VOCs) have a high bioactive and signaling potential. VOCs are not only metabolic products, but are also relevant in microbial cross talk and plant interaction. Here, we report the first large-scale VOC study of 13 different species of [...] Read more.
In ecology, Volatile Organic Compounds (VOCs) have a high bioactive and signaling potential. VOCs are not only metabolic products, but are also relevant in microbial cross talk and plant interaction. Here, we report the first large-scale VOC study of 13 different species of Mortierella sensu lato (s.l.) isolated from a range of different alpine environments. Proton Transfer Reaction–Time-of-Flight Mass Spectrometry (PTR–ToF–MS) was applied for a rapid, high-throughput and non-invasive VOC fingerprinting of 72 Mortierella s.l. isolates growing under standardized conditions. Overall, we detected 139 mass peaks in the headspaces of all 13 Mortierella s.l. species studied here. Thus, Mortierellas.l. species generally produce a high number of different VOCs. Mortierella species could clearly be discriminated based on their volatilomes, even if only high-concentration mass peaks were considered. The volatilomes were partially phylogenetically conserved. There were no VOCs produced by only one species, but the relative concentrations of VOCs differed between species. From a univariate perspective, we detected mass peaks with distinctively high concentrations in single species. Here, we provide initial evidence that VOCs may provide a competitive advantage and modulate Mortierella s.l. species distribution on a global scale. Full article
Show Figures

Figure 1

13 pages, 2162 KiB  
Review
N-acetylglucosamine Signaling: Transcriptional Dynamics of a Novel Sugar Sensing Cascade in a Model Pathogenic Yeast, Candida albicans
by Kongara Hanumantha Rao, Soumita Paul and Swagata Ghosh
J. Fungi 2021, 7(1), 65; https://doi.org/10.3390/jof7010065 - 19 Jan 2021
Cited by 9 | Viewed by 2910
Abstract
The amino sugar, N-acetylglucosamine (GlcNAc), has emerged as an attractive messenger of signaling in the pathogenic yeast Candida albicans, given its multifaceted role in cellular processes, including GlcNAc scavenging, import and metabolism, morphogenesis (yeast to hyphae and white to opaque switch), virulence, [...] Read more.
The amino sugar, N-acetylglucosamine (GlcNAc), has emerged as an attractive messenger of signaling in the pathogenic yeast Candida albicans, given its multifaceted role in cellular processes, including GlcNAc scavenging, import and metabolism, morphogenesis (yeast to hyphae and white to opaque switch), virulence, GlcNAc induced cell death (GICD), etc. During signaling, the exogenous GlcNAc appears to adopt a simple mechanism of gene regulation by directly activating Ngs1, a novel GlcNAc sensor and transducer, at the chromatin level, to activate transcriptional response through the promoter acetylation. Ngs1 acts as a master regulator in GlcNAc signaling by regulating GlcNAc catabolic gene expression and filamentation. Ndt80-family transcriptional factor Rep1 appears to be involved in the recruitment of Ngs1 to GlcNAc catabolic gene promoters. For promoting filamentation, GlcNAc adopts a little modified strategy by utilizing a recently evolved transcriptional loop. Here, Biofilm regulator Brg1 takes up the key role, getting up-regulated by Ngs1, and simultaneously induces Hyphal Specific Genes (HSGs) expression by down-regulating NRG1 expression. GlcNAc kinase Hxk1 appears to play a prominent role in signaling. Recent developments in GlcNAc signaling have made C. albicans a model system to understand its role in other eukaryotes as well. The knowledge thus gained would assist in designing therapeutic interventions for the control of candidiasis and other fungal diseases. Full article
Show Figures

Figure 1

59 pages, 41033 KiB  
Article
Identification and Characterization of Leaf-Inhabiting Fungi from Castanea Plantations in China
by Ning Jiang, Xinlei Fan and Chengming Tian
J. Fungi 2021, 7(1), 64; https://doi.org/10.3390/jof7010064 - 18 Jan 2021
Cited by 44 | Viewed by 4937
Abstract
Two Castanea plant species, C. henryi and C. mollissima, are cultivated in China to produce chestnut crops. Leaf spot diseases commonly occur in Castanea plantations, however, little is known about the fungal species associated with chestnut leaf spots. In this study, leaf [...] Read more.
Two Castanea plant species, C. henryi and C. mollissima, are cultivated in China to produce chestnut crops. Leaf spot diseases commonly occur in Castanea plantations, however, little is known about the fungal species associated with chestnut leaf spots. In this study, leaf samples of C. henryi and C. mollissima were collected from Beijing, Guizhou, Hunan, Sichuan and Yunnan Provinces, and leaf-inhabiting fungi were identified based on morphology and phylogeny. As a result, twenty-six fungal species were confirmed, including one new family, one new genus, and five new species. The new taxa are Pyrisporaceae fam. nov., Pyrispora gen. nov., Aureobasidium castaneae sp. nov., Discosia castaneae sp. nov., Monochaetia castaneae sp. nov., Neopestalotiopsis sichuanensis sp. nov. and Pyrispora castaneae sp. nov. Full article
(This article belongs to the Special Issue Fungal Biodiversity and Ecology)
Show Figures

Figure 1

16 pages, 2714 KiB  
Review
Rapid Antifungal Susceptibility Testing of Yeasts and Molds by MALDI-TOF MS: A Systematic Review and Meta-Analysis
by Miriam Alisa Knoll, Hanno Ulmer and Cornelia Lass-Flörl
J. Fungi 2021, 7(1), 63; https://doi.org/10.3390/jof7010063 - 18 Jan 2021
Cited by 11 | Viewed by 3721
Abstract
Due to the growing burden of fungal infections and a recent rise in antifungal resistance, antifungal susceptibility testing (AFST) is of increasing importance. The common methods of AFST have turnaround times of 24 to 48 h, and the available rapid methods are limited [...] Read more.
Due to the growing burden of fungal infections and a recent rise in antifungal resistance, antifungal susceptibility testing (AFST) is of increasing importance. The common methods of AFST have turnaround times of 24 to 48 h, and the available rapid methods are limited by applicability, cost-efficiency or accuracy. Given the urgency of adequate antifungal treatment in invasive mycoses, the need for the rapid and reliable detection of resistance is evident. In this systematic review and meta-analysis, we evaluated the diagnostic accuracy of AFST based on matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Twelve studies were reviewed, and data for the comparative analysis of their accuracy and methodology were systematically extracted. Compared to broth dilution as the gold standard, MALDI-TOF MS-based AFST reached a pooled sensitivity and specificity of 91% (95% Confidence Interval [CI], 84% to 96%) and 95% (95% CI, 90% to 98%), respectively. A comparative analysis showed that the sensitivity was higher for the semi-quantitative matrix-assisted laser desorption ionization Biotyper antibiotic susceptibility test rapid assay (MBT ASTRA) technique (96%) than for the correlate composite index (CCI) approach (85%), which is based on spectrum changes. Turnaround times below eight hours reached better diagnostic values than longer incubation periods, qualifying MALDI-TOF MS-based AFST as a rapid and accurate method for the detection of antifungal resistance. Full article
(This article belongs to the Special Issue Antifungal Resistance)
Show Figures

Figure 1

21 pages, 5192 KiB  
Article
Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris
by Majid Rasool Kamli, Vartika Srivastava, Nahid H. Hajrah, Jamal S. M. Sabir, Khalid Rehman Hakeem, Aijaz Ahmad and Maqsood Ahmad Malik
J. Fungi 2021, 7(1), 62; https://doi.org/10.3390/jof7010062 - 18 Jan 2021
Cited by 36 | Viewed by 3676
Abstract
Candida auris is an emergent multidrug-resistant pathogen that can lead to severe bloodstream infections associated with high mortality rates, especially in hospitalized individuals suffering from serious medical problems. As Candida auris is often multidrug-resistant, there is a persistent demand for new antimycotic drugs [...] Read more.
Candida auris is an emergent multidrug-resistant pathogen that can lead to severe bloodstream infections associated with high mortality rates, especially in hospitalized individuals suffering from serious medical problems. As Candida auris is often multidrug-resistant, there is a persistent demand for new antimycotic drugs with novel antifungal action mechanisms. Here, we reported the facile, one-pot, one-step biosynthesis of biologically active Ag-Cu-Co trimetallic nanoparticles using the aqueous extract of Salvia officinalis rich in polyphenols and flavonoids. These medicinally important phytochemicals act as a reducing agent and stabilize/capping in the nanoparticles’ fabrication process. Fourier Transform-Infrared, Scanning electron microscopy, Transmission Electron Microscopy, Energy dispersive X-Ray, X-ray powder diffraction and Thermogravimetric analysis (TGA) measurements were used to classify the as-synthesized nanoparticles. Moreover, we evaluated the antifungal mechanism of as-synthesized nanoparticles against different clinical isolates of C. auris. The minimum inhibitory concentrations and minimum fungicidal concentrations ranged from 0.39–0.78 μg/mL and 0.78–1.56 μg/mL. Cell count and viability assay further validated the fungicidal potential of Ag-Cu-Co trimetallic nanoparticles. The comprehensive analysis showed that these trimetallic nanoparticles could induce apoptosis and G2/M phase cell cycle arrest in C. auris. Furthermore, Ag-Cu-Co trimetallic nanoparticles exhibit enhanced antimicrobial properties compared to their monometallic counterparts attributed to the synergistic effect of Ag, Cu and Co present in the as-synthesized nanoparticles. Therefore, the present study suggests that the Ag-Cu-Co trimetallic nanoparticles hold the capacity to be a lead for antifungal drug development against C. auris infections. Full article
(This article belongs to the Special Issue Systemic and Emerging Mycoses)
Show Figures

Figure 1

18 pages, 1092 KiB  
Review
Deciphering Trichoderma–Plant–Pathogen Interactions for Better Development of Biocontrol Applications
by Alsayed Alfiky and Laure Weisskopf
J. Fungi 2021, 7(1), 61; https://doi.org/10.3390/jof7010061 - 18 Jan 2021
Cited by 131 | Viewed by 13596
Abstract
Members of the fungal genus Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) are ubiquitous and commonly encountered as soil inhabitants, plant symbionts, saprotrophs, and mycoparasites. Certain species have been used to control diverse plant diseases and mitigate negative growth conditions. The versatility of Trichoderma’s interactions [...] Read more.
Members of the fungal genus Trichoderma (Ascomycota, Hypocreales, Hypocreaceae) are ubiquitous and commonly encountered as soil inhabitants, plant symbionts, saprotrophs, and mycoparasites. Certain species have been used to control diverse plant diseases and mitigate negative growth conditions. The versatility of Trichoderma’s interactions mainly relies on their ability to engage in inter- and cross-kingdom interactions. Although Trichoderma is by far the most extensively studied fungal biocontrol agent (BCA), with a few species already having been commercialized as bio-pesticides or bio-fertilizers, their wide application has been hampered by an unpredictable efficacy under field conditions. Deciphering the dialogues within and across Trichoderma ecological interactions by identification of involved effectors and their underlying effect is of great value in order to be able to eventually harness Trichoderma’s full potential for plant growth promotion and protection. In this review, we focus on the nature of Trichoderma interactions with plants and pathogens. Better understanding how Trichoderma interacts with plants, other microorganisms, and the environment is essential for developing and deploying Trichoderma-based strategies that increase crop production and protection. Full article
(This article belongs to the Special Issue Fungi for Biotechnological Application and Environmental Cleanup)
Show Figures

Figure 1

23 pages, 3348 KiB  
Article
Differential miRNA Expression in Human Macrophage-Like Cells Infected with Histoplasma capsulatum Yeasts Cultured in Planktonic and Biofilm Forms
by Nayla de Souza Pitangui, Junya de Lacorte Singulani, Janaina de Cássia Orlandi Sardi, Paula Carolina de Souza, Gabriela Rodríguez-Arellanes, Blanca Estela García-Pérez, Francisco Javier Enguita, Fernando R. Pavan, Maria Lucia Taylor, Maria José Soares Mendes-Giannini and Ana Marisa Fusco-Almeida
J. Fungi 2021, 7(1), 60; https://doi.org/10.3390/jof7010060 - 18 Jan 2021
Cited by 1 | Viewed by 3030
Abstract
Histoplasma capsulatum affects healthy and immunocompromised individuals, sometimes causing a severe disease. This fungus has two morphotypes, the mycelial (infective) and the yeast (parasitic) phases. MicroRNAs (miRNAs) are small RNAs involved in the regulation of several cellular processes, and their differential expression has [...] Read more.
Histoplasma capsulatum affects healthy and immunocompromised individuals, sometimes causing a severe disease. This fungus has two morphotypes, the mycelial (infective) and the yeast (parasitic) phases. MicroRNAs (miRNAs) are small RNAs involved in the regulation of several cellular processes, and their differential expression has been associated with many disease states. To investigate miRNA expression in host cells during H. capsulatum infection, we studied the changes in the miRNA profiles of differentiated human macrophages infected with yeasts from two fungal strains with different virulence, EH-315 (high virulence) and 60I (low virulence) grown in planktonic cultures, and EH-315 grown in biofilm form. MiRNA profiles were evaluated by means of reverse transcription-quantitative polymerase chain reaction using a commercial human miRNome panel. The target genes of the differentially expressed miRNAs and their corresponding signaling pathways were predicted using bioinformatics analyses. Here, we confirmed biofilm structures were present in the EH-315 culture whose conditions facilitated producing insoluble exopolysaccharide and intracellular polysaccharides. In infected macrophages, bioinformatics analyses revealed especially increased (hsa-miR-99b-3p) or decreased (hsa-miR-342-3p) miRNAs expression levels in response to infection with biofilms or both growth forms of H. capsulatum yeasts, respectively. The results of miRNAs suggested that infection by H. capsulatum can affect important biological pathways of the host cell, targeting two genes: one encoding a protein that is important in the cortical cytoskeleton; the other, a protein involved in the formation of stress granules. Expressed miRNAs in the host’s response could be proposed as new therapeutic and/or diagnostic tools for histoplasmosis. Full article
(This article belongs to the Special Issue Paracoccidioides and Paracoccidioidomycosis)
Show Figures

Figure 1

12 pages, 299 KiB  
Article
Utility of 1,3 β-d-Glucan Assay for Guidance in Antifungal Stewardship Programs for Oncologic Patients and Solid Organ Transplant Recipients
by Marina Machado, Esther Chamorro de Vega, María del Carmen Martínez-Jiménez, Carmen Guadalupe Rodríguez-González, Antonio Vena, Raquel Navarro, María Isabel Zamora-Cintas, Caroline Agnelli, María Olmedo, Alicia Galar, Jesús Guinea, Ana Fernández-Cruz, Roberto Alonso, Emilio Bouza, Patricia Muñoz and Maricela Valerio
J. Fungi 2021, 7(1), 59; https://doi.org/10.3390/jof7010059 - 17 Jan 2021
Cited by 7 | Viewed by 2961
Abstract
The implementation of 1,3 β-d-glucan (BDG) has been proposed as a diagnostic tool in antifungal stewardship programs (ASPs). We aimed to analyze the influence of serum BDG in an ASP for oncologic patients and solid organ transplant (SOT) recipients. We conducted [...] Read more.
The implementation of 1,3 β-d-glucan (BDG) has been proposed as a diagnostic tool in antifungal stewardship programs (ASPs). We aimed to analyze the influence of serum BDG in an ASP for oncologic patients and solid organ transplant (SOT) recipients. We conducted a pre–post study. In the initial period (PRE), the ASP was based on bedside advice, and this was complemented with BDG in the post-period (POST). Performance parameters of the BDG assay were determined. Antifungal (AF) use adequacy was evaluated using a point score. Clinical outcomes and AF costs were also compared before and after the intervention. Overall, 85 patients were included in the PRE-period and 112 in the POST-period. Probable or proven fungal infections were similar in both groups (54.1% vs. 57.1%; p = 0.67). The determination of BDG contributed to improved management in 75 of 112 patients (66.9%). The AF adequacy score improved in the POST-period (mean 7.75 vs. 9.29; p < 0.001). Median days of empiric AF treatment was reduced in the POST-period (9 vs. 5 days, p = 0.04). All-cause mortality (44.7% vs. 34.8%; p = 0.16) was similar in both periods. The cost of AF treatments was reduced in the POST-period with a difference of 779.6 €/patient. Our data suggest that the use of BDG was a cost-effective strategy that contributed to safely improving the results of an ASP for SOT and oncologic patients. Full article
(This article belongs to the Special Issue Fungal Biomarkers)
15 pages, 2031 KiB  
Review
The Effects of Major Mushroom Bioactive Compounds on Mechanisms That Control Blood Glucose Level
by Jelena Aramabašić Jovanović, Mirjana Mihailović, Aleksandra Uskoković, Nevena Grdović, Svetlana Dinić and Melita Vidaković
J. Fungi 2021, 7(1), 58; https://doi.org/10.3390/jof7010058 - 16 Jan 2021
Cited by 21 | Viewed by 11181
Abstract
Diabetes mellitus is a life-threatening multifactorial metabolic disorder characterized by high level of glucose in the blood. Diabetes and its chronic complications have a significant impact on human life, health systems, and countries’ economies. Currently, there are many commercial hypoglycemic drugs that are [...] Read more.
Diabetes mellitus is a life-threatening multifactorial metabolic disorder characterized by high level of glucose in the blood. Diabetes and its chronic complications have a significant impact on human life, health systems, and countries’ economies. Currently, there are many commercial hypoglycemic drugs that are effective in controlling hyperglycemia but with several serious side-effects and without a sufficient capacity to significantly alter the course of diabetic complications. Over many centuries mushrooms and their bioactive compounds have been used in the treatment of diabetes mellitus, especially polysaccharides and terpenoids derived from various mushroom species. This review summarizes the effects of these main mushroom secondary metabolites on diabetes and underlying molecular mechanisms responsible for lowering blood glucose. In vivo and in vitro data revealed that treatment with mushroom polysaccharides displayed an anti-hyperglycemic effect by inhibiting glucose absorption efficacy, enhancing pancreatic β-cell mass, and increasing insulin-signaling pathways. Mushroom terpenoids act as inhibitors of α-glucosidase and as insulin sensitizers through activation of PPARγ in order to reduce hyperglycemia in animal models of diabetes. In conclusion, mushroom polysaccharides and terpenoids can effectively ameliorate hyperglycemia by various mechanisms and can be used as supportive candidates for prevention and control of diabetes in the future. Full article
(This article belongs to the Special Issue Mushrooms—Mycotherapy and Mycochemistry)
Show Figures

Figure 1

18 pages, 2074 KiB  
Article
Oral Administration of Lactobacillus helveticus LA401 and Lactobacillus gasseri LA806 Combination Attenuates Oesophageal and Gastrointestinal Candidiasis and Consequent Gut Inflammation in Mice
by Hélène Authier, Marie Salon, Mouna Rahabi, Bénédicte Bertrand, Claude Blondeau, Sarah Kuylle, Sophie Holowacz and Agnès Coste
J. Fungi 2021, 7(1), 57; https://doi.org/10.3390/jof7010057 - 15 Jan 2021
Cited by 11 | Viewed by 2806
Abstract
Candida albicans is an opportunistic pathogen that causes mucosal gastrointestinal (GI) candidiasis tightly associated with gut inflammatory status. The emergence of drug resistance, the side effects of currently available antifungals and the high frequency of recurrent candidiasis indicate that new and improved therapeutics [...] Read more.
Candida albicans is an opportunistic pathogen that causes mucosal gastrointestinal (GI) candidiasis tightly associated with gut inflammatory status. The emergence of drug resistance, the side effects of currently available antifungals and the high frequency of recurrent candidiasis indicate that new and improved therapeutics are needed. Probiotics have been suggested as a useful alternative for the management of candidiasis. We demonstrated that oral administration of Lactobacillus gasseri LA806 alone or combined with Lactobacillus helveticus LA401 in Candida albicans-infected mice decrease the Candida colonization of the oesophageal and GI tract, highlighting a protective role for these strains in C. albicans colonization. Interestingly, the probiotic combination significantly modulates the composition of gut microbiota towards a protective profile and consequently dampens inflammatory and oxidative status in the colon. Moreover, we showed that L. helveticus LA401 and/or L. gasseri LA806 orient macrophages towards a fungicidal phenotype characterized by a C-type lectin receptors signature composed of Dectin-1 and Mannose receptor. Our findings suggest that the use of the LA401 and LA806 combination might be a promising strategy to manage GI candidiasis and the inflammation it causes by inducing the intrinsic antifungal activities of macrophages. Thus, the probiotic combination is a good candidate for managing GI candidiasis by inducing fungicidal functions in macrophages while preserving the GI integrity by modulating the microbiota and inflammation. Full article
(This article belongs to the Special Issue Cell Surface Receptors on Fungal Pathogens)
Show Figures

Figure 1

10 pages, 264 KiB  
Review
Genetic Transformation in Cryptococcus Species
by Ping Wang
J. Fungi 2021, 7(1), 56; https://doi.org/10.3390/jof7010056 - 15 Jan 2021
Cited by 5 | Viewed by 2947
Abstract
Genetic transformation plays an imperative role in our understanding of the biology in unicellular yeasts and filamentous fungi, such as Saccharomyces cerevisiae, Aspergillus nidulans, Cryphonectria parasitica, and Magnaporthe oryzae. It also helps to understand the virulence and drug resistance mechanisms of [...] Read more.
Genetic transformation plays an imperative role in our understanding of the biology in unicellular yeasts and filamentous fungi, such as Saccharomyces cerevisiae, Aspergillus nidulans, Cryphonectria parasitica, and Magnaporthe oryzae. It also helps to understand the virulence and drug resistance mechanisms of the pathogenic fungus Cryptococcus that causes cryptococcosis in health and immunocompromised individuals. Since the first attempt at DNA transformation in this fungus by Edman in 1992, various methods and techniques have been developed to introduce DNA into this organism and improve the efficiency of homology-mediated gene disruption. There have been many excellent summaries or reviews covering the subject. Here we highlight some of the significant achievements and additional refinements in the genetic transformation of Cryptococcus species. Full article
(This article belongs to the Special Issue Molecular and Genetic Tools for Studying Cryptococcus spp.)
7 pages, 1344 KiB  
Case Report
Cryptococcus bacillisporus (VGIII) Meningoencephalitis Acquired in Santa Cruz, Bolivia
by Luis Thompson, Lorena Porte, Violeta Díaz, María Cristina Díaz, Sebastián Solar, Pablo Valenzuela, Nicole Norley, Yumai Pires, Fernando Carreño, Sergio Valenzuela, Rukmane Shabani, Volker Rickerts and Thomas Weitzel
J. Fungi 2021, 7(1), 55; https://doi.org/10.3390/jof7010055 - 15 Jan 2021
Cited by 3 | Viewed by 2114
Abstract
We describe a case of chronic meningoencephalitis with hydrocephalus caused by Cryptococcus bacillisporus (VGIII) in an immunocompetent patient from Santa Cruz, Bolivia. This first report of a member of the Cryptococcus gattii species complex from Bolivia suggests that C. bacillisporus (VGIII) is present [...] Read more.
We describe a case of chronic meningoencephalitis with hydrocephalus caused by Cryptococcus bacillisporus (VGIII) in an immunocompetent patient from Santa Cruz, Bolivia. This first report of a member of the Cryptococcus gattii species complex from Bolivia suggests that C. bacillisporus (VGIII) is present in this tropical region of the country and complements our epidemiological and clinical knowledge of this group of emerging fungal pathogens in South America. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

11 pages, 985 KiB  
Article
Paracoccidioides brasiliensis Isolated from Nine-Banded Armadillos (Dasypus novemcinctus) Reveal Population Structure and Admixture in the Amazon Basin
by Eduardo Bagagli, Daniel Ricardo Matute, Hans Garcia Garces, Bernardo Guerra Tenório, Adalberto Garcia Garces, Lucas Gomes de Brito Alves, Danielle Hamae Yamauchi, Marluce Francisca Hrycyk, Bridget Marie Barker and Marcus de Melo Teixeira
J. Fungi 2021, 7(1), 54; https://doi.org/10.3390/jof7010054 - 15 Jan 2021
Cited by 3 | Viewed by 2635
Abstract
Paracoccidioidomycosis is an endemic fungal disease to Latin America caused by at least five species-level genotypes of Paracoccidioides, named P. lutzii, P. brasiliensis (S1a and S1b populations), P. americana, P. restrepiensis, and P. venezuelensis. In this manuscript, we [...] Read more.
Paracoccidioidomycosis is an endemic fungal disease to Latin America caused by at least five species-level genotypes of Paracoccidioides, named P. lutzii, P. brasiliensis (S1a and S1b populations), P. americana, P. restrepiensis, and P. venezuelensis. In this manuscript, we report on Paracoccidioides sp. sampling efforts in armadillos from two different areas in Brazil. We sequenced the genomes of seven Paracoccidioides isolates and used phylogenomics and populations genetics for genotyping. We found that P. brasiliensis and P. lutzii are both present in the Amazon region. Additionally, we identified two Paracoccidioides isolates that seem to be the result of admixture between divergent populations within P. brasiliensis sensu stricto. Both of these isolates were recovered from armadillos in a P. lutzii endemic area in Midwestern Brazil. Additionally, two isolates from human patients also show evidence of resulting from admixture. Our results suggest that the populations of P. brasiliensis sensu stricto exchange genes in nature. More generally, they suggest that population structure and admixture within species is an important source of variation for pathogenic fungi. Full article
(This article belongs to the Special Issue Paracoccidioides and Paracoccidioidomycosis)
Show Figures

Figure 1

12 pages, 4880 KiB  
Article
The Smk1 MAPK and Its Activator, Ssp2, Are Required for Late Prospore Membrane Development in Sporulating Saccharomyces cerevisiae
by Matthew Durant, Joseph M. Roesner, Xheni Mucelli, Christian J. Slubowski, Erin Klee, Brian C. Seitz, Zoey Wallis and Linda S. Huang
J. Fungi 2021, 7(1), 53; https://doi.org/10.3390/jof7010053 - 14 Jan 2021
Cited by 2 | Viewed by 2285
Abstract
During sporulation in the budding yeast Saccharomyces cerevisiae, proper development of the prospore membrane is necessary for the formation of viable spores. The prospore membrane will eventually become the plasma membrane of the newly formed haploid spore and also serves as the [...] Read more.
During sporulation in the budding yeast Saccharomyces cerevisiae, proper development of the prospore membrane is necessary for the formation of viable spores. The prospore membrane will eventually become the plasma membrane of the newly formed haploid spore and also serves as the template for the deposition of the spore wall. The prospore membrane is generated de novo during meiosis II and the growing edge of the prospore membrane is associated with the Leading Edge Protein (LEP) complex. We find that the Smk1 MAP kinase, along with its activator Ssp2, transiently localizes with the LEP during late meiosis II. SSP2 is required for the leading edge localization of Smk1; this localization is independent of the activation state of Smk1. Like other LEP components, the localization of Smk1 at the leading edge also depends on Ady3. Although prospore membrane development begins normally in smk1 and ssp2 mutants, late prospore membrane formation is disrupted, with the formation of ectopic membrane compartments. Thus, MAP kinase signaling plays an important role in the formation of the prospore membrane. Full article
(This article belongs to the Special Issue Formation and Function of Fungal Ascospores)
Show Figures

Figure 1

16 pages, 1291 KiB  
Article
In Vitro and In Vivo Effect of Peptides Derived from 14-3-3 Paracoccidioides spp. Protein
by Liliana Scorzoni, Ana Carolina Alves de Paula e Silva, Haroldo Cesar de Oliveira, Claudia Tavares dos Santos, Junya de Lacorte Singulani, Patricia Akemi Assato, Caroline Maria Marcos, Lariane Teodoro Oliveira, Nathália Ferreira Fregonezi, Diego Conrado Pereira Rossi, Leandro Buffoni Roque da Silva, Carlos Pelleschi Taborda, Ana Marisa Fusco-Almeida and Maria José Soares Mendes-Giannini
J. Fungi 2021, 7(1), 52; https://doi.org/10.3390/jof7010052 - 13 Jan 2021
Cited by 5 | Viewed by 2363
Abstract
Background: Paracoccidioidomycosis (PCM) is a chronic disease that causes sequelae and requires prolonged treatment; therefore, new therapeutic approaches are necessary. In view of this, three peptides from Paracoccidioides brasiliensis 14-3-3 protein were selected based on its immunogenicity and therapeutic potential. Methods: The in [...] Read more.
Background: Paracoccidioidomycosis (PCM) is a chronic disease that causes sequelae and requires prolonged treatment; therefore, new therapeutic approaches are necessary. In view of this, three peptides from Paracoccidioides brasiliensis 14-3-3 protein were selected based on its immunogenicity and therapeutic potential. Methods: The in vitro antifungal activity and cytotoxicity of the 14-3-3 peptides were evaluated. The influence of the peptides in immunological and survival aspects was evaluated in vivo, using Galleria mellonella and the expression of antimicrobial peptide genes in Caenorhabditis elegans. Results: None of the peptides were toxic to HaCaT (skin keratinocyte), MRC-5 (lung fibroblast), and A549 (pneumocyte) cell lines, and only P1 exhibited antifungal activity against Paracoccidioides spp. The peptides could induce an immune response in G. mellonella. Moreover, the peptides caused a delay in the death of Paracoccidioides spp. infected larvae. Regarding C. elegans, the three peptides were able to increase the expression of the antimicrobial peptides. These peptides had essential effects on different aspects of Paracoccidioides spp. infection showing potential for a therapeutic vaccine. Future studies using mammalian methods are necessary to validate our findings. Full article
(This article belongs to the Special Issue Paracoccidioides and Paracoccidioidomycosis)
Show Figures

Figure 1

23 pages, 4582 KiB  
Review
Taxonomy, Diversity and Cultivation of the Oudemansielloid/Xeruloid Taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula with Respect to Their Bioactivities: A Review
by Allen Grace Niego, Olivier Raspé, Naritsada Thongklang, Rawiwan Charoensup, Saisamorn Lumyong, Marc Stadler and Kevin D. Hyde
J. Fungi 2021, 7(1), 51; https://doi.org/10.3390/jof7010051 - 13 Jan 2021
Cited by 11 | Viewed by 4673
Abstract
The oudemansielloid/xeruloid taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula are genera of Basidiomycota that constitute an important resource of bioactive compounds. Numerous studies have shown antimicrobial, anti-oxidative, anti-cancer, anti-inflammatory and other bioactivities of their extracts. The bioactive principles can be divided into two major [...] Read more.
The oudemansielloid/xeruloid taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula are genera of Basidiomycota that constitute an important resource of bioactive compounds. Numerous studies have shown antimicrobial, anti-oxidative, anti-cancer, anti-inflammatory and other bioactivities of their extracts. The bioactive principles can be divided into two major groups: (a) hydrophilic polysaccharides with relatively high molecular weights and (b) low molecular medium polar secondary metabolites, such as the antifungal strobilurins. In this review, we summarize the state of the art on biodiversity, cultivation of the fungi and bioactivities of their secondary metabolites and discuss future applications. Although the strobilurins are well-documented, with commercial applications as agrochemical fungicides, there are also other known compounds from this group that have not yet been well-studied. Polysaccharides, dihydro-citrinone phenol A acid, scalusamides, and acetylenic lactones such as xerulin, also have potential applications in the nutraceutical, pharmaceutical and medicinal market and should be further explored. Further studies are recommended to isolate high quality bioactive compounds and fully understand their modes of action. Given that only few species of oudemansielloid/xeruloid mushrooms have been explored for their production of secondary metabolites, these taxa represent unexplored sources of potentially useful and novel bioactive metabolites. Full article
(This article belongs to the Special Issue Mushrooms—Mycotherapy and Mycochemistry)
Show Figures

Figure 1

10 pages, 776 KiB  
Article
Antifungal Activity of a Medical-Grade Honey Formulation against Candida auris
by Theun de Groot, Tom Janssen, Dirk Faro, Niels A. J. Cremers, Anuradha Chowdhary and Jacques F. Meis
J. Fungi 2021, 7(1), 50; https://doi.org/10.3390/jof7010050 - 13 Jan 2021
Cited by 27 | Viewed by 5091
Abstract
Candida auris is a pathogenic yeast causing outbreaks in intensive care units with high mortality rates. The treatment of C. auris colonization is challenging due to high resistance rates. A potential alternative antifungal treatment is medical-grade honey. In this study the susceptibility of [...] Read more.
Candida auris is a pathogenic yeast causing outbreaks in intensive care units with high mortality rates. The treatment of C. auris colonization is challenging due to high resistance rates. A potential alternative antifungal treatment is medical-grade honey. In this study the susceptibility of C. auris and other Candida species to the medical-grade honey-based formulation L-Mesitran® Soft was investigated. The medical-grade honey formulation reduced the growth of C. auris and other Candida species in a dose-dependent manner. This inhibition was not only due to the honey component, as treatment with an identical concentration of this component only was less effective and even stimulated the growth of C. albicans and C. glabrata, supporting the interpretation that supplements in the medical-grade honey formulation enhanced the antimicrobial activity. Increasing the concentration of the honey component to 40%, as is also present in an undiluted medical-grade honey formulation, lead to a 1- to 4-log inhibition of all Candida species. Unprocessed local honey reduced the growth of nearly all Candida species more strongly than medical-grade honey. C. auris’ susceptibility to the medical-grade honey formulation did not depend on geographic origin or resistance profile, although the multiresistant isolates tended to be more susceptible. Altogether, medical-grade honey formulation has a strong antifungal activity against C. auris and other Candida species. Future studies should demonstrate whether the treatment of open wounds or skin colonized with C. auris is feasible and effective in the clinical setting. Full article
(This article belongs to the Special Issue Candida auris 2.0)
Show Figures

Figure 1

13 pages, 2782 KiB  
Review
Strategies to Better Target Fungal Squalene Monooxygenase
by Alia A. Sagatova
J. Fungi 2021, 7(1), 49; https://doi.org/10.3390/jof7010049 - 13 Jan 2021
Cited by 13 | Viewed by 3963
Abstract
Fungal pathogens present a challenge in medicine and agriculture. They also harm ecosystems and threaten biodiversity. The allylamine class of antimycotics targets the enzyme squalene monooxygenase. This enzyme occupies a key position in the sterol biosynthesis pathway in eukaryotes, catalyzing the rate-limiting reaction [...] Read more.
Fungal pathogens present a challenge in medicine and agriculture. They also harm ecosystems and threaten biodiversity. The allylamine class of antimycotics targets the enzyme squalene monooxygenase. This enzyme occupies a key position in the sterol biosynthesis pathway in eukaryotes, catalyzing the rate-limiting reaction by introducing an oxygen atom to the squalene substrate converting it to 2,3-oxidosqualene. Currently, terbinafine—the most widely used allylamine—is mostly used for treating superficial fungal infections. The ability to better target this enzyme will have significant implications for human health in the treatment of fungal infections. The human orthologue can also be targeted for cholesterol-lowering therapeutics and in cancer therapies. This review will focus on the structural basis for improving the current therapeutics for fungal squalene monooxygenase. Full article
(This article belongs to the Special Issue The Application of Structural Biology in Antifungal Drug Discovery)
Show Figures

Figure 1

20 pages, 2939 KiB  
Review
Nanohybrid Antifungals for Control of Plant Diseases: Current Status and Future Perspectives
by Mousa A. Alghuthaymi, Rajkuberan C., Rajiv P., Anu Kalia, Kanchan Bhardwaj, Prerna Bhardwaj, Kamel A. Abd-Elsalam, Martin Valis and Kamil Kuca
J. Fungi 2021, 7(1), 48; https://doi.org/10.3390/jof7010048 - 13 Jan 2021
Cited by 45 | Viewed by 5376
Abstract
The changing climatic conditions have led to the concurrent emergence of virulent microbial pathogens that attack crop plants and exhibit yield and quality deterring impacts on the affected crop. To counteract, the widespread infections of fungal pathogens and post-harvest diseases it is highly [...] Read more.
The changing climatic conditions have led to the concurrent emergence of virulent microbial pathogens that attack crop plants and exhibit yield and quality deterring impacts on the affected crop. To counteract, the widespread infections of fungal pathogens and post-harvest diseases it is highly warranted to develop sustainable techniques and tools bypassing traditional agriculture practices. Nanotechnology offers a solution to the problems in disease management in a simple lucid way. These technologies are revolutionizing the scientific/industrial sectors. Likewise, in agriculture, the nano-based tools are of great promise particularly for the development of potent formulations ensuring proper delivery of agrochemicals, nutrients, pesticides/insecticides, and even growth regulators for enhanced use efficiency. The development of novel nanocomposites for improved management of fungal diseases can mitigate the emergence of resilient and persistent fungal pathogens and the loss of crop produce due to diseases they cause. Therefore, in this review, we collectively manifest the role of nanocomposites for the management of fungal diseases. Full article
(This article belongs to the Special Issue Fungal Nanotechnology)
Show Figures

Graphical abstract

24 pages, 3006 KiB  
Article
Colletotrichum Species Causing Anthracnose of Citrus in Australia
by Weixia Wang, Dilani D. de Silva, Azin Moslemi, Jacqueline Edwards, Peter K. Ades, Pedro W. Crous and Paul W. J. Taylor
J. Fungi 2021, 7(1), 47; https://doi.org/10.3390/jof7010047 - 12 Jan 2021
Cited by 52 | Viewed by 7415
Abstract
Colletotrichum spp. are important pathogens of citrus that cause dieback of branches and postharvest disease. Globally, several species of Colletotrichum have been identified as causing anthracnose of citrus. One hundred and sixty-eight Colletotrichum isolates were collected from anthracnose symptoms on citrus stems, leaves, [...] Read more.
Colletotrichum spp. are important pathogens of citrus that cause dieback of branches and postharvest disease. Globally, several species of Colletotrichum have been identified as causing anthracnose of citrus. One hundred and sixty-eight Colletotrichum isolates were collected from anthracnose symptoms on citrus stems, leaves, and fruit from Victoria, New South Wales, and Queensland, and from State herbaria in Australia. Colletotrichum australianum sp. nov., C. fructicola, C. gloeosporioides, C. karstii, C. siamense, and C. theobromicola were identified using multi-gene phylogenetic analyses based on seven genomic loci (ITS, gapdh, act, tub2, ApMat, gs, and chs-1) in the gloeosporioides complex and five genomic loci (ITS, tub2, act, chs-1, and his3) in the boninense complex, as well as morphological characters. Several isolates pathogenic to chili (Capsicum annuum), previously identified as C. queenslandicum, formed a clade with the citrus isolates described here as C. australianum sp. nov. The spore shape and culture characteristics of the chili and citrus isolates of C. australianum were similar and differed from those of C. queenslandicum. This is the first report of C. theobromicola isolated from citrus and the first detection of C. karstii and C. siamense associated with citrus anthracnose in Australia. Full article
(This article belongs to the Special Issue Fungal Biodiversity and Ecology)
Show Figures

Figure 1

13 pages, 5417 KiB  
Article
Trichoderma asperellum T76-14 Released Volatile Organic Compounds against Postharvest Fruit Rot in Muskmelons (Cucumis melo) Caused by Fusarium incarnatum
by Warin Intana, Suchawadee Kheawleng and Anurag Sunpapao
J. Fungi 2021, 7(1), 46; https://doi.org/10.3390/jof7010046 - 12 Jan 2021
Cited by 44 | Viewed by 3819
Abstract
Postharvest fruit rot caused by Fusarium incarnatum is a destructive postharvest disease of muskmelon (Cucumis melo). Biocontrol by antagonistic microorganisms is considered an alternative to synthetic fungicide application. The aim of this study was to investigate the mechanisms of action involved [...] Read more.
Postharvest fruit rot caused by Fusarium incarnatum is a destructive postharvest disease of muskmelon (Cucumis melo). Biocontrol by antagonistic microorganisms is considered an alternative to synthetic fungicide application. The aim of this study was to investigate the mechanisms of action involved in the biocontrol of postharvest fruit rot in muskmelons by Trichoderma species. Seven Trichoderma spp. isolates were selected for in vitro testing against F. incarnatum in potato dextrose agar (PDA) by dual culture assay. In other relevant works, Trichoderma asperellum T76-14 showed a significantly higher percentage of inhibition (81%) than other isolates. Through the sealed plate method, volatile organic compounds (VOCs) emitted from T. asperellum T76-14 proved effective at inhibiting the fungal growth of F. incarnatum by 62.5%. Solid-phase microextraction GC/MS analysis revealed several VOCs emitted from T. asperellum T76-14, whereas the dominant compound was tentatively identified as phenylethyl alcohol (PEA). We have tested commercial volatile (PEA) against in vitro growth of F. incarnatum; the result showed PEA at a concentration of 1.5 mg mL−1 suppressed fungal growth with 56% inhibition. Both VOCs and PEA caused abnormal changes in the fungal mycelia. In vivo testing showed that the lesion size of muskmelons exposed to VOCs from T. asperellum T76-14 was significantly smaller than that of the control. Muskmelons exposed to VOCs from T. asperellum T76-14 showed no fruit rot after incubation at seven days compared to fruit rot in the control. This study demonstrated the ability of T. asperellum T76-14 to produce volatile antifungal compounds, showing that it can be a major mechanism involved in and responsible for the successful inhibition of F. incarnatum and control of postharvest fruit rot in muskmelons. Full article
(This article belongs to the Special Issue Exploiting Fungal Solutions for Today's Challenges)
Show Figures

Figure 1

15 pages, 1199 KiB  
Article
Metabarcoding of Soil Fungal Communities Associated with Alpine Field-Grown Saffron (Crocus sativus L.) Inoculated with AM Fungi
by Íris Marisa Maxaieie Victorino, Samuele Voyron, Matteo Caser, Alberto Orgiazzi, Sonia Demasi, Andrea Berruti, Valentina Scariot, Valeria Bianciotto and Erica Lumini
J. Fungi 2021, 7(1), 45; https://doi.org/10.3390/jof7010045 - 12 Jan 2021
Cited by 13 | Viewed by 3403
Abstract
Soil fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbiotic associations with plant roots and act as biofertilizers by enhancing plant nutrients and water [...] Read more.
Soil fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbiotic associations with plant roots and act as biofertilizers by enhancing plant nutrients and water uptake. Information about the AMF association with Crocus sativus L. (saffron) and their impact on crop performances and spice quality has been increasing in recent years. Instead, there is still little data on the biodiversity of soil microbial communities associated with this crop in the Alpine environments. The aims of this study were to investigate the fungal communities of two Alpine experimental sites cultivated with saffron, and to rank the relative impact of two AMF inocula, applied to soil as single species (R = Rhizophagus intraradices, C. Walker & A. Schüßler) or a mixture of two species (M = R. intraradices and Funneliformis mosseae, C. Walker & A. Schüßler), on the resident fungal communities which might be influenced in their diversity and composition. We used Illumina MiSeq metabarcoding on nuclear ribosomal ITS2 region to characterize the fungal communities associated to Crocus sativus cultivation in two fields, located in the municipalities of Saint Christophe (SC) and Morgex (MG), (Aosta Valley, Italy), treated or not with AMF inocula and sampled for two consecutive years (Y1; Y2). Data analyses consistently indicated that Basidiomycota were particularly abundant in both sites and sampling years (Y1 and Y2). Significant differences in the distribution of fungal taxa assemblages at phylum and class levels between the two sites were also found. The main compositional differences consisted in significant abundance changes of OTUs belonging to Dothideomycetes and Leotiomycetes (Ascomycota), Agaricomycetes and Tremellomycetes (Basidiomycota), Mortierellomycetes and Mucoromycetes. Further differences concerned OTUs, of other classes, significantly represented only in the first or second year of sampling. Concerning Glomeromycota, the most represented genus was Claroideoglomus always detected in both sites and years. Other AMF genera such as Funneliformis, Septoglomus and Microdominikia, were retrieved only in MG site. Results highlighted that neither sites nor inoculation significantly impacted Alpine saffron-field fungal communities; instead, the year of sampling had the most appreciable influence on the resident communities. Full article
(This article belongs to the Special Issue Mycorrhizal Fungi and Plants)
Show Figures

Figure 1

18 pages, 7411 KiB  
Review
Physiological Basis of Smut Infectivity in the Early Stages of Sugar Cane Colonization
by Carlos Vicente, María-Estrella Legaz and Elena Sánchez-Elordi
J. Fungi 2021, 7(1), 44; https://doi.org/10.3390/jof7010044 - 12 Jan 2021
Cited by 6 | Viewed by 7512
Abstract
Sugar cane smut (Sporisorium scitamineum) interactions have been traditionally considered from the plant’s point of view: How can resistant sugar cane plants defend themselves against smut disease? Resistant plants induce several defensive mechanisms that oppose fungal attacks. Herein, an overall view [...] Read more.
Sugar cane smut (Sporisorium scitamineum) interactions have been traditionally considered from the plant’s point of view: How can resistant sugar cane plants defend themselves against smut disease? Resistant plants induce several defensive mechanisms that oppose fungal attacks. Herein, an overall view of Sporisorium scitamineum’s mechanisms of infection and the defense mechanisms of plants are presented. Quorum sensing effects and a continuous reorganization of cytoskeletal components, where actin, myosin, and microtubules are required to work together, seem to be some of the keys to a successful attack. Full article
(This article belongs to the Special Issue Smut Fungi)
Show Figures

Figure 1

14 pages, 7641 KiB  
Article
Revealing of Non-Cultivable Bacteria Associated with the Mycelium of Fungi in the Kerosene-Degrading Community Isolated from the Contaminated Jet Fuel
by Tatiana Shapiro, Konstantin Chekanov, Alina Alexandrova, Galina Dolnikova, Ekaterina Ivanova and Elena Lobakova
J. Fungi 2021, 7(1), 43; https://doi.org/10.3390/jof7010043 - 11 Jan 2021
Cited by 7 | Viewed by 3345
Abstract
Fuel (especially kerosene) biodamage is a challenge for global industry. In aviation, where kerosene is a widely used type of fuel, its biodeterioration leads to significant damage. Six isolates of micromycetes from the TS-1 aviation kerosene samples were obtained. Their ability to grow [...] Read more.
Fuel (especially kerosene) biodamage is a challenge for global industry. In aviation, where kerosene is a widely used type of fuel, its biodeterioration leads to significant damage. Six isolates of micromycetes from the TS-1 aviation kerosene samples were obtained. Their ability to grow on the fuel was studied, and the difference between biodegradation ability was shown. Micromycetes belonged to the Talaromyces, Penicillium, and Aspergillus genera. It was impossible to obtain bacterial isolates associated with their mycelium. However, 16S rRNA metabarcoding and microscopic observations revealed the presence of bacteria in the micromycete isolates. It seems to be that kerosene-degrading fungi were associated with uncultured bacteria. Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were abundant in the fungal cultures isolated from the TS-1 jet fuel samples. Most genera among these phyla are known as hydrocarbon degraders. Only bacteria-containing micromycete isolates were able to grow on the kerosene. Most likely, kerosene degradation mechanisms are based on synergism of bacteria and fungi. Full article
Show Figures

Figure 1

14 pages, 1718 KiB  
Article
Carbon and Nitrogen Sources Have No Impact on the Organization and Composition of Ustilago maydis Respiratory Supercomplexes
by Deyamira Matuz-Mares, Oscar Flores-Herrera, Guadalupe Guerra-Sánchez, Lucero Romero-Aguilar, Héctor Vázquez-Meza, Genaro Matus-Ortega, Federico Martínez and Juan Pablo Pardo
J. Fungi 2021, 7(1), 42; https://doi.org/10.3390/jof7010042 - 11 Jan 2021
Cited by 5 | Viewed by 2548
Abstract
Respiratory supercomplexes are found in mitochondria of eukaryotic cells and some bacteria. A hypothetical role of these supercomplexes is electron channeling, which in principle should increase the respiratory chain efficiency and ATP synthesis. In addition to the four classic respiratory complexes and the [...] Read more.
Respiratory supercomplexes are found in mitochondria of eukaryotic cells and some bacteria. A hypothetical role of these supercomplexes is electron channeling, which in principle should increase the respiratory chain efficiency and ATP synthesis. In addition to the four classic respiratory complexes and the ATP synthase, U. maydis mitochondria contain three type II NADH dehydrogenases (NADH for reduced nicotinamide adenine dinucleotide) and the alternative oxidase. Changes in the composition of the respiratory supercomplexes due to energy requirements have been reported in certain organisms. In this study, we addressed the organization of the mitochondrial respiratory complexes in U. maydis under diverse energy conditions. Supercomplexes were obtained by solubilization of U. maydis mitochondria with digitonin and separated by blue native polyacrylamide gel electrophoresis (BN-PAGE). The molecular mass of supercomplexes and their probable stoichiometries were 1200 kDa (I1:IV1), 1400 kDa (I1:III2), 1600 kDa (I1:III2:IV1), and 1800 kDa (I1:III2:IV2). Concerning the ATP synthase, approximately half of the protein is present as a dimer and half as a monomer. The distribution of respiratory supercomplexes was the same in all growth conditions. We did not find evidence for the association of complex II and the alternative NADH dehydrogenases with other respiratory complexes. Full article
(This article belongs to the Special Issue Smut Fungi)
Show Figures

Figure 1

14 pages, 295 KiB  
Review
Recent Advances and Novel Approaches in Laboratory-Based Diagnostic Mycology
by Lewis P. White and Jessica S. Price
J. Fungi 2021, 7(1), 41; https://doi.org/10.3390/jof7010041 - 11 Jan 2021
Cited by 12 | Viewed by 3819
Abstract
What was once just culture and microscopy the field of diagnostic mycology has significantly advanced in recent years and continues to incorporate novel assays and strategies to meet the changes in clinical demand. The emergence of widespread resistance to antifungal therapy has led [...] Read more.
What was once just culture and microscopy the field of diagnostic mycology has significantly advanced in recent years and continues to incorporate novel assays and strategies to meet the changes in clinical demand. The emergence of widespread resistance to antifungal therapy has led to the development of a range of molecular tests that target mutations associated with phenotypic resistance, to complement classical susceptibility testing and initial applications of next-generation sequencing are being described. Lateral flow assays provide rapid results, with simplicity allowing the test to be performed outside specialist centres, potentially as point-of-care tests. Mycology has responded positively to an ever-diversifying patient population by rapidly identifying risk and developing diagnostic strategies to improve patient management. Nowadays, the diagnostic repertoire of the mycology laboratory employs classical, molecular and serological tests and should be keen to embrace diagnostic advancements that can improve diagnosis in this notoriously difficult field. Full article
(This article belongs to the Special Issue Epidemiology, Diagnosis of Fungal Infections)
14 pages, 582 KiB  
Article
Filamentous Fungal Infections in a Tertiary Care Setting: Epidemiology and Clinical Outcome
by Miriam Van den Nest, Gernot Wagner, Martin Riesenhuber, Constantin Dolle, Elisabeth Presterl, Gerald Gartlehner, Deddo Moertl and Birgit Willinger
J. Fungi 2021, 7(1), 40; https://doi.org/10.3390/jof7010040 - 09 Jan 2021
Cited by 3 | Viewed by 3208
Abstract
Information on the distribution of filamentous fungal pathogens, which cause potential life-threatening invasive infections mostly in immunocompromised persons, is of great importance. The aim of this study was to evaluate the epidemiology and clinical outcome in patients with infections due to filamentous fungi [...] Read more.
Information on the distribution of filamentous fungal pathogens, which cause potential life-threatening invasive infections mostly in immunocompromised persons, is of great importance. The aim of this study was to evaluate the epidemiology and clinical outcome in patients with infections due to filamentous fungi at the University Hospital of Vienna, Austria. We conducted a retrospective observational study and consecutively included patients of any age with filamentous fungal infections between 2009 and 2017. The classification for probable and proven invasive filamentous fungal infections was based on the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group (EORTC) criteria or the expert opinion of an experienced clinical mycologist. We included 129 patients (median age: 52 years; 47.3% female) with episodes of 101 proven and probable invasive and 35 localized filamentous fungal infections (16 sinus, 14 eye, one ear, and four deep cutaneous). Aspergillus fumigatus alone accounted for 50.3% of the fungi, which was followed by the Mucorales group (13.7%) and Fusarium spp. (8.5%). Diagnosis was mainly based on culture findings. The lung was the most frequent site of infection. The 30-day and 90-day overall mortality of invasive fungal infections was 30.2% and 42.7%, respectively. We observed a high all-cause mortality among patients with invasive filamentous fungal infections. Prospective data collection in a nationwide registry would be necessary to provide important information on surveillance to clinicians and other decision-makers. Full article
(This article belongs to the Special Issue Epidemiology, Diagnosis of Fungal Infections)
Show Figures

Figure 1

21 pages, 2413 KiB  
Article
Fungal Treatment for the Valorization of Technical Soda Lignin
by Mariane Daou, Clementina Farfan Soto, Amel Majira, Laurent Cézard, Betty Cottyn, Florian Pion, David Navarro, Lydie Oliveira Correia, Elodie Drula, Eric Record, Sana Raouche, Stéphanie Baumberger and Craig B. Faulds
J. Fungi 2021, 7(1), 39; https://doi.org/10.3390/jof7010039 - 09 Jan 2021
Cited by 10 | Viewed by 2953
Abstract
Technical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous [...] Read more.
Technical lignins produced as a by-product in biorefinery processes represent a potential source of renewable carbon. In consideration of the possibilities of the industrial transformation of this substrate into various valuable bio-based molecules, the biological deconstruction of a technical soda lignin by filamentous fungi was investigated. The ability of three basidiomycetes (Polyporus brumalis, Pycnoporus sanguineus and Leiotrametes menziesii) to modify this material, the resultant structural and chemical changes, and the secreted proteins during growth on this substrate were investigated. The three fungi could grow on the technical lignin alone, and the growth rate increased when the media were supplemented with glucose or maltose. The proteomic analysis of the culture supernatants after three days of growth revealed the secretion of numerous Carbohydrate-Active Enzymes (CAZymes). The secretomic profiles varied widely between the strains and the presence of technical lignin alone triggered the early secretion of many lignin-acting oxidoreductases. The secretomes were notably rich in glycoside hydrolases and H2O2-producing auxiliary activity enzymes with copper radical oxidases being induced on lignin for all strains. The lignin treatment by fungi modified both the soluble and insoluble lignin fractions. A significant decrease in the amount of soluble higher molar mass compounds was observed in the case of P. sanguineus. This strain was also responsible for the modification of the lower molar mass compounds of the lignin insoluble fraction and a 40% decrease in the thioacidolysis yield. The similarity in the activities of P. sanguineus and P. brumalis in modifying the functional groups of the technical lignin were observed, the results suggest that the lignin has undergone structural changes, or at least changes in its composition, and pave the route for the utilization of filamentous fungi to functionalize technical lignins and produce the enzymes of interest for biorefinery applications. Full article
(This article belongs to the Special Issue Exploiting Fungal Solutions for Today's Challenges)
Show Figures

Figure 1

14 pages, 5791 KiB  
Article
Genetic Manipulation of the Brassicaceae Smut Fungus Thecaphora thlaspeos
by Lesley Plücker, Kristin Bösch, Lea Geißl, Philipp Hoffmann and Vera Göhre
J. Fungi 2021, 7(1), 38; https://doi.org/10.3390/jof7010038 - 09 Jan 2021
Cited by 5 | Viewed by 2838
Abstract
Investigation of plant–microbe interactions greatly benefit from genetically tractable partners to address, molecularly, the virulence and defense mechanisms. The smut fungus Ustilago maydis is a model pathogen in that sense: efficient homologous recombination and a small genome allow targeted modification. On the host [...] Read more.
Investigation of plant–microbe interactions greatly benefit from genetically tractable partners to address, molecularly, the virulence and defense mechanisms. The smut fungus Ustilago maydis is a model pathogen in that sense: efficient homologous recombination and a small genome allow targeted modification. On the host side, maize is limiting with regard to rapid genetic alterations. By contrast, the model plant Arabidopsis thaliana is an excellent model with a vast amount of information and techniques as well as genetic resources. Here, we present a transformation protocol for the Brassicaceae smut fungus Thecaphora thlaspeos. Using the well-established methodology of protoplast transformation, we generated the first reporter strains expressing fluorescent proteins to follow mating. As a proof-of-principle for homologous recombination, we deleted the pheromone receptor pra1. As expected, this mutant cannot mate. Further analysis will contribute to our understanding of the role of mating for infection biology in this novel model fungus. From now on, the genetic manipulation of T. thlaspeos, which is able to colonize the model plant A. thaliana, provides us with a pathosystem in which both partners are genetically amenable to study smut infection biology. Full article
(This article belongs to the Special Issue Smut Fungi)
Show Figures

Figure 1

24 pages, 1215 KiB  
Review
The Roles of Chromatin Accessibility in Regulating the Candida albicans White-Opaque Phenotypic Switch
by Mohammad N. Qasim, Ashley Valle Arevalo, Clarissa J. Nobile and Aaron D. Hernday
J. Fungi 2021, 7(1), 37; https://doi.org/10.3390/jof7010037 - 09 Jan 2021
Cited by 6 | Viewed by 3561
Abstract
Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic program that enables reversible phenotypic switching between two cell types, referred to as “white” and “opaque”. These cell types are established and maintained by distinct transcriptional programs that lead to [...] Read more.
Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic program that enables reversible phenotypic switching between two cell types, referred to as “white” and “opaque”. These cell types are established and maintained by distinct transcriptional programs that lead to differences in metabolic preferences, mating competencies, cellular morphologies, responses to environmental signals, interactions with the host innate immune system, and expression of approximately 20% of genes in the genome. Transcription factors (defined as sequence specific DNA-binding proteins) that regulate the establishment and heritable maintenance of the white and opaque cell types have been a primary focus of investigation in the field; however, other factors that impact chromatin accessibility, such as histone modifying enzymes, chromatin remodelers, and histone chaperone complexes, also modulate the dynamics of the white-opaque switch and have been much less studied to date. Overall, the white-opaque switch represents an attractive and relatively “simple” model system for understanding the logic and regulatory mechanisms by which heritable cell fate decisions are determined in higher eukaryotes. Here we review recent discoveries on the roles of chromatin accessibility in regulating the C. albicans white-opaque phenotypic switch. Full article
(This article belongs to the Special Issue Epigenetic Regulation of Fungal Virulence)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop