Biodegradable and Natural Polymers

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biomacromolecules, Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (15 February 2023) | Viewed by 58318

Special Issue Editor

Special Issue Information

Dear Colleagues,

Increasing attention to biodegradable, natural polymers rather than those of a synthetic nature has led many scientists to initiate intensive research into the most suitable method for their acquisition. This question has arisen from one particular problem that affects contemporary society, namely, the disposal of rubbish. Certainly, finding where to put all of this trash requires storage space along with utilization treatments, but the most serious problem is the risk that it poses to our health and the environment. The increase in the amount of generated waste is significant, while the processes of the decomposition of synthetic materials in nature are long-lasting. The alternative to this strategy is the use of biodegradable polymer materials, which are safe for humans and the environment.

This Special Issue aims to report on the progress of ground-breaking research in the field of designing innovative polymer composites, especially those that are of natural origin and biodegradable. The subject also includes methods of by-product management in order to obtain polymer composites with innovative functionality and application.

Prof. Dr. Magdalena Krystyjan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rheological properties of polymers
  • innovative biodegradable packaging
  • by-product application
  • food packaging application
  • functional properties of polymers
  • biodegradable polymer materials
  • natural polymers
  • innovative polymers

Related Special Issue

Published Papers (17 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 1162 KiB  
Article
Starch Chemical Composition and Molecular Structure in Relation to Physicochemical Characteristics and Resistant Starch Content of Four Thai Commercial Rice Cultivars Differing in Pasting Properties
by Wichian Sangwongchai, Kanitha Tananuwong, Kuakarun Krusong, Supidcha Natee and Maysaya Thitisaksakul
Polymers 2023, 15(3), 574; https://doi.org/10.3390/polym15030574 - 22 Jan 2023
Cited by 6 | Viewed by 2377
Abstract
Variations in starch pasting properties, considered an alternative potential quality classification parameter for rice starches, are directly controlled by the diverse starch molecular composition and structural features. Here, the starch characteristics of four rice cultivars (i.e., RD57, RD29, KDML105, and RD6) differing in [...] Read more.
Variations in starch pasting properties, considered an alternative potential quality classification parameter for rice starches, are directly controlled by the diverse starch molecular composition and structural features. Here, the starch characteristics of four rice cultivars (i.e., RD57, RD29, KDML105, and RD6) differing in pasting properties were assessed, and their relationship was determined. The results revealed that protein and moisture contents and their crystalline type were similar among the four rice starches. However, their molecular compositions and structures (i.e., reducing sugar and amylose contents, amylopectin branch chain-length distributions, granule size and size distribution, and degree of crystallinity) significantly varied among different genotypes, which resulted in distinct swelling, solubility, gelatinization, retrogradation, and hydrolytic resistance properties. The swelling power and gelatinization enthalpy (∆H) were positively correlated with C-type granule and relative crystallinity, but were negatively correlated with amylose content, B-type granule and median particle size (d(0.5)). Conversely, the water solubility and resistant starch content negatively correlated with C-type granule, but positively correlated with amylose content, B-type granule, and d(0.5). The gelatinization onset temperature (To(g)), and retrogradation concluding temperatures (Tc(r)), enthalpy (∆H(r)), and percentage (R%) were positively impacted by the amount of protein, amylose, and B1 chains (DP 13–24), while they were negatively correlated with short A chains (DP 6–12). Collectively, the starch physicochemical and functional properties of these Thai rice starches are attributed to an interplay between compositional and structural features. These results provide decisive and crucial information on rice cultivars’ suitability for consumption as cooked rice and for specific industrial applications. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Graphical abstract

14 pages, 4371 KiB  
Article
The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability
by Agnieszka Czakaj, Emmanouil Chatzigiannakis, Jan Vermant, Marcel Krzan and Piotr Warszyński
Polymers 2022, 14(24), 5402; https://doi.org/10.3390/polym14245402 - 09 Dec 2022
Cited by 1 | Viewed by 1357
Abstract
Guanidine-based surfactant ethyl lauroyl arginate (LAE) and cellulose nanocrystals (CNCs) form complexes of enhanced surface activity when compared to pure surfactants. The LAE-CNC mixtures show enhanced foaming properties. The dynamic thin-film balance technique (DTFB) was used to study the morphology, drainage and rupture [...] Read more.
Guanidine-based surfactant ethyl lauroyl arginate (LAE) and cellulose nanocrystals (CNCs) form complexes of enhanced surface activity when compared to pure surfactants. The LAE-CNC mixtures show enhanced foaming properties. The dynamic thin-film balance technique (DTFB) was used to study the morphology, drainage and rupture of LAE-CNC thin liquid films under constant driving pressure. A total of three concentrations of surfactant and the corresponding mixtures of LAE with sulfated (sCNC) and carboxylated (cCNC) cellulose nanocrystals were studied. The sCNC and cCNC suspension with LAE formed thin films, with stability increasing with surfactant concentration and with complex rheological properties. In the presence of LAE, the aggregation of CNC was observed. While the sCNC aggregates were preferentially present in the film volume with a small fraction at the surface, the cCNC aggregates, due to their higher hydrophobicity, were preferentially located at film interfaces, forming compact layers. The presence of both types of aggregates decreased the stability of the thin liquid film compared to the one for the LAE solution with the same concentration. The addition of CNC to LAE was critical for foam formation, and foam stability was in qualitative agreement with the thin films’ lifetimes. The foam volume increased with the LAE concentration. However, there was an optimum surfactant concentration to achieve stable foam. In particular, the very resistant foam was obtained with cCNC suspensions that formed the interfaces with a complex structure and rheology. On the other hand, at high LAE concentrations, the aggregates of CNC may exhibit antifoaming properties Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

10 pages, 2015 KiB  
Article
Relation of Chemical Composition and Colour of Spruce Wood
by Viera Kučerová, Richard Hrčka and Tatiana Hýrošová
Polymers 2022, 14(23), 5333; https://doi.org/10.3390/polym14235333 - 06 Dec 2022
Cited by 4 | Viewed by 1270
Abstract
The visual inspection of fresh cut spruce wood (Picea abies, L. Karst.) showed the variability of its colour. Wood visual inspection is a part of wood quality assessment, for example, prior to or after its processing. The detail spruce wood colour [...] Read more.
The visual inspection of fresh cut spruce wood (Picea abies, L. Karst.) showed the variability of its colour. Wood visual inspection is a part of wood quality assessment, for example, prior to or after its processing. The detail spruce wood colour analysis was performed using spectrophotometric data. The colour was measured by the bench-top spectrophotometer CM-5 Konica Minolta. The spectrophotometer was calibrated with a built-in white standard and on air. The whole analysis was performed in an xy chromaticity diagram supplemented with coordinate Y and CIE L*a*b* colour spaces. The ratio of the white chromophore amount to the amount of all achromatic chromophores is related to the Y coordinate. The ratio of the chromatic chromophore amount to all chromophores amount is saturation. The constructed model of the spruce wood colour is composed of four chromophores. The white chromophore belongs to holocellulose. The black chromophore belongs to lignin. The saturation is influenced by two chromophores. One of them belongs to extractives, another to lignin. The amounts of chromophores correlated with the spruce wood chemical composition. The chemical composition was measured using the procedures of Seifert, Wise, Sluiter, and ASTM. Moreover, the wood colour is affected by the moisture content. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

19 pages, 3180 KiB  
Article
Characteristics and Properties of Acid- and Pepsin-Solubilized Collagens from the Tail Tendon of Skipjack Tuna (Katsuwonus pelamis)
by Sagun Chanmangkang, Sutee Wangtueai, Nantipa Pansawat, Pramvadee Tepwong, Atikorn Panya and Jirawan Maneerote
Polymers 2022, 14(23), 5329; https://doi.org/10.3390/polym14235329 - 06 Dec 2022
Cited by 2 | Viewed by 2074
Abstract
The tail tendons of skipjack tuna (Katsuwonus pelamis), a by-product from the meat-separation process in canned-tuna production, was used as an alternative source of collagen extraction. The acid-solubilized collagens using vinegar (VTC) and acetic-acid (ATC) extraction and pepsin-solubilized collagen (APTC) were [...] Read more.
The tail tendons of skipjack tuna (Katsuwonus pelamis), a by-product from the meat-separation process in canned-tuna production, was used as an alternative source of collagen extraction. The acid-solubilized collagens using vinegar (VTC) and acetic-acid (ATC) extraction and pepsin-solubilized collagen (APTC) were extracted from tuna-tail tendon. The physiochemical properties and characteristics of those collagens were investigated. The obtained yield of VTC, ATC, and APTC were 7.88 ± 0.41, 8.67 ± 0.35, and 12.04 ± 0.07%, respectively. The determination of protein-collagen solubility, the effect of pH and NaCl on collagen solubility, Fourier-transform infrared spectroscopy (FTIR) spectrum, and microstructure of the collagen-fibril surface using a scanning electron microscope (SEM) were done. The protein solubility of VTC, ATC, and APTC were 0.44 ± 0.03, 0.52 ± 0.07, and 0.67 ± 0.12 mg protein/mg collagen. The solubility of collagen decreased with increasing of NaCl content. These three collagens were good solubility at low pH with the highest solubility at pH 5. The FTIR spectrum showed absorbance of Amide A, Amide B, Amide I, Amide II, and Amide III groups as 3286–3293 cm−1, 2853–2922 cm−1, 1634–1646 cm−1, 1543–1544 cm−1, and 1236–1237 cm−1, respectively. The SEM analysis indicated a microstructure of collagen surface as folding of fibril with small pore. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Graphical abstract

19 pages, 2799 KiB  
Article
Hydrophobisation of Silica Nanoparticles Using Lauroyl Ethyl Arginate and Chitosan Mixtures to Induce the Foaming Process
by Marcel Krzan, Ewelina Jarek, Hristina Petkova, Eva Santini, Lilianna Szyk-Warszynska, Francesca Ravera, Libero Liggieri, Elena Mileva and Piotr Warszynski
Polymers 2022, 14(19), 4076; https://doi.org/10.3390/polym14194076 - 28 Sep 2022
Cited by 1 | Viewed by 1613
Abstract
We studied silica suspensions with chitosan and biodegradable synthetic surfactant lauroyl ethyl arginate (LAE). Hydrophilic and negatively charged silica nanoparticles were neutralised due to the coating with chitosan. That presence of LAE led to the partial hydrophobisation of their surface, which favoured their [...] Read more.
We studied silica suspensions with chitosan and biodegradable synthetic surfactant lauroyl ethyl arginate (LAE). Hydrophilic and negatively charged silica nanoparticles were neutralised due to the coating with chitosan. That presence of LAE led to the partial hydrophobisation of their surface, which favoured their attachment to the surface of a thin foam film. It was found that the presence of small and medium-sized (6–9 nm) hydrophobic particles in the interfacial layer of lamella foam film inhibited the coalescence and coarsening processes, which prolonged the life of the foam. Furthermore, hydrophobising of 30 nm particles allowed the formation of large aggregates precipitating from the mixture under steady-state conditions. These aggregates, however, under the conditions of the dynamic froth flotation process in the foam column, were floated into the foam layer. As a result, they were trapped in the foam film and Plateau borders, effectively preventing liquid leakage out of the foam. These results demonstrate the efficiency of using chitosan-LAE mixtures to remove silica nanoparticles from aqueous phase by foaming and flotation. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

14 pages, 2901 KiB  
Article
Preparation and Physicochemical Properties of Modified Corn Starch–Chitosan Biodegradable Films
by Enrique Javier Jiménez-Regalado, Carolina Caicedo, Abril Fonseca-García, Claudia Cecilia Rivera-Vallejo and Rocio Yaneli Aguirre-Loredo
Polymers 2021, 13(24), 4431; https://doi.org/10.3390/polym13244431 - 17 Dec 2021
Cited by 19 | Viewed by 2915
Abstract
Starch is a biopolymer with enormous potential for generating new biodegradable packages due to its easy availability and low cost. However, due to its weak functional properties, limitation of its interaction with some hydroxyl groups and evaluation of blends with other polymers are [...] Read more.
Starch is a biopolymer with enormous potential for generating new biodegradable packages due to its easy availability and low cost. However, due to its weak functional properties, limitation of its interaction with some hydroxyl groups and evaluation of blends with other polymers are necessary in order to improve its performance. Glycerol-plasticized acetylated corn starch films were developed using the casting method, and the impact of incorporating chitosan (TPS:CH) in various proportions (75:25, 50:50, and 25:75 v/v) was studied in the present research. The effect of chitosan ratios on the physical, mechanical, water-vapor barrier, and thermal properties of the film was studied. Chitosan-protonated amino groups promoted the formation of intermolecular bonds, improving tensile strength, thermal stability, hydrophobicity, water adsorption capacity, and the gas barrier of starch films. The results show that the film composed of TPS25-CH75 proved to be the best barrier to water vapor; thus, these composite films are excellent choices for developing biodegradable packaging for the food industry. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Graphical abstract

18 pages, 2268 KiB  
Article
Physicochemical, Bacteriostatic, and Biological Properties of Starch/Chitosan Polymer Composites Modified by Graphene Oxide, Designed as New Bionanomaterials
by Magdalena Krystyjan, Gohar Khachatryan, Maja Grabacka, Marcel Krzan, Mariusz Witczak, Jacek Grzyb and Liliana Woszczak
Polymers 2021, 13(14), 2327; https://doi.org/10.3390/polym13142327 - 15 Jul 2021
Cited by 37 | Viewed by 3552
Abstract
The application of natural polymer matrices as medical device components or food packaging materials has gained a considerable popularity in recent years, this has occurred in response to the increasing plastic pollution hazard. Currently, constant progress is being made in designing two-component or [...] Read more.
The application of natural polymer matrices as medical device components or food packaging materials has gained a considerable popularity in recent years, this has occurred in response to the increasing plastic pollution hazard. Currently, constant progress is being made in designing two-component or three-component systems that combine natural materials which help to achieve a quality comparable to the purely synthetic counterparts. This study describes a green synthesis preparation of new bionanocomposites consisting of starch/chitosan/graphene oxide (GO), that possess improved biological activities; namely, good tolerability by human cells with concomitant antimicrobial activity. The structural and morphological properties of bionanocomposites were analyzed using the following techniques: dynamic light scattering, scanning and transmission electron microscopy, wettability and free surface energy determination, and Fourier transform infrared spectroscopy. The study confirmed the homogenous distribution of GO layers within the starch/chitosan matrix and their large particle size. The interactions among the components were stronger in thin films. Additionally, differential scanning calorimetry analysis, UV–vis spectroscopy, surface colour measurements, transparency, water content, solubility, and swelling degree of composites were also performed. The mechanical parameters, such as tensile strength and elongation at break (EAB) were measured in order to characterise the functional properties of obtained nanocomposites. The GO additive altered the thermal features of the composites and decreased their brightness. The EAB of composite was improved by the introduction of GO. Importantly, cell-based analyses revealed no toxic effect of the composites on HaCat keratinocytes and HepG2 hepatoma cells, although a pronounced bacteriostatic effect against various strains of pathogenic bacteria was observed. In conclusion, the starch/chitosan/GO nanocomposites reveal numerous useful physicochemical and biological features, which make them a promising alternative for purely synthetic materials. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

24 pages, 6228 KiB  
Article
Analysis of PLA Composite Filaments Reinforced with Lignin and Polymerised-Lignin-Treated NFC
by Diana Gregor-Svetec, Mirjam Leskovšek, Blaž Leskovar, Urška Stanković Elesini and Urška Vrabič-Brodnjak
Polymers 2021, 13(13), 2174; https://doi.org/10.3390/polym13132174 - 30 Jun 2021
Cited by 13 | Viewed by 2603
Abstract
Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated [...] Read more.
Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments’ tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E’) decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E’ was noticed, especially in the glassy state. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

24 pages, 7128 KiB  
Article
Insight into the Surface Properties of Wood Fiber-Polymer Composites
by Klementina Pušnik Črešnar, Marko Bek, Thomas Luxbacher, Mihael Brunčko and Lidija Fras Zemljič
Polymers 2021, 13(10), 1535; https://doi.org/10.3390/polym13101535 - 11 May 2021
Cited by 6 | Viewed by 2761
Abstract
The surface properties of wood fiber (WF) filled polymer composites depend on the filler loading and are closely related to the distribution and orientation in the polymer matrix. In this study, wood fibers (WF) were incorporated into thermoplastic composites based on non-recycled polypropylene [...] Read more.
The surface properties of wood fiber (WF) filled polymer composites depend on the filler loading and are closely related to the distribution and orientation in the polymer matrix. In this study, wood fibers (WF) were incorporated into thermoplastic composites based on non-recycled polypropylene (PP) and recycled (R-PP) composites by melt compounding and injection moulding. ATR-FTIR (attenuated total reflection Fourier transform infrared spectroscopy) measurements clearly showed the propagation of WF functional groups at the surface layer of WF-PP/WF-R-PP composites preferentially with WF loading up to 30%. Optical microscopy and nanoindentation method confirmed the alignment of thinner skin layer of WF-PP/WF-R-PP composites with increasing WF addition. The thickness of the skin layer was mainly influenced by the WF loading. The effect of the addition of WF on modulus and hardness, at least at 30 and 40 wt.%, varies for PP and R-PP matrix. On the other hand, surface zeta potential measurements show increased hydrophilicity with increasing amounts of WF. Moreover, WF in PP/R-PP matrix is also responsible for the antioxidant properties of these composites as measured by DPPH (2,2′-diphenyl-1-picrylhydrazyl) assay. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Graphical abstract

11 pages, 6328 KiB  
Article
Synthesis of New Amino—β-Cyclodextrin Polymer, Cross-Linked with Pyromellitic Dianhydride and Their Use for the Synthesis of Polymeric Cyclodextrin Based Nanoparticles
by Kinga Kozieł, Jakub Łagiewka, Beata Girek, Agnieszka Folentarska, Tomasz Girek and Wojciech Ciesielski
Polymers 2021, 13(8), 1332; https://doi.org/10.3390/polym13081332 - 19 Apr 2021
Cited by 5 | Viewed by 3369
Abstract
New water soluble amino β-cyclodextrin-based polymer was synthesized by reaction between amino cyclodextrin derivatives and pyromellitic anhydride. This experiment presents amino derivatives, which were synthesized by attaching amino groups to β-cyclodextrins (β-CDs) used mono-6-azido-6-deoxy-β-cyclodextrin (β-CD-N3) and triphenylphosphine (Ph3P) in [...] Read more.
New water soluble amino β-cyclodextrin-based polymer was synthesized by reaction between amino cyclodextrin derivatives and pyromellitic anhydride. This experiment presents amino derivatives, which were synthesized by attaching amino groups to β-cyclodextrins (β-CDs) used mono-6-azido-6-deoxy-β-cyclodextrin (β-CD-N3) and triphenylphosphine (Ph3P) in anhydrous N,N-dimethylformamide (DMF). An amino blocking reaction was conducted. The obtained polymer was purified by ultrafiltration. In addition, an attempt was made to create nanospheres by encapsulating the polymer with chitosan (CT) in an acidic condition. For the first time, nanospheres were obtained in the reaction between an amino β-cyclodextrin polymer and chitosan. Scanning electron microscopy (SEM). 1H NMR and ESI-MS methods for confirmation of reaction product and for structural characterization were employed. The differential scanning calorimetry (DSC) studies of polymers were also carried out. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

13 pages, 2500 KiB  
Article
Degradation of Plastics in Simulated Landfill Conditions
by Quecholac-Piña Xochitl, Hernández-Berriel María del Consuelo, Mañón-Salas María del Consuelo, Espinosa-Valdemar Rosa María and Vázquez-Morillas Alethia
Polymers 2021, 13(7), 1014; https://doi.org/10.3390/polym13071014 - 25 Mar 2021
Cited by 16 | Viewed by 6187
Abstract
Different degradable plastics have been promoted as a solution for the accumulation of waste in landfills and the natural environment; in Mexico, the most popular options are oxo-degradable, which degrade in a sequential abiotic–biotic process, and compostable plastics. In this research, high-density polyethylene, [...] Read more.
Different degradable plastics have been promoted as a solution for the accumulation of waste in landfills and the natural environment; in Mexico, the most popular options are oxo-degradable, which degrade in a sequential abiotic–biotic process, and compostable plastics. In this research, high-density polyethylene, oxo-degradable high-density polyethylene, and certified compostable plastic were exposed to simulated landfill conditions in an 854-day-long experiment to assess their degradation. High-density polyethylene showed limited degradation, due mainly to surface erosion, evidenced by a 13% decrease in elongation at break. The pro-oxidant additive in the oxo-degradable plastic increased this loss of mechanical properties to 27%. However, both plastic films kept their physical integrity and high molecular weight by the end of the experiment, evidencing degradation but no biodegradation. While the compostable film fragmented, had a lower molecular weight at the end of the experiment, and decreased the presence of C=O bonds, this degradation took place remarkably slower than expected from a composting process. Results show that oxo-degradable and compostable plastics will not biodegrade readily in landfills. This fact should be known and understood for decision-makers to match the characteristics of the materials to the features of the waste management systems. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

12 pages, 2273 KiB  
Article
Enhancement of Mechanical and Barrier Property of Hemicellulose Film via Crosslinking with Sodium Trimetaphosphate
by Yuelong Zhao, Hui Sun, Biao Yang, Baomin Fan, Huijuan Zhang and Yunxuan Weng
Polymers 2021, 13(6), 927; https://doi.org/10.3390/polym13060927 - 17 Mar 2021
Cited by 14 | Viewed by 2426
Abstract
Hemicellulose is a kind of biopolymer with abundant resources and excellent biodegradability. Owing to its large number of polar hydroxyls, hemicellulose has a good barrier performance to nonpolar oxygen, making this biopolymer promising as food packaging material. Hydrophilic hydroxyls also make the polymer [...] Read more.
Hemicellulose is a kind of biopolymer with abundant resources and excellent biodegradability. Owing to its large number of polar hydroxyls, hemicellulose has a good barrier performance to nonpolar oxygen, making this biopolymer promising as food packaging material. Hydrophilic hydroxyls also make the polymer prone to water absorption, resulting in less satisfied strength especially under humid conditions. Thus, preparation of hemicellulose film with enhanced oxygen and water vapor barrier ability, as well as mechanical strength is still sought after. Herein, sodium trimetaphosphate (STMP) was used as esterification agent to form a crosslinked structure with hemicellulose through esterification reaction to render improved barrier performance by reducing the distance between molecular chains. The thus modified hemicellulose film achieved an oxygen permeability and water vapor permeability of 3.72 cm3 × μm × m−2 × d−1 × kPa−1 and 2.85 × 10−10 × g × m−1 × s−1 × Pa−1, respectively, at the lowest esterification agent addition of 10%. The crosslinked structure also brought good mechanical and thermal properties, with the tensile strength reaching 30 MPa, which is 118% higher than that of the hemicellulose film. Preliminary test of its application in apple preservation showed that the barrier film obtained can effectively slow down the oxidation and dehydration of apples, showing the prospect of application in the field of food packaging. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Graphical abstract

Review

Jump to: Research

36 pages, 6456 KiB  
Review
A Review of Development and Utilization for Edible Fungal Polysaccharides: Extraction, Chemical Characteristics, and Bioactivities
by Yujun Sun, Huaqi He, Qian Wang, Xiaoyan Yang, Shengjuan Jiang and Daobing Wang
Polymers 2022, 14(20), 4454; https://doi.org/10.3390/polym14204454 - 21 Oct 2022
Cited by 11 | Viewed by 2893
Abstract
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Because of their distinctive flavor and exceptional nutritional and medicinal value, they have been a frequent visitor to people’s dining tables and have become a hot [...] Read more.
Edible fungi, commonly known as mushrooms, are precious medicinal and edible homologous gifts from nature to us. Because of their distinctive flavor and exceptional nutritional and medicinal value, they have been a frequent visitor to people’s dining tables and have become a hot star in the healthcare, pharmaceutical, and cosmetics industries. Edible fungal polysaccharides (EFPs) are an essential nutrient for edible fungi to exert bioactivity. They have attracted much attention because of their antioxidant, immunomodulatory, antitumor, hypoglycemic, and hypolipidemic bioactivities. As a result, EFPs have demonstrated outstanding potential over the past few decades in various disciplines, including molecular biology, immunology, biotechnology, and pharmaceutical chemistry. However, the complexity of EFPs and the significant impact of mushroom variety and extraction techniques on their bioactivities prevents a complete investigation of their biological features. Therefore, the authors of this paper thoroughly reviewed the comparison of different extraction methods of EFPs and their advantages and disadvantages. In addition, the molecular weight, monosaccharide composition, and glycosidic bond type and backbone structure of EFPs are described in detail. Moreover, the in vitro and in vivo bioactivities of EFPs extracted by different methods and their potential regulatory mechanisms are summarized. These provide a valuable reference for improving the extraction process of EFPs and their production and development in the pharmaceutical field. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

18 pages, 1971 KiB  
Review
Engineering, Recyclable, and Biodegradable Plastics in the Automotive Industry: A Review
by Horacio Vieyra, Joan Manuel Molina-Romero, Juan de Dios Calderón-Nájera and Alfredo Santana-Díaz
Polymers 2022, 14(16), 3412; https://doi.org/10.3390/polym14163412 - 21 Aug 2022
Cited by 36 | Viewed by 12228
Abstract
The automotive industry has used plastics almost since the beginning. The lightness, flexibility, and many qualities of plastics make them ideal for the automotive industry, reducing cars’ overall weight and fuel consumption. Engineering plastics in this industry belong to the high-performance segment of [...] Read more.
The automotive industry has used plastics almost since the beginning. The lightness, flexibility, and many qualities of plastics make them ideal for the automotive industry, reducing cars’ overall weight and fuel consumption. Engineering plastics in this industry belong to the high-performance segment of non-renewable resources. These plastics exhibit higher properties than commodity plastics. Fortunately, unlike recycled commodity plastics, the super properties and high-performance characteristics make engineering plastics effectively reused after recycling. The substitution of these fossil-fuel-derived plastics adds to the solution of lightweighting, a much-needed solution to waste management, and solves industrial and ecological issues surrounding plastic disposal. All major vehicle manufacturers worldwide use bioplastics and bio-based plastics, including natural-fiber composites and engineering plastics reinforced with natural fibers. Changing the source of plastics to raw materials from renewable resources is the logical approach to sustainability. Thus, high-quality plastics, recycled plastics, bio-based plastics, and biodegradable plastics could be exploited from design, making sustainability an integral concept of mobility development. This review analyzes that switching from fossil-fuel- to renewable-sources-derived plastics is a step toward meeting the current environmental goals for the automotive industry, including electric cars. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

16 pages, 1468 KiB  
Review
Biodegradation of Polymers Used in Oil and Gas Operations: Towards Enzyme Biotechnology Development and Field Application
by Carolina Berdugo-Clavijo, Gabrielle Scheffer, Arindom Sen and Lisa M. Gieg
Polymers 2022, 14(9), 1871; https://doi.org/10.3390/polym14091871 - 03 May 2022
Cited by 5 | Viewed by 3042
Abstract
Linear and crosslinked polymers are commonly used in the oil and gas industry. Guar-derived polymers have been extensively utilized in hydraulic fracturing processes, and recently polyacrylamide and cellulose-based polymers have also found utility. As these polymers are used during various phases of the [...] Read more.
Linear and crosslinked polymers are commonly used in the oil and gas industry. Guar-derived polymers have been extensively utilized in hydraulic fracturing processes, and recently polyacrylamide and cellulose-based polymers have also found utility. As these polymers are used during various phases of the hydraulic fracturing process, they can accumulate at formation fracture faces, resulting in undesired filter cakes that impede oil and gas recovery. Although acids and chemical oxidizers are often added in the fracturing fluids to degrade or ‘break’ polymer filter cakes, the constant use of these chemicals can be hazardous and can result in formation damage and corrosion of infrastructure. Alternately, the use of enzymes is an attractive and environmentally friendly technology that can be used to treat polymer accumulations. While guar-linkage-specific enzyme breakers isolated from bacteria have been shown to successfully cleave guar-based polymers and decrease their molecular weight and viscosity at reservoir conditions, new enzymes that target a broader range of polymers currently used in hydraulic fracturing operations still require research and development for effective application. This review article describes the current state-of-knowledge on the mechanisms and enzymes involved in biodegradation of guar gum, polyacrylamide (and hydrolyzed polyacrylamide), and carboxymethyl cellulose polymers. In addition, advantages and challenges in the development and application of enzyme breaker technologies are discussed. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

20 pages, 699 KiB  
Review
Polysaccharides Composite Materials as Carbon Nanoparticles Carrier
by Magdalena Krystyjan, Gohar Khachatryan, Karen Khachatryan, Marcel Krzan, Wojciech Ciesielski, Sandra Żarska and Joanna Szczepankowska
Polymers 2022, 14(5), 948; https://doi.org/10.3390/polym14050948 - 26 Feb 2022
Cited by 15 | Viewed by 3331
Abstract
Nanotechnology is a dynamically developing field of science, due to the unique physical, chemical and biological properties of nanomaterials. Innovative structures using nanotechnology have found application in diverse fields: in agricultural and food industries, where they improve the quality and safety of food; [...] Read more.
Nanotechnology is a dynamically developing field of science, due to the unique physical, chemical and biological properties of nanomaterials. Innovative structures using nanotechnology have found application in diverse fields: in agricultural and food industries, where they improve the quality and safety of food; in medical and biological sciences; cosmetology; and many other areas of our lives. In this article, a particular attention is focused on carbon nanomaterials, especially graphene, as well as carbon nanotubes and carbon quantum dots that have been successfully used in biotechnology, biomedicine and broadly defined environmental applications. Some properties of carbon nanomaterials prevent their direct use. One example is the difficulty in synthesizing graphene-based materials resulting from the tendency of graphene to aggregate. This results in a limitation of their use in certain fields. Therefore, in order to achieve a wider use and better availability of nanoparticles, they are introduced into matrices, most often polysaccharides with a high hydrophilicity. Such composites can compete with synthetic polymers. For this purpose, the carbon-based nanoparticles in polysaccharides matrices were characterized. The paper presents the progress of ground-breaking research in the field of designing innovative carbon-based nanomaterials, and applications of nanotechnology in diverse fields that are currently being developed is of high interest and shows great innovative potential. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Graphical abstract

16 pages, 10411 KiB  
Review
Biodegradable Binary and Ternary Complexes from Renewable Raw Materials
by Agnieszka Folentarska, Jakub Łagiewka, Magdalena Krystyjan and Wojciech Ciesielski
Polymers 2021, 13(17), 2925; https://doi.org/10.3390/polym13172925 - 30 Aug 2021
Cited by 6 | Viewed by 2446
Abstract
The aim of this paper is to investigate the interactions between polysaccharides with different electrical charges (anionic and neutral starches) and proteins and fats in food ingredients. Another objective is to understand the mechanisms of these systems and the interdependence between their properties [...] Read more.
The aim of this paper is to investigate the interactions between polysaccharides with different electrical charges (anionic and neutral starches) and proteins and fats in food ingredients. Another objective is to understand the mechanisms of these systems and the interdependence between their properties and intermolecular interactions. At present, there are not many studies on ternary blends composed of natural food polymers: polysaccharides of different electrical charge (anionic and neutral starches), proteins and lipids. Additionally, there are no reports concerning what type of interactions between polysaccharide, proteins and lipids exist simultaneously when the components are mixed in different orders. This paper intends to fill this gap. It also presents the application of natural biopolymers in the food and non-food industries. Full article
(This article belongs to the Special Issue Biodegradable and Natural Polymers)
Show Figures

Figure 1

Back to TopTop