Wastewater and Waste Treatment: Overview, Challenges and Current Trends (Volume II)

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Environmental and Green Processes".

Deadline for manuscript submissions: 15 May 2024 | Viewed by 21164

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemical Engineering, University of Patras, 1 Karatheodori str., GR-26504 Patras, Greece
Interests: membrane filtration; integrated membrane processes; adsorption; phenolic compounds; coagulation; anaerobic digestion; life cycle assessment; techno-economic analysis; agro-industrial wastes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Chemical Engineering, University of Patras, 26442 Patras, Greece
Interests: catalysis; electrocatalysis; electrochemistry; advances oxidation processes; hydrocarbon reforming, CO2 reduction
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Climate change and resource scarcity are under development and represent the most important challenges of the 21st century. Wastewater and waste treatment processes can play a major role in tackling both of these problems. Novel treatment processes of immerging pollutants are of high interest, especially when they lead to the recovery of energy or resources.

Apart from the technical characteristics, the environmental and economic impacts of any proposed wastewater and waste treatment process should be considered as they strongly affect their viability and adoption potential. Considering the latter, recent research efforts exhibiting innovative waste treatment methods should be framed by life cycle assessment or/and technoeconomic analysis of the proposed processes.

With the success of the previous Special Issue, “Wastewater and Waste Treatment: Overview, Challenges, and Current Trends (Volume I)”, Volume II of this Special Issue will continue to highlight current trends and future perspectives in wastewater and waste treatment methods, including economic and environmental assessments. Topics include, but are not limited to, the following:

  • novel biological, advanced oxidation, and physicochemical wastewater and waste treatment methods;
  • current trends in wastewater and waste treatment systems;
  • high-environmental-impact waste streams and treatment challenges;
  • the environmental and economic impact of wastewater and waste treatment methods.

Dr. Dimitris Zagklis
Dr. Georgios Bampos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wastewater treatment
  • waste treatment
  • biological treatment
  • advanced oxidation treatment
  • physicochemical treatment
  • life cycle assessment
  • technoeconomic analysis
  • environmental impact
  • economic impact

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2088 KiB  
Article
Recycling PVC Waste into CO2 Adsorbents: Optimizing Pyrolysis Valorization with Neuro-Fuzzy Models
by Emilia A. Jiménez-García, Salvador Pérez-Huertas, Antonio Pérez, Mónica Calero and Gabriel Blázquez
Processes 2024, 12(3), 431; https://doi.org/10.3390/pr12030431 - 20 Feb 2024
Viewed by 863
Abstract
Nowadays, the environmental challenges associated with plastics are becoming increasingly prominent, making the exploitation of alternatives to landfill disposal a pressing concern. Particularly, polyvinyl chloride (PVC), characterized by its high chlorine content, poses a major environmental risk during degradation. Furthermore, PVC recycling and [...] Read more.
Nowadays, the environmental challenges associated with plastics are becoming increasingly prominent, making the exploitation of alternatives to landfill disposal a pressing concern. Particularly, polyvinyl chloride (PVC), characterized by its high chlorine content, poses a major environmental risk during degradation. Furthermore, PVC recycling and recovery present considerable challenges. This study aims to optimize the PVC pyrolysis valorization process to produce effective adsorbents for removing contaminants from gaseous effluents, especially CO2. For this purpose, PVC waste was pyrolyzed under varied conditions, and the resulting solid fraction was subjected to a series of chemical and physical activations by means of hydroxides (NaOH and KOH) and nitrogen. Characterization of the PVC-based activated carbons was carried out using surface morphology (SEM), N2 adsorption/desorption, elemental analysis, and FTIR, and their capacity to capture CO2 was assessed. Finally, neuro-fuzzy models were developed for the optimization of the valorization technique. The resulting activated carbons exhibited excellent CO2 adsorption capabilities, particularly those activated with KOH. Optimal activation conditions include activations at 840 °C with NaOH at a ratio of 0.66 and at 760 °C using either NaOH or KOH with ratios below 0.4. Activations under these experimental conditions resulted in a significant increase in the adsorption capacity, of up to 25%, in the resulting samples. Full article
Show Figures

Graphical abstract

11 pages, 1464 KiB  
Article
Optimal Mesh Pore Size Combined with Periodic Air Mass Load (AML) for Effective Operation of a Self-Forming Dynamic Membrane BioReactor (SFD MBR) for Sustainable Treatment of Municipal Wastewater
by Senouci Boulerial, Carlo Salerno, Fabiano Castrogiovanni, Marina Tumolo, Giovanni Berardi, Abdelkader Debab, Boumediene Haddou, Abdellah Benhamou and Alfieri Pollice
Processes 2024, 12(2), 323; https://doi.org/10.3390/pr12020323 - 02 Feb 2024
Viewed by 579
Abstract
A self-forming dynamic membrane bioreactor (SFD MBR) is a cost-effective alternative to conventional MBR, in which the synthetic membrane is replaced by a “cake layer,” an accumulation of the biological suspension over a surface of inert, low-cost support originated by filtration itself. Under [...] Read more.
A self-forming dynamic membrane bioreactor (SFD MBR) is a cost-effective alternative to conventional MBR, in which the synthetic membrane is replaced by a “cake layer,” an accumulation of the biological suspension over a surface of inert, low-cost support originated by filtration itself. Under optimized conditions, the cake layer is easy to remove and quick to form again, resulting a “dynamic membrane.” The permeate of the SFD MBR has chemo-physical characteristics comparable to those of conventional ultrafiltration-based MBR. In this paper, two nylon meshes with pore sizes of 20 and 50 µm, respectively, were tested in a bench-scale SFD MBR in which an air mass load (AML) was periodically supplied tangentially to the filtration surface to maintain filtration effectiveness. The SFD MBR equipped with 20 µm nylon mesh coupled with 5 min of AML every 4 h showed the best performance, ensuring both a permeate with turbidity values always below 3 NTU and revealing no increases in transmembrane pressure (TMP) with manual maintenance needs. A benchmark test with the only difference of a suction break (relaxation) instead of AML was conducted under identical operating conditions for validation with an already known maintenance strategy. This latter test produced a permeate of very good quality, but it needed frequent TMP increases and consequent manual cleanings, showing that a periodic AML coupled with the use of a 20 µm mesh can be an optimal strategy for long-term operation of SFD MBR. Full article
Show Figures

Graphical abstract

21 pages, 2405 KiB  
Article
Apple Pomace-Derived Cationic Cellulose Nanocrystals for PFAS Removal from Contaminated Water
by Luis A. Franco, T. Dwyer Stuart, Md Shahadat Hossain, Bandaru V. Ramarao, Charlene C. VanLeuven, Mario Wriedt, Michael Satchwell and Deepak Kumar
Processes 2024, 12(2), 297; https://doi.org/10.3390/pr12020297 - 30 Jan 2024
Viewed by 1338
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are concerning contaminants due to their ubiquity, persistence, and toxicity. Conventional PFAS water treatments such as granular activated carbon are limited by low adsorption rates and capacities. Carbon-based nano-adsorbents with enhanced surface areas address these limitations but are [...] Read more.
Per- and poly-fluoroalkyl substances (PFAS) are concerning contaminants due to their ubiquity, persistence, and toxicity. Conventional PFAS water treatments such as granular activated carbon are limited by low adsorption rates and capacities. Carbon-based nano-adsorbents with enhanced surface areas address these limitations but are hindered by their high cost and toxicity. Cellulose nanocrystals (CNC) are promising PFAS adsorbents due to sustainable sourcing, large surface areas, and amenable surface properties. In this study, CNC was synthesized from the agro-food waste, apple pomace (APCNC), and coated with Moringa oleifera cationic protein (MOCP) aqueous extract to produce MOCP/APCNC for the removal of perfluorooctanoic acid (PFOA) from water. APCNC and MOCP/APCNC were manufactured, characterized, and utilized in PFOA batch adsorption kinetics and equilibrium trials. APCNC was successfully produced from apple pomace (AP) and determined through characterization and comparison to commercial CNC (CCNC). APCNC and MOCP/APCNC exhibited rapid PFOA adsorption, approaching equilibrium within 15 min. MOCP coatings inverted the MOCP/CNC surface charge to cationic (−15.07 to 7.38 mV) and enhanced the PFOA adsorption rate (2.65 × 10−3 to 5.05 × 10−3 g/mg/s), capacity (47.1 to 61.1 mg/g), and robustness across varied water qualities. The sustainable sourcing of APCNC combined with a green surface coating to produce MOCP/CNC provides a highly promising environmentally friendly approach to PFAS remediation. Full article
Show Figures

Figure 1

14 pages, 3803 KiB  
Article
The Crucial Impact of Microbial Growth and Bioenergy Conversion on Treating Livestock Manure and Antibiotics Using Chlorella sorokiniana
by Hee-Jun Kim, Sangjun Jeong, YeonA Lee, Jae-Cheol Lee and Hyun-Woo Kim
Processes 2024, 12(2), 252; https://doi.org/10.3390/pr12020252 - 24 Jan 2024
Viewed by 884
Abstract
The residual antibiotics in livestock excreta (LE) have been regarded as a potential threat to the ecosystem and human society. Some photoautotrophic microalgae, however, were found to metabolize them during active biomass photosynthesis. This study investigates how the strength of the antibiotics impacts [...] Read more.
The residual antibiotics in livestock excreta (LE) have been regarded as a potential threat to the ecosystem and human society. Some photoautotrophic microalgae, however, were found to metabolize them during active biomass photosynthesis. This study investigates how the strength of the antibiotics impacts the overall biodiesel yield and composition of the harvested microalgal biomass grown from LE. The microalgal growth results demonstrate that increasing the concentration of residual antibiotics suppresses the microalgal growth rate from 0.87 d−1 to 0.34 d−1. This 61% lower biomass production rate supports the proposition that the kinetic impact of antibiotics may slow lipid synthesis. Moreover, the analytical results of fatty acid methyl ester (FAME) demonstrate that amoxicillin substantially reduces the C16:0 content by over 96%. This study evidences that the functional group similarity of amoxicillin may competitively inhibit the esterification reaction by consuming methanol. This explanation further highlights that residual antibiotics interfere with microalgal lipid synthesis and its transesterification. Moreover, it was confirmed that the presence of residual antibiotics may not affect the major nutrient removal (total nitrogen: 74.5~78.0%, total phosphorus: 95.6~96.8%). This indicates that residual antibiotics inhibit the metabolism associated with carbon rather than those associated with nitrogen and phosphorus, which is connected to the decrease in the biodiesel yield. Overall, these results reveal that the frequent abuse of antibiotics in livestock may harm the eco-friendly conversion of waste-into-bioenergy strategy. Full article
Show Figures

Figure 1

18 pages, 1980 KiB  
Article
The Conversion of Pistachio and Walnut Shell Waste into Valuable Components with Subcritical Water
by Maja Čolnik, Mihael Irgolič, Amra Perva and Mojca Škerget
Processes 2024, 12(1), 195; https://doi.org/10.3390/pr12010195 - 16 Jan 2024
Viewed by 1025
Abstract
Pistachio and walnut shells accumulate in large quantities as waste during food processing and represent a promising lignocellulosic biomass for the extraction of valuable components. Subcritical water technology was used as an environmentally friendly technique to study the extraction of active ingredients and [...] Read more.
Pistachio and walnut shells accumulate in large quantities as waste during food processing and represent a promising lignocellulosic biomass for the extraction of valuable components. Subcritical water technology was used as an environmentally friendly technique to study the extraction of active ingredients and other valuable degradation products from walnut and pistachio waste. Subcritical water extraction (SWE) was carried out under different process conditions (temperature (150–300 °C) and short reaction times (15–60 min)) and compared with conventional extraction using different organic solvents (acetone, 50% acetone and ethanol). The extracts obtained from pistachio and walnut shell waste are rich in various bioactive and valuable components. The highest contents of total phenols (127.08 mg GA/g extract at 300 °C for 15 min, from walnut shells), total flavonoids (10.18 mg QU/g extract at 200 °C for 60 min, from pistachio shells), total carbohydrates (602.14 mg TCH/g extract at 200 °C for 60 min, from walnut shells) and antioxidant activity (91% at 300 °C, for 60 min, from pistachio shells) were determined when the extracts were obtained via subcritical water. High contents of total phenols (up to 86.17 mg GA/g extract) were also determined in the conventional extracts obtained with ethanol. Using the HPLC method, sugars and their valuable derivatives were determined in the extracts, with glucose, fructose, furfurals (5-hydroxymethylfurfural (5-HMF) and furfural) and levulinic acid being the most abundant in the extracts obtained by subcritical water. The results show that subcritical water technology enables better exploitation of biowaste materials than conventional extraction methods with organic solvents, as it provides a higher yields of bioactive components such as phenolic compounds and thus extracts with high antioxidant activity, while at the same time producing degradation products that are valuable secondary raw materials. Full article
Show Figures

Graphical abstract

16 pages, 7570 KiB  
Article
Graphene Oxide from Graphite of Spent Batteries as Support of Nanocatalysts for Fuel Hydrogen Production
by Gabriel Sperandio, Iterlandes Machado Junior, Esteefany Bernardo and Renata Moreira
Processes 2023, 11(11), 3250; https://doi.org/10.3390/pr11113250 - 19 Nov 2023
Cited by 2 | Viewed by 962
Abstract
The increasing production of electronic waste and the rising demand for renewable energy are currently subjects of debate. Sustainable processes based on a circular economy are required. Then, electronic devices could be the main source for the synthesis of new materials. Thus, this [...] Read more.
The increasing production of electronic waste and the rising demand for renewable energy are currently subjects of debate. Sustainable processes based on a circular economy are required. Then, electronic devices could be the main source for the synthesis of new materials. Thus, this work aimed to synthesize graphene oxide (GO) from graphite rod of spent Zn-C batteries. This was used as support for Ni/Co bimetallic nanocatalysts in the evolution of hydrogen from NaBH4 for the first time. The graphene oxide (GO) exhibited a diffraction peak at 2θ = 9.1°, as observed using X-ray diffraction (XRD), along with the presence of oxygenated groups as identified using FTIR. Characteristic bands at 1345 and 1574 cm−1 were observed using Raman spectroscopy. A leaf-shaped morphology was observed using SEM. GO sheets was observed using TEM, with an interplanar distance of 0.680 nm. Ni/Co nanoparticles, with an approximate size of 2 nm, were observed after deposition on GO. The material was used in the evolution of hydrogen from NaBH4, obtaining an efficiency close to 90%, with a kinetic constant of 0.0230 s−1 at 296.15 K and activation energy of 46.7 kJ mol−1. The material showed an efficiency in seven reuse cycles. Therefore, a route of a new material with added value from electronic waste was obtained from an eco-friendly process, which can be used in NaBH4 hydrolysis. Full article
Show Figures

Figure 1

22 pages, 2091 KiB  
Article
Techno-Economic Assessment of PEM Electrolysis for O2 Supply in Activated Sludge Systems—A Simulation Study Based on the BSM2 Wastewater Treatment Plant
by Mario Alejandro Parra Ramirez, Stefan Fogel, Sebastian Felix Reinecke and Uwe Hampel
Processes 2023, 11(6), 1639; https://doi.org/10.3390/pr11061639 - 26 May 2023
Viewed by 2017
Abstract
The conversion of renewable energy into hydrogen (H2) by power-to-gas technologies involving electrolysis is seen today as a key element in the transition to a sustainable energy sector. Wastewater treatment plants (WWTP) could be integrated into future green H2 networks [...] Read more.
The conversion of renewable energy into hydrogen (H2) by power-to-gas technologies involving electrolysis is seen today as a key element in the transition to a sustainable energy sector. Wastewater treatment plants (WWTP) could be integrated into future green H2 networks as users of oxygen (O2) produced alongside H2 in water electrolysis. In WWTPs, O2 is required for biological treatment steps, e.g., in activated sludge (AS) systems. However, the production costs of electrolysis O2 should be competitive with those of conventional O2 production processes. In this study, mathematical models of a polymer electrolyte membrane electrolyser (PEME) plant and the WWTP of the Benchmark Simulation Model No. 2 (BSM2) were used to simulate electrolysis O2 supply to an AS system and estimate net costs of production (NCP) for produced O2 via a techno-economic assessment (TEA). Assuming that produced H2 is sold to a nearby industry, NCPs for O2 were calculated for two different PEME plant dimensions, four alternatives regarding electricity supply and costs, and three sets of assumptions regarding system performance and market conditions. The analyses were performed for 2020 as a reference year and 2030 based on forecasts of relevant data. Results of the dimensioning of the PEME show the O2 demand of a municipal WWTP with an installed capacity of 80,000 population equivalents (PE), such as the one of the BSM2, can be covered for more than 99% of the simulated period by either a 6.4 MW PEME operated for 4073 full load hours or a 4.8 MW PEME operated for 6259 full load hours. Investment costs for the PEME stacks and the operational costs for electricity make up most of the NCP of electrolysis O2. The projected decrease in PEME stack costs and renewable energy prices in favourable market conditions can result in a competitive NCP for electrolysis O2 in 2030. The approach described in this study can be applied to analyse O2 supply to biological wastewater treatment in WWTPs with different characteristics, in processes different from AS, and under different assumptions regarding economic conditions. Full article
Show Figures

Figure 1

15 pages, 1126 KiB  
Article
Techno-Economic Evaluation of the Thermochemical Energy Valorization of Construction Waste and Algae Biomass: A Case Study for a Biomass Treatment Plant in Northern Greece
by Georgios Manthos, Dimitris Zagklis, Sameh S. Ali, Constantina Zafiri and Michael Kornaros
Processes 2023, 11(5), 1549; https://doi.org/10.3390/pr11051549 - 18 May 2023
Cited by 2 | Viewed by 888
Abstract
Biomass treatment for energy production is a promising way for achieving fossil fuel replacement and environmental relief. Thermochemical processes are a common way of processing biomass, but their potential economic benefits are not always clear to investors. In this work, three basic thermochemical [...] Read more.
Biomass treatment for energy production is a promising way for achieving fossil fuel replacement and environmental relief. Thermochemical processes are a common way of processing biomass, but their potential economic benefits are not always clear to investors. In this work, three basic thermochemical processes (combustion, gasification, and pyrolysis) are examined in terms of their theoretical yields and their products, as well as their economic viability. The goal of this analysis was to look into the total amount of available biomass streams and compare business plans in terms of sustainability from a technical and economic perspective. The estimation of the fixed capital investment was based on ready−made solutions that are already available on the market. The analysis showed that the gasification unit has the optimum sustainability results since the total amount of gross income was EUR 0.13/kg of biomass while the treatment cost was estimated at EUR 0.09/kg of biomass. The internal rate of return of the investment was calculated at 9%, establishing a promising alternative solution to sustainable “green” energy production. Full article
Show Figures

Graphical abstract

14 pages, 5472 KiB  
Article
Candidatus Scalindua, a Biological Solution to Treat Saline Recirculating Aquaculture System Wastewater
by Federico Micolucci, Jonathan A. C. Roques, Geoffrey S. Ziccardi, Naoki Fujii, Kristina Sundell and Tomonori Kindaichi
Processes 2023, 11(3), 690; https://doi.org/10.3390/pr11030690 - 24 Feb 2023
Cited by 3 | Viewed by 1861
Abstract
Recirculating aquaculture systems (RAS) are promising candidates for the sustainable development of the aquaculture industry. A current limitation of RAS is the production and potential accumulation of nitrogenous wastes, ammonium (NH4+), nitrite (NO2) and nitrate (NO3 [...] Read more.
Recirculating aquaculture systems (RAS) are promising candidates for the sustainable development of the aquaculture industry. A current limitation of RAS is the production and potential accumulation of nitrogenous wastes, ammonium (NH4+), nitrite (NO2) and nitrate (NO3), which could affect fish health and welfare. In a previous experiment, we have demonstrated that the marine anammox bacteria Candidatus Scalindua was a promising candidate to treat the wastewater (WW) of marine, cold-water RAS. However, the activity of the bacteria was negatively impacted after a direct exposure to RAS WW. In the current study, we have further investigated the potential of Ca. Scalindua to treat marine RAS WW in a three-phase experiment. In the first phase (control, 83 days), Ca. Scalindua was fed a synthetic feed, enriched in NH4+, NO2 and trace element (TE) mix. Removal rates of 98.9% and 99.6% for NH4+ and NO2, respectively, were achieved. In the second phase (116 days), we gradually increased the exposure of Ca. Scalindua to nitrogen-enriched RAS WW over a period of about 80 days. In the last phase (79 days), we investigated the needs of TE supplementation for the Ca. Scalindua after they were fully acclimated to 100% RAS WW. Our results show that the gradual exposure of Ca. Scalindua resulted in a successful acclimation to 100% RAS WW, with maintained high removal rates of both NH4+ and NO2 throughout the experiment. Despite a slight decrease in relative abundance (from 21.4% to 16.7%), Ca. Scalindua remained the dominant species in the granules throughout the whole experiment. We conclude that Ca. Scalindua can be successfully used to treat marine RAS WW, without the addition of TE, once given enough time to acclimate to its new substrate. Future studies need to determine the specific needs for optimal RAS WW treatment by Ca. Scalindua at pilot scale. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

11 pages, 497 KiB  
Review
Crude Oil Bioremediation: From Bacteria to Microalgae
by Rosa Paola Radice, Vincenzo De Fabrizio, Antonietta Donadoni, Antonio Scopa and Giuseppe Martelli
Processes 2023, 11(2), 442; https://doi.org/10.3390/pr11020442 - 01 Feb 2023
Cited by 4 | Viewed by 3341
Abstract
Crude oil is one of the major pollutants present. Its extraction and processing generate processing waters contaminated by hydrocarbons which are harmful to both human health and the flora and fauna that come into contact with it. Hydrocarbon contamination can involve soil and [...] Read more.
Crude oil is one of the major pollutants present. Its extraction and processing generate processing waters contaminated by hydrocarbons which are harmful to both human health and the flora and fauna that come into contact with it. Hydrocarbon contamination can involve soil and water, and several technologies are used for recovery. The most used techniques for the recovery of spilt oil involve chemical-physical methods that can remove most of the pollutants. Among these, must consider the bioremediation by microorganisms, mostly bacterial capable of degrading many of the toxic compounds contained within the petroleum. Microalgae participate in bioremediation indirectly, supporting the growth of degrading bacteria, and directly acting on contaminants. Their direct contribution is based on the activation of various mechanisms ranging from the production of enzymes capable of degrading hydrocarbons, such as lipoxygenases, to the attack through the liberation of free radicals. The following review analyzed all the works published in the last ten years concerning the ability of microalgae to remove hydrocarbons, intending to identify in these microorganisms an alternative technology to the use of bacteria. The advantages of using microalgae concern not only their ability to remove toxic compounds and release oxygen into the atmosphere but their biomass could then be used in a circular economy process to produce biofuels. Full article
Show Figures

Graphical abstract

31 pages, 2223 KiB  
Review
Life Cycle Assessment and Its Application in Wastewater Treatment: A Brief Overview
by Siti Safirah Rashid, Siti Norliyana Harun, Marlia M. Hanafiah, Khalisah K. Razman, Yong-Qiang Liu and Duratul Ain Tholibon
Processes 2023, 11(1), 208; https://doi.org/10.3390/pr11010208 - 09 Jan 2023
Cited by 12 | Viewed by 6165
Abstract
This paper provides a brief review on wastewater treatment system and the application of life cycle assessment (LCA) for assessing its environmental performance. An extensive review regarding the geographical relevance of LCA for WWTPs, and the evaluation of sustainable wastewater treatment by LCA [...] Read more.
This paper provides a brief review on wastewater treatment system and the application of life cycle assessment (LCA) for assessing its environmental performance. An extensive review regarding the geographical relevance of LCA for WWTPs, and the evaluation of sustainable wastewater treatment by LCA in both developed and developing countries are also discussed. The objective of the review is to identify knowledge gap, for the improvement of the LCA application and methodology to WWTPs. A total of 35 published articles related to wastewater treatment (WWT) and LCA from international scientific journals were studied thoroughly and summarised from 2006 to 2022. This review found that there is lack of studies concerning LCA of WWTPs that consider specific local criteria especially in the developing countries. Thus, it is important to: (1) assess the influence of seasonality (i.e., dry and wet seasons) on the environmental impact of WWT, (2) investigate environmental impacts from WWTPs in developing countries focusing on the site-specific inventory data, and (3) evaluate environmental sustainability of different processes for upgrading the wastewater treatment system. The environmental impact and cost assessment aspects are crucial for the sustainable development of WWTP. Therefore, environmental impacts must be thoroughly assessed to provide recommendation for future policy and for the water industry in determining environmental trade-offs toward sustainable development. Full article
Show Figures

Figure 1

Back to TopTop