Polymers Strategies in Dental Therapy

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 25 October 2024 | Viewed by 29832

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, 40125 Bologna, Italy
Interests: dental adhesives; bond strengh; resin composite; MMPs; resin cement; fiber post

E-Mail Website
Guest Editor
Department for Biomedical and Neuromotor Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
Interests: adhesive dentistry; bond strength; MMPs; dentin; collagen; cross-linkers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymeric materials and polymeric films are widely employed across several dental disciplines. Macromolecule compounds can be found in composite filling materials in restorative dentistry, removable dentures in prosthodontics, cross-linkers in adhesive dentistry, therapeutic excipients in regenerative therapies, and so forth. Polymers have been increasingly used for surface modification of dental biomaterials to enhance their mechanical properties and to design materials tailored for various therapeutic strategies. Despite the great interest that revolves around the use of polymers, to date, the benefits and limitations of these macromolecules remain to be analyzed and clinically validated. Clinical and laboratory studies concur to furnish a complete perspective on the effects and functional possibilities of a material. A plethora of techniques are nowadays used to test the efficacy of dental biomaterials, such as imaging techniques for ultra-morphological analysis (i.e., SEM, TEM, confocal, micro-CT), spectroscopic analysis (i.e., FTIR, AFM, DSC), mechanical tests (i.e., wear, microtensile bond strength), biochemical analysis (i.e., in situ zymography, gelatin zymography) and biofilm formation studies.

With this Special Issue, we aim to collect a selection of papers presenting novel findings on polymer strategies used in different areas of Dentistry, including but not limited to, biological aspects, antibacterial considerations and regenerative therapies.

Prof. Dr. Claudia Mazzitelli
Dr. Tatjana Maravic
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers
  • biomaterials
  • composites
  • antibacterial
  • oral biofilm
  • bonding agents
  • resin cements
  • pulp tissue
  • macromolecules
  • MMPs

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 18831 KiB  
Article
Effect of Simulated Dental Pulpal Pressure Using Fetal Bovine Serum for the Bonding Performance of Contemporary Adhesive to Dentin
by Yitong Li, Masahiko Maeno, Carolina Cecilia Cifuentes-Jimenez, Mei Komoto, Yunqing Liu, Yoichiro Nara, Hidehiko Sano, Pedro Alvarez-Lloret, Monica Yamauti and Atsushi Tomokiyo
Polymers 2024, 16(9), 1219; https://doi.org/10.3390/polym16091219 - 26 Apr 2024
Viewed by 229
Abstract
This study evaluated the effect of simulated pulpal pressure (SPP) conditions and storage time on contemporary adhesive systems’ microtensile bond strength (µTBS) to dentin. Extracted human molars were prepared and randomly divided into four groups according to the adhesives: Clearfil Megabond 2 (CSE), [...] Read more.
This study evaluated the effect of simulated pulpal pressure (SPP) conditions and storage time on contemporary adhesive systems’ microtensile bond strength (µTBS) to dentin. Extracted human molars were prepared and randomly divided into four groups according to the adhesives: Clearfil Megabond 2 (CSE), Beautibond Xtreme Universal (BXU), G2-Bond (G2B), and Scotchbond Universal Plus (SBP). Each adhesive group was further divided following the SPP conditions: control with no simulation (SPP-CTR), SPP with distilled water (SPP-DTW), and SPP with fetal bovine serum (SPP-FBS). Resin composite build-ups were prepared, and teeth were stored in water (37 °C) for 24 h (24 h) and 3 months (3 m). Then, teeth were sectioned to obtain resin–dentin bonded beams and tested to determine the µTBS. Data were analyzed using three-way ANOVA, Tukey post hoc tests (=0.05), and Weibull failure analysis. Failure mode was observed using scanning electron microscopy. The µTBS response was affected by adhesive systems, simulated pulpal pressure conditions, and storage time. SPP-CTR groups presented a higher overall bond strength than SPP-DTW and SPP-FBS, which were not significantly different from each other. Only for SBP, the SPP-FBS group showed higher µTBS than the SPP-DTW group. The Weibull analysis showed that the bonding reliability and durability under SPP-DTW and SPP-FBS were inferior to SPP-CTR, and the 24 h bonding quality of adhesives to dentin was superior to that of 3 m. SPP drastically reduced the µTBS of all adhesives to dentin regardless of solution (distilled water or fetal bovine serum). Storage after 3 m also decreased µTBS despite the SPP condition. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

18 pages, 1461 KiB  
Article
Mucoadhesive Polymeric Polyologels Designed for the Treatment of Periodontal and Related Diseases of the Oral Cavity
by Gavin P. Andrews, Thomas Laverty and David S. Jones
Polymers 2024, 16(5), 589; https://doi.org/10.3390/polym16050589 - 21 Feb 2024
Viewed by 646
Abstract
The study objective was to design and characterise herein unreported polyologels composed of a range of diol and triol solvents and polyvinyl methyl ether-co-maleic acid (PVM/MA) and, determine their potential suitability for the treatment of periodontal and related diseases in the oral cavity [...] Read more.
The study objective was to design and characterise herein unreported polyologels composed of a range of diol and triol solvents and polyvinyl methyl ether-co-maleic acid (PVM/MA) and, determine their potential suitability for the treatment of periodontal and related diseases in the oral cavity using suitable in vitro methodologies. Polyologel flow and viscoelastic properties were controlled by the choice of solvent and the concentration of polymer. At equivalent polymer concentrations, polyologels prepared with glycerol (a triol) exhibited the greatest elasticity and resistance to deformation. Within the diol solvents (PEG 400, pentane 1,5-diol, propane 1,2-diol, propane 1,3-diol, and ethylene glycol), PEG 400 polyologels possessed the greatest elasticity and resistance to deformation, suggesting the importance of distance of separation between the diol groups. Using Raman spectroscopy bond formation between the polymer carbonyl group and the diol hydroxyl groups was observed. Polyologel mucoadhesion was influenced by viscoelasticity; maximum mucoadhesion was shown by glycerol polyologels at the highest polymer concentration (20% w/w). Similarly, the choice of solvent and concentration of PVM/MA affected the release of tetracycline from the polyologels. The controlled release of tetracycline for at least 10 h was observed for several polyologels, which, in combination with their excellent mucoadhesion and flow properties, offer possibilities for the clinical use of these systems to treat diseases within the oral cavity. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

11 pages, 1231 KiB  
Article
Thickness-Dependent Light Transmittance and Temperature Rise in Dual-Cure Bioactive and Light-Cure Bulk-Fill Composite Resins
by Reema Alharbi, Eid Alharbi, Sanaa N. Al-Haj Ali and Ra’fat I. Farah
Polymers 2023, 15(13), 2837; https://doi.org/10.3390/polym15132837 - 27 Jun 2023
Viewed by 958
Abstract
This study aimed to assess the light transmittance (T) and temperature increase through different increments of dual-cure bioactive bulk-fill restorative material (ACTIVA), light-cure bulk-fill, and conventional composite resin materials. Cylindrical specimens with a diameter of 8 mm and heights of 1, 2, 3, [...] Read more.
This study aimed to assess the light transmittance (T) and temperature increase through different increments of dual-cure bioactive bulk-fill restorative material (ACTIVA), light-cure bulk-fill, and conventional composite resin materials. Cylindrical specimens with a diameter of 8 mm and heights of 1, 2, 3, and 4 mm of ACTIVA, Tetric-N-Ceram bulk-fill (TBF), Filtek One bulk-fill (FBF), and Filtek Z250 (FZ) (n = 6 per group, 96 in total) were light-cured with a visible blue low-intensity light-emitting diode (LED) (650–800 mW/cm2 irradiance). T, and the temperature increase, were measured using an optical power meter and a digital thermometer during curing. The T mean values ranged between 0.012 and 0.239 (76.02 to 98.81% light attenuation), while the temperature rise mean values ranged between 9.02 and 20.80 °C. The parameters, including material type (partial eta squared (ηp2) = 0.284, p < 0.0001), thickness (ηp2 = 0.284, p < 0.0001), and their interaction (ηp2 = 0.185, p = 0.047), significantly affected the T values, whereas only the material type (ηp2 = 0.352, p = 0.047) affected the temperature rise values. The T and temperature rise mean values were highest in ACTIVA increments of 1-mm increments, in particular, showing the highest T mean values, followed by similar increments of TBF. A significantly higher T was found in 1-mm increments compared to thicker increments for all materials (p < 0.0001), and a significant positive correlation existed between T and temperature rise values (r = 0.348, p = 0.001). These findings show that the bioactive material ACTIVA and TBF allow for better T than the other materials, with ACTIVA recording a higher temperature rise. However, the large light attenuation observed for all materials, irrespective of thickness, suggests that curing in more than one location with a low-intensity LED is necessary to optimize the curing process. Furthermore, incremental filling of bulk-fill materials using a low intensity LED could be beneficial. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

14 pages, 7858 KiB  
Article
Development of Light-Polymerized Dental Composite Resin Reinforced with Electrospun Polyamide Layers
by Aleksandra Maletin, Ivan Ristić, Aleksandra Nešić, Milica Jeremić Knežević, Daniela Đurović Koprivica, Suzana Cakić, Dušica Ilić, Bojana Milekić, Tatjana Puškar and Branka Pilić
Polymers 2023, 15(12), 2598; https://doi.org/10.3390/polym15122598 - 07 Jun 2023
Cited by 1 | Viewed by 1158
Abstract
As the mechanical properties of resin-based dental composite materials are highly relevant in clinical practice, diverse strategies for their potential enhancement have been proposed in the extant literature, aiming to facilitate their reliable use in dental medicine. In this context, the focus is [...] Read more.
As the mechanical properties of resin-based dental composite materials are highly relevant in clinical practice, diverse strategies for their potential enhancement have been proposed in the extant literature, aiming to facilitate their reliable use in dental medicine. In this context, the focus is primarily given to the mechanical properties with the greatest influence on clinical success, i.e., the longevity of the filling in the patient’s mouth and its ability to withstand very strong masticatory forces. Guided by these objectives, the goal of the present study was to ascertain whether the reinforcement of dental composite resins with electrospun polyamide (PA) nanofibers would improve the mechanical strength of dental restoration materials. For this purpose, light-cure dental composite resins were interspersed with one and two layers comprising PA nanofibers in order to investigate the influence of such reinforcement on the mechanical properties of the resulting hybrid resins. One set of the obtained samples was investigated as prepared, while another set was immersed in artificial saliva for 14 days and was subsequently subjected to the same set of analyses, namely Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Findings yielded by the FTIR analysis confirmed the structure of the produced dental composite resin material. They also provided evidence that, while the presence of PA nanofibers did not influence the curing process, it strengthened the dental composite resin. Moreover, flexural strength measurements revealed that the inclusion of a 16 μm-thick PA nanolayer enabled the dental composite resin to withstand a load of 3.2 MPa. These findings were supported by the SEM results, which further indicated that immersing the resin in saline solution resulted in a more compact composite material structure. Finally, DSC results indicated that as-prepared as well as saline-treated reinforced samples had a lower glass transition temperature (Tg) compared to pure resin. Specifically, while pure resin had a Tg of 61.6 °C, each additional PA nanolayer decreased the Tg by about 2 °C, while the further reduction was obtained when samples were immersed in saline for 14 days. These results show that electrospinning is a facile method for producing different nanofibers that can be incorporated into resin-based dental composite materials to modify their mechanical properties. Moreover, while their inclusion strengthens the resin-based dental composite materials, it does not affect the course and outcome of the polymerization reaction, which is an important factor for their use in clinical practice. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

12 pages, 1459 KiB  
Article
Microleakage and Marginal Integrity of Ormocer/Methacrylate-Based Bulk-Fill Resin Restorations in MOD Cavities: SEM and Stereomicroscopic Evaluation
by Aslı A. Şenol, Büşra Karabulut Gençer, Bilge Tarçın, Erkut Kahramanoğlu and Pınar Yılmaz Atalı
Polymers 2023, 15(7), 1716; https://doi.org/10.3390/polym15071716 - 30 Mar 2023
Cited by 3 | Viewed by 1818
Abstract
This in vitro study aimed to compare the microleakage and marginal integrity of methacrylate/ormocer-based bulk-fill composite (BFC) restorations used in cervical marginal relocation with two different layering thicknesses in mesio-occlusal-distal (MOD) cavities exposed to thermo-mechanical loading. Standard MOD cavities were prepared in 60 [...] Read more.
This in vitro study aimed to compare the microleakage and marginal integrity of methacrylate/ormocer-based bulk-fill composite (BFC) restorations used in cervical marginal relocation with two different layering thicknesses in mesio-occlusal-distal (MOD) cavities exposed to thermo-mechanical loading. Standard MOD cavities were prepared in 60 mandibular molars and assigned into three groups: x-tra fil/AF + x-tra base/XB, Tetric N-Ceram Bulk Fill/TNB + Tetric N-Flow Bulk Fill/TFB, and Admira Fusion x-tra/AFX + Admira Fusion x-base/AFB. Each group was further divided into two subgroups (2 mm and 4 mm) based on the thickness of flowable BFCs (n = 10). The specimens were subjected to thermo-mechanical loading (240,000 cycles) and immersed in 0.2% methylene blue. Following mesiodistal sectioning, the specimens were examined under stereomicroscope (×25) and scored (0–3) for microleakage. Marginal integrity was examined using a scanning electron microscope (SEM). Descriptive statistical methods and the chi-square test were used to evaluate the data (p < 0.05). While there was no statistically significant difference in gingival cement microleakage in the XB and AFB specimens with a 4 mm thickness, microleakage was significantly increased in the TFB specimen (p = 0.604, 0.481, 0.018 respectively). A significantly higher amount of score 0 coronal microleakage was detected in the AFX2 mm + AFB4 mm compared to the TNB2 mm + TFB4 mm (p = 0.039). The SEM examination demonstrated better marginal integrity in groups with 2 mm thick flowable BFCs. Ormocer and methacrylate-based materials can be used in marginal relocation with thin layers. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

15 pages, 7570 KiB  
Article
Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite
by Paolo Baldissara, Davide Silvestri, Giovanni Maria Pieri, Claudia Mazzitelli, Antonio Arena, Tatjana Maravic and Carlo Monaco
Polymers 2022, 14(23), 5301; https://doi.org/10.3390/polym14235301 - 04 Dec 2022
Cited by 1 | Viewed by 1602
Abstract
This study aims to develop a restorative material having such mechanical and adhesive properties that it can be used both as a reconstruction material and as a luting cement. The experimental core build-up composite (CBC) was derived from a self-adhesive cement by the [...] Read more.
This study aims to develop a restorative material having such mechanical and adhesive properties that it can be used both as a reconstruction material and as a luting cement. The experimental core build-up composite (CBC) was derived from a self-adhesive cement by the modification of its chemical formula, requiring the use of dedicated dentin and ceramic primers. The adhesive properties to zirconia and dentin were analyzed with a micro-Shear Bond Strength test (mSBS). The mechanical properties were analyzed by a flexural strength test. The results were compared with those obtained for other commercially available cements and core build-up materials, both before and after addition of 2 wt.% fluorographene. The CBC obtained average values in the mSBS of 49.7 ± 4.74 MPa for zirconia and 32.2 ± 4.9 MPa for dentin, as well as values of 110.9 ± 9.3 MPa for flexural strength and 6170.8 ± 703.2 MPa for Young’s modulus. The addition of fluorographene, while increasing the Young’s modulus of the core build-up composite by 10%, did not improve the adhesive capabilities of the primers and cement on either zirconia or dentin. The CBC showed adhesive and mechanical properties adequate both for a restoration material and a luting cement. The addition of 2 wt.% fluorographene was shown to interfere with the polymerization reaction of the material, suggesting the need for further studies. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

12 pages, 9304 KiB  
Article
Post-Fatigue Fracture Resistance of Lithium Disilicate and Polymer-Infiltrated Ceramic Network Indirect Restorations over Endodontically-Treated Molars with Different Preparation Designs: An In-Vitro Study
by Allegra Comba, Andrea Baldi, Massimo Carossa, Riccardo Michelotto Tempesta, Eric Garino, Xhuliano Llubani, Davide Rozzi, Julius Mikonis, Gaetano Paolone and Nicola Scotti
Polymers 2022, 14(23), 5084; https://doi.org/10.3390/polym14235084 - 23 Nov 2022
Cited by 22 | Viewed by 1659
Abstract
The aim of the present study was to evaluate the fatigue to cyclic and static resistance of indirect restorations with different preparation designs made either of lithium disilicate (LS) or polymer-infiltrated ceramic network (PICN). Eighty-four (n = 84) molars were chosen, endodontically [...] Read more.
The aim of the present study was to evaluate the fatigue to cyclic and static resistance of indirect restorations with different preparation designs made either of lithium disilicate (LS) or polymer-infiltrated ceramic network (PICN). Eighty-four (n = 84) molars were chosen, endodontically treated, and prepared with standardized MOD cavities. The molars were randomly divided into 6 study groups (n = 14) taking into account the “preparation design’’ (occlusal veneer with 1.2 mm occlusal thickness; overlay with 1.6 mm occlusal thickness; adhesive crown with 2 mm occlusal thickness) and the “CAD/CAM material’’ (E-max CAD, Ivoclar vivadent; Vita Enamic, Vita). A fatigue test was conducted with a chewing simulator set at 50 N for 1,500,000 cycles. Fracture resistance was assessed using a universal testing machine with a 6 mm diameter steel sphere applied to the specimens at a constant speed of 1 mm/min. A SEM analysis before the fracture test was performed to visually analyze the tooth-restoration margins. A statistical analysis was performed with a two-way ANOVA and a post-hoc pairwise comparison was performed using the Tukey test. The two-way ANOVA test showed that both the preparation design factor (p = 0.0429) and the CAD/CAM material factor (p = 0.0002) had a significant influence on the fracture resistance of the adhesive indirect restorations. The interaction between the two variables did not show any significance (p = 0.8218). The occlusal veneer had a lower fracture resistance than the adhesive crown (p = 0.042) but not lower than the overlay preparation (p = 0.095). LS was more resistant than PICN (p = 0.002). In conclusion, in the case of endodontically treated teeth, overlay preparation seems to be a valid alternative to the traditional full crown preparation, while occlusal veneers should be avoided in restoring non-vital molars with a high loss of residual tooth structure. LS material is more resistant compared to PICN. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

16 pages, 681 KiB  
Article
Assessment of Micro-Hardness, Degree of Conversion, and Flexural Strength for Single-Shade Universal Resin Composites
by Pınar Yılmaz Atalı, Bengü Doğu Kaya, Aybike Manav Özen, Bilge Tarçın, Ayşe Aslı Şenol, Ezgi Tüter Bayraktar, Bora Korkut, Gülçin Bilgin Göçmen, Dilek Tağtekin and Cafer Türkmen
Polymers 2022, 14(22), 4987; https://doi.org/10.3390/polym14224987 - 17 Nov 2022
Cited by 11 | Viewed by 2842
Abstract
Single-shade universal resin composites (SsURC) are preferred in clinical practice to reduce time for shade selection and obtain good esthetic results. In this study, the static mechanical properties of seven new SsURCs were investigated, their spectral analyzes were performed and scanning electron microscopy [...] Read more.
Single-shade universal resin composites (SsURC) are preferred in clinical practice to reduce time for shade selection and obtain good esthetic results. In this study, the static mechanical properties of seven new SsURCs were investigated, their spectral analyzes were performed and scanning electron microscopy (SEM) evaluations were presented. Charisma Diamond One/DO, Admira Fusion x-tra/AFX, Omnichroma/OC, OptiShade/OS, Essentia Universal/EU, Zenchroma/ZC, Vittra APS Unique/VU were used in a three-point bending test to determine flexural strength (FS) and elastic modulus (EM); Vickers micro-hardness (VHN) and hardness-ratio (HR) were performed with a micro-hardness tester from top/bottom after 24-h/15-days of storage in distilled water at 37 °C (±1 °C). The degree of conversion (DC) was assessed by using Fourier transform infrared spectroscopy (FTIR). The structure of the resin matrix and filler content were assessed by SEM. Data were analyzed using IBM SPSS V23 and the R program and the significance level was taken as p < 0.05. The main effect of the tested SsURCs was found to be statistically significant on FS, EM, VHN, and DC values (p < 0.001). Bis-GMA free SsURCs (AFX, DO, VU) showed better DC and HR except for OC. All seven tested SsURCs conform to the requirements of ISO standards for dental resin composites for all tested categories. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

9 pages, 4442 KiB  
Article
Antibacterial Effect of Triazine in Barrier Membranes with Therapeutic Activity for Guided Bone Regeneration
by Gabriela de Souza Balbinot, Cassiano Mendes Nobre do Espírito Santo, Vicente Castelo Branco Leitune, Fernanda Visioli, Rosane Michele Duarte Soares, Salvatore Sauro and Fabricio Mezzomo Collares
Polymers 2022, 14(21), 4482; https://doi.org/10.3390/polym14214482 - 23 Oct 2022
Cited by 3 | Viewed by 1350
Abstract
Objective: This study aimed to develop polymer-based barrier membranes based on poly(butylene-adipate-co-terephthalate) (PBAT) with the addition of 1,3,5-triacriloilhexahydro-1,3,5-triazine (TAT). Materials and Methods: Polymeric solutions were used to produce membranes with 5 wt% and 10 wt% of TAT by solvent casting. Membranes without the [...] Read more.
Objective: This study aimed to develop polymer-based barrier membranes based on poly(butylene-adipate-co-terephthalate) (PBAT) with the addition of 1,3,5-triacriloilhexahydro-1,3,5-triazine (TAT). Materials and Methods: Polymeric solutions were used to produce membranes with 5 wt% and 10 wt% of TAT by solvent casting. Membranes without the addition of TAT were used as controls. The membranes were chemically characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA); surface properties were assessed by profilometry and contact angle; the mechanical behavior was evaluated by a tensile test, and the biological properties were assessed by direct–indirect cell viability and antibacterial activity by S. mutans and S. aureus colony-forming units. Results: TAT was detected in the FTIR and TGA analyses and modified the top surface of the membranes, increasing their roughness and wetness in both concentrations compared to the control group (p < 0.05). The addition of TAT, regardless of concentration, reduced the tensile strength and increased membrane stiffness (p < 0.05). The cell viability of 5 wt% TAT and 10 wt% TAT was 86.37% and 82.36%, respectively. All tested concentrations reduced the formation of biofilm on the membranes when compared to the control. Conclusion: The addition of TAT successfully resulted in the antimicrobial ability of PBAT-based barrier membranes, while it maintained acceptable levels of cell viability in membranes with adequate handling and surface properties. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

15 pages, 5622 KiB  
Article
In Situ Zymography Analysis of Matrix Metalloproteinases Activity Following Endodontic Irrigation Protocols and Correlation to Root Dentine Bond Strength
by Abayomi Omokeji Baruwa, Claudia Mazzitelli, Tatjana Maravic, Jorge N. R. Martins, Annalisa Mazzoni and António Ginjeira
Polymers 2022, 14(17), 3567; https://doi.org/10.3390/polym14173567 - 30 Aug 2022
Cited by 4 | Viewed by 1633
Abstract
The objective was to evaluate the effect of different root canal irrigating solutions on the activity of matrix metalloproteinases (MMPs), and correlation to the push-out bond strength (PBS) and nanoleakage expression (NL) in the root dentin. Seventy-two single-rooted teeth were treated endodontically and [...] Read more.
The objective was to evaluate the effect of different root canal irrigating solutions on the activity of matrix metalloproteinases (MMPs), and correlation to the push-out bond strength (PBS) and nanoleakage expression (NL) in the root dentin. Seventy-two single-rooted teeth were treated endodontically and distributed into four groups (n = 6 for in-situ zymography, n = 10 for PBS, and n = 2 for NL per group) according to the irrigating solutions used: (I) saline (S); (II) 5.25% sodium hypochlorite (SH); (III) 5.25% SH + 10% citric acid (CA); and (IV) 5.25% SH + 10% CA + 0.2% chlorhexidine (CHX). After root canal obturation, post space was prepared to receive the glass fiber post. Dual-cure resin was used for luting and light polymerization was performed. The root/fiber post assemblies were sectioned and subjected to in situ zymography, and PBS and NL expression analysis tests. The enzymatic activity was quantified and expressed as a percentage of the green fluorescence, while fractographic evaluation was performed after PBS with a stereomicroscope, and data were statistically analyzed at p < 0.05. The zymography analysis shows high expression of MMPs in the middle third of the root in all groups, while the most abundant activity of MMPs following the irrigating solutions is observed in groups I and III, where saline and citric acid are used, respectively. Inversely, group IV, where chlorhexidine is the final rinse, records the lowest MMP activity with the highest PBS, and the statistical analysis of the groups are ranked as: IV > II > III > I (p < 0.05). The combination of SH, CA, and CHX results in lower expression of MMPs and higher push-out bond strength of fiber posts to root dentin, with no difference seen in the nanoleakage expression (p > 0.05); hence, this irrigation regime with chlorhexidine as a final rinse is more favorable than other combinations in ensuring optimal adhesion to root dentine. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

12 pages, 900 KiB  
Article
Does the Application of Additional Hydrophobic Resin to Universal Adhesives Increase Bonding Longevity of Eroded Dentin?
by Graça Maria Abreu Pereira de Brito, Daniella Oliveira Silva, Rayssa Ferreira Cavaleiro Macedo, Michel Wendlinger Cantanhede Ferreira, Jose Bauer, Flavia de Brito Pedroso, Alessandra Reis, Fabiana Suelen Figuerêdo Siqueira, Alessandro Dourado Loguercio and Andres Felipe Millan Cardenas
Polymers 2022, 14(13), 2701; https://doi.org/10.3390/polym14132701 - 30 Jun 2022
Cited by 3 | Viewed by 1976
Abstract
This paper evaluates the effect of an additional hydrophobic resin coat (extra HL) associated with universal adhesives on sound and eroded dentin and evaluated immediately or after 2 years of water storage to improve the microtensile bond strength (μTBS) and nanoleakage (NL) when [...] Read more.
This paper evaluates the effect of an additional hydrophobic resin coat (extra HL) associated with universal adhesives on sound and eroded dentin and evaluated immediately or after 2 years of water storage to improve the microtensile bond strength (μTBS) and nanoleakage (NL) when compared to the use of universal adhesives only. Sixty-four molars were assigned to eight groups using the following combinations: 1. dentin substrate, including sound and eroded dentin; 2. treatment, including the control and extra HL and storage time (immediately and after two-years of storage). Two universal adhesives (Prime & Bond Active or Scotchbond Universal) were evaluated. Before restoration, half of the teeth were subjected to soft-drink erosion. Composite buildups were bonded; specimens were stored (37 °C/24 h), sectioned into resin–dentin bonded sticks and tested for microtensile bond strength and nanoleakage using SEM (immediately and after two-years of storage). Three-way ANOVA and Tukey’s test (α = 0.05%) were used. In the immediate testing, the application of extra HL did not increase microtensile bond strength values compared with the control group in either substrate (p > 0.05). However, extra HL significantly decreased nanoleakage values when applied to eroded and sound dentin (p = 0.0001). After two years, the application of extra HL produced significantly higher microtensile bond strength and lower nanoleakage values than the control group for both adhesives (p = 0.0001). In all cases, sound dentin showed higher microtensile bond strength and lower nanoleakage values than eroded dentin (p = 0.000001). An extra HL increased the bond strength and reduced nanoleakage in eroded dentin after two-years of storage. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Graphical abstract

13 pages, 3017 KiB  
Article
Mechanical Behavior of Alkasite Posterior Restorations in Comparison to Polymeric Materials: A 3D-FEA Study
by Pietro Ausiello, Amanda Maria de Oliveira Dal Piva, Alessandro Espedito di Lauro, Franklin Garcia-Godoy, Luca Testarelli and João Paulo Mendes Tribst
Polymers 2022, 14(8), 1502; https://doi.org/10.3390/polym14081502 - 07 Apr 2022
Cited by 5 | Viewed by 2128
Abstract
The present investigation evaluated the effect of the combination of different dental filling materials in Class I cavities under occlusal loading using three-dimensional finite elements analysis (FEA). Six computer-generated and restored models of a lower molar were created in the CAD software and [...] Read more.
The present investigation evaluated the effect of the combination of different dental filling materials in Class I cavities under occlusal loading using three-dimensional finite elements analysis (FEA). Six computer-generated and restored models of a lower molar were created in the CAD software and compared according to the biomechanical response during chewing load condition. Two adhesively bonded bulk restorative materials [bulk-fill resin composite (BF) or Alkasite (Alk)] were evaluated with or without the presence of a base material below (flowable resin composite or glass ionomer cement). A food bolus was placed on the occlusal surface mimicking the compressive occlusal load (600 N) during the static linear analysis. The maximum principal stress (tensile) was calculated as stress criteria in enamel, dentin and restoration. All models showed high stresses along the enamel/restoration margin with a similar stress trend for models restored with the same upper-layer material. Stress values up to 12.04 MPa (Alk) or up to 11.12 MPa (BF) were recorded at the enamel margins. The use of flexible polymeric or ionic base material in combination with bulk-fill resin composite or Alk did not reduce the stress magnitude in dentine and enamel. Class I cavities adhesively restored with bulk-fill resin composite showed lighter stress concentration as well as Alk. Therefore, adhesively bonded Alk restoration showed a promising mechanical behavior when used with different base materials or as a bulk restoration for posterior Class I cavity. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 1526 KiB  
Review
Dental Resin-Based Luting Materials—Review
by Aleksandra Maletin, Milica Jeremić Knežević, Daniela Đurović Koprivica, Tanja Veljović, Tatjana Puškar, Bojana Milekić and Ivan Ristić
Polymers 2023, 15(20), 4156; https://doi.org/10.3390/polym15204156 - 19 Oct 2023
Cited by 2 | Viewed by 1892
Abstract
As cementation represents the last stage of the work involved in making various indirect restorations (metal ceramic crowns and bridges, full ceramic crowns and bridges, inlays, onlays, and fiber posts), its quality significantly contributes to the clinical success of the therapy performed. In [...] Read more.
As cementation represents the last stage of the work involved in making various indirect restorations (metal ceramic crowns and bridges, full ceramic crowns and bridges, inlays, onlays, and fiber posts), its quality significantly contributes to the clinical success of the therapy performed. In the last two decades, the demand for ceramic indirect restorations in everyday dental practice has considerably increased primarily due to the growing significance of esthetics among patients, but also as a result of hypersensitivity reactions to dental alloys in some individuals. In this context, it is essential to ensure a permanent and reliable adhesive bond between the indirect restoration and the tooth structure, as this is the key to the success of aesthetic restorations. Resin-based luting materials benefit from excellent optical (aesthetic) and mechanical properties, as well as from providing a strong and durable adhesive bond between the restoration and the tooth. For this reason, resin cements are a reliable choice of material for cementing polycrystalline ceramic restorations. The current dental material market offers a wide range of resin cement with diverse and continually advancing properties. In response, we wish to note that the interest in the properties of resin-based cements among clinicians has existed for many years. Yet, despite extensive research on the subject and the resulting continued improvements in the quality of these materials, there is still no ideal resin-based cement on the market. The manuscript authors were guided by this fact when writing the article content, as the aim was to provide a concise overview of the composition, properties, and current trends, as well as some future guidelines for research in this field that would be beneficial for dental practitioners as well as the scientific community. It is extremely important to provide reliable and succinct information and guidelines for resin luting materials for dental dental practitioners. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

17 pages, 763 KiB  
Review
Color Stability of Polymer-Based Composite CAD/CAM Blocks: A Systematic Review
by Gaetano Paolone, Mauro Mandurino, Francesca De Palma, Claudia Mazzitelli, Nicola Scotti, Lorenzo Breschi, Enrico Gherlone, Giuseppe Cantatore and Alessandro Vichi
Polymers 2023, 15(2), 464; https://doi.org/10.3390/polym15020464 - 16 Jan 2023
Cited by 27 | Viewed by 2645
Abstract
Background: This systematic review aims to evaluate the color stability of resin composite CAD/CAM blocks (CCB) when submitted to staining solutions. Methods: A systematic search was performed on different databases (Embase, Medline, Scopus, Web of Science). Search terms were: ‘polymer infiltrated’, ‘polymer-based’, ‘resin [...] Read more.
Background: This systematic review aims to evaluate the color stability of resin composite CAD/CAM blocks (CCB) when submitted to staining solutions. Methods: A systematic search was performed on different databases (Embase, Medline, Scopus, Web of Science). Search terms were: ‘polymer infiltrated’, ‘polymer-based’, ‘resin nanoceramic’, ‘resin ceramic’, ‘hybrid composite’, ‘hybrid ceramic’, ‘composite ceramic’, ‘resin infiltrated’, ‘CAD-CAM’, ‘CAD/CAM’, ‘color stability’, ‘staining’, ‘staining susceptibility’, ‘color change’, ‘color difference’. Inclusion criteria: in vitro articles published in the English language until 18 September 2022 without initial time restriction evaluating the color stability of CCB when submitted to staining solutions. Exclusion criteria: studies investigating color change induced by smoke or whitening treatments; studies not including a clinical evaluation of the results using the thresholds for color perceptibility and acceptability. Risk of bias assessment using the QUIN tool. Findings: Out of the 378 initially retrieved articles, 19 were included in this review. They investigated 17 different CCBs and different artificial staining by liquid protocols, including coffee, red wine, tea, and cola. CCBs exceeded clinical acceptability thresholds for color shift in 18 out of 19 studies, with a significantly higher color stability than conventional hybrid resin-based composites (RBCs), and a significantly lower color stability than ceramic materials. The identified differences in CCBs in color stability can be attributed to the material’s composition, but also to the heterogeneity of staining procedures. Interpretation and clinical implication: Clinicians should be aware that, although to a lower degree when compared to RBCs used in direct or indirect procedures, CCBs undergo color changes to a higher degree in comparison to ceramic materials. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

17 pages, 856 KiB  
Review
An Insight into Enamel Resin Infiltrants with Experimental Compositions
by Claudia Mazzitelli, Uros Josic, Tatjana Maravic, Edoardo Mancuso, Cecilia Goracci, Milena Cadenaro, Annalisa Mazzoni and Lorenzo Breschi
Polymers 2022, 14(24), 5553; https://doi.org/10.3390/polym14245553 - 19 Dec 2022
Cited by 3 | Viewed by 2183
Abstract
Resin infiltration is a conservative treatment of initial enamel carious lesions. Only one infiltrant material is available on the market (Icon, DMG), and research is now investigating new chemical compositions so as to further exploit the benefits of the resin infiltration technique. A [...] Read more.
Resin infiltration is a conservative treatment of initial enamel carious lesions. Only one infiltrant material is available on the market (Icon, DMG), and research is now investigating new chemical compositions so as to further exploit the benefits of the resin infiltration technique. A literature search of the articles testing the effects of different formulations on mechanical properties, resin penetration ability, remineralizing, and antibacterial activities was conducted. Of 238 articles, 29 resulted in being eligible for the literature review. The formulations investigated were all different and consisted in the inclusion of hydrophobic monomers (i.e., BisEMA, UDMA), solvents (ethanol, HEMA), alternative etchants (PAM) or molecules with antibacterial or bioactivity features (i.e., AgNP, YbF3, MTZ, chitosan, DMAMM, HAp, MC-IL, NACP, PUA, CHX) and microfilled resins. Information on the long-term performances of the tested experimental materials were scarce. The combination of TEGDMA with hydrophobic monomers and the inclusion of a solvent alternative to ethanol reinforced mechanical properties of the materials. Hybrid-glass materials demonstrated an enhanced remineralization capacity. Techniques such as tunnelization increased the penetration depth and preserved the recourse to less-conservative treatments. Combining the min-invasive infiltrant approach with remineralizing and bacteriostatic properties would be beneficial for therapeutic and economical aspects, according to the principles of minimally invasive dentistry. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Graphical abstract

19 pages, 309 KiB  
Review
Biofilm in Endodontics: In Vitro Cultivation Possibilities, Sonic-, Ultrasonic- and Laser-Assisted Removal Techniques and Evaluation of the Cleaning Efficacy
by Uros Josic, Claudia Mazzitelli, Tatjana Maravic, Ales Fidler, Lorenzo Breschi and Annalisa Mazzoni
Polymers 2022, 14(7), 1334; https://doi.org/10.3390/polym14071334 - 25 Mar 2022
Cited by 16 | Viewed by 3628
Abstract
Incomplete and inadequate removal of endodontic biofilm during root canal treatment often leads to the clinical failure. Over the past decade, biofilm eradication techniques, such as sonication of irrigant solutions, ultrasonic and laser devices have been investigated in laboratory settings. This review aimed [...] Read more.
Incomplete and inadequate removal of endodontic biofilm during root canal treatment often leads to the clinical failure. Over the past decade, biofilm eradication techniques, such as sonication of irrigant solutions, ultrasonic and laser devices have been investigated in laboratory settings. This review aimed to give an overview of endodontic biofilm cultivation methods described in papers which investigated sonic-, ultrasonic- and Er:Yag laser-assisted biofilm removal techniques. Furthermore, the effectiveness of these removal techniques was discussed, as well as methods used for the evaluation of the cleaning efficacy. In general, laser assisted agitation, as well as ultrasonic and sonic activation of the irrigants provide a more efficient biofilm removal compared to conventional irrigation conducted by syringe/needle. The choice of irrigant is an important factor for reducing the bacterial contamination inside the root canal, with water and saline being the least effective. Due to heterogeneity in methods among the reviewed studies, it is difficult to compare sonic-, ultrasonic- and Er:Yag laser-assisted techniques among each other and give recommendations for the most efficient method in biofilm removal. Future studies should standardize the methodology regarding biofilm cultivation and cleaning methods, root canals with complex morphology should be introduced in research, with the aim of simulating the clinical scenario more closely. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Back to TopTop