Molecular Biology of Plant Growth and Development

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Molecular Biology".

Deadline for manuscript submissions: closed (31 January 2024) | Viewed by 15543

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
Interests: stem cell; plant growth and development; somatic embryogenesis

E-Mail Website1 Website2 Website3
Guest Editor
Department of Biology, University of Pisa, via L. Ghini, 13-56126 Pisa, Italy
Interests: plant hormone crosstalk; plant developmental biology; regulation of biological processes in response to nutrient; regulation of cell differentiation mechanisms

Special Issue Information

Dear Colleagues,

The normal growth and development of plants are affected by their various external environments. Plants have evolved to have significant developmental plasticity to ensure their continuous adaptation to the dynamic environment. In recent years, research has rapidly advanced out understanding of the molecular biology of these processes.

This Special Issue on the molecular biology of plant growth and development aims to showcase our current understanding of this area with a collection of high-quality papers uncovering the molecular and biochemical mechanisms of plant growth and development. In addition, research articles related to improving crop yields and review articles on plant growth and development are also welcome.

Prof. Dr. Yinghua Su
Prof. Dr. Riccardo Di Mambro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • stem cell
  • plant growth and development
  • somatic embryogenesis
  • crop yields

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 3240 KiB  
Article
Optimizing ChIRP-MS for Comprehensive Profiling of RNA-Protein Interactions in Arabidopsis thaliana: A Telomerase RNA Case Study
by Lucie Bozděchová, Anna Rudolfová, Kateřina Hanáková, Miloslava Fojtová and Jiří Fajkus
Plants 2024, 13(6), 850; https://doi.org/10.3390/plants13060850 - 15 Mar 2024
Viewed by 616
Abstract
The current repertoire of methods available for studying RNA-protein interactions in plants is somewhat limited. Employing an RNA-centric approach, particularly with less abundant RNAs, presents various challenges. Many of the existing methods were initially designed for different model systems, with their application in [...] Read more.
The current repertoire of methods available for studying RNA-protein interactions in plants is somewhat limited. Employing an RNA-centric approach, particularly with less abundant RNAs, presents various challenges. Many of the existing methods were initially designed for different model systems, with their application in plants receiving limited attention thus far. The Comprehensive Identification of RNA-Binding Proteins by Mass Spectrometry (ChIRP-MS) technique, initially developed for mammalian cells, has been adapted in this study for application in Arabidopsis thaliana. The procedures have been meticulously modified and optimized for telomerase RNA, a notable example of a low-abundance RNA recently identified. Following these optimization steps, ChIRP-MS can serve as an effective screening method for identifying candidate proteins interacting with any target RNA of interest. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

16 pages, 10272 KiB  
Article
The Sink-Source Relationship in Cucumber (Cucumis sativus L.) Is Modulated by DNA Methylation
by Yudan Wang, Huimin Zhang, Jiawen Gu, Chen Chen, Jiexia Liu, Zhiping Zhang, Bing Hua and Minmin Miao
Plants 2024, 13(1), 103; https://doi.org/10.3390/plants13010103 - 28 Dec 2023
Viewed by 713
Abstract
The optimization of the sink-source relationship is of great importance for crop yield regulation. Cucumber is a typical raffinose family oligosaccharide (RFO)-transporting crop. DNA methylation is a common epigenetic modification in plants, but its role in sink-source regulation has not been demonstrated in [...] Read more.
The optimization of the sink-source relationship is of great importance for crop yield regulation. Cucumber is a typical raffinose family oligosaccharide (RFO)-transporting crop. DNA methylation is a common epigenetic modification in plants, but its role in sink-source regulation has not been demonstrated in RFO-translocating species. Here, whole-genome bisulfite sequencing (WGBS-seq) was conducted to compare the nonfruiting-node leaves (NFNLs) and leaves of fruit setting (FNLs) at the 12th node by removing all female flowers in other nodes of the two treatments. We found considerable differentially methylated genes enriched in photosynthesis and carbohydrate metabolic processes. Comparative transcriptome analysis between FNLs and NFNLs indicated that many differentially expressed genes (DEGs) with differentially methylated regions were involved in auxin, ethylene and brassinolide metabolism; sucrose metabolism; and RFO synthesis pathways related to sink-source regulation. Moreover, DNA methylation levels of six sink-source-related genes in the pathways mentioned above decreased in leaves after 5-aza-dC-2′-deoxycytidine (5-Aza-dC, a DNA methyltransferase inhibitor) treatment on FNLs, and stachyose synthase (CsSTS) gene expression, enzyme activity and stachyose content in RFO synthesis pathway were upregulated, thereby increasing fruit length and dry weight. Taken together, our findings proposed an up-to-date inference for the potential role of DNA methylation in the sink-source relationship, which will provide important references for further exploring the molecular mechanism of DNA methylation in improving the yield of RFO transport plants. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

13 pages, 3706 KiB  
Article
Biochar Decreases Fertilizer Leaching and Promotes Miscanthus Growth in Saline-Alkaline Soil
by Manlin Xu, Qiqi Sun, Qiangbo Liu, Guo He, Congpeng Wang and Kang He
Plants 2023, 12(20), 3649; https://doi.org/10.3390/plants12203649 - 23 Oct 2023
Viewed by 1249
Abstract
Biochar has been widely reported to improve soil conditions and affect plant growth. However, its effectiveness is limited by soil type and production technology. Considering the application effect of biochar in saline alkali soil, there is currently a lack of in-depth mechanism explanations [...] Read more.
Biochar has been widely reported to improve soil conditions and affect plant growth. However, its effectiveness is limited by soil type and production technology. Considering the application effect of biochar in saline alkali soil, there is currently a lack of in-depth mechanism explanations in the research. Therefore, we designed an experiment to explore the effect of biochar on plant growth in saline alkali soil and conducted soil column experiments in a greenhouse environment using composite inorganic fertilizer (NPK). The results showed that biochar significantly affected the distribution of soil nutrient content at different depths, with a significant increase in fertility levels in the surface and middle layers and a decrease in fertility levels in deep soils. Compared to using fertilizers alone, the combined use of biochar and fertilizers further expands the enrichment effect and significantly reduces the leaching of fertilizers into deeper layers. At the same time, the application of biochar also improved soil properties, including an increase in electrical conductivity and organic matter content, as well as an increase in soil enzyme activity. On the other hand, the application of biochar also increases the activity of antioxidant enzymes and the content of osmoregulation substances in plants, reducing the environmental stress that plants are subjected to. Therefore, our results indicate that biochar can reduce the leaching of fertilizers into deep soil layers, improve soil properties, and promotes the growth of Miscanthus in saline alkali soils. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

14 pages, 7000 KiB  
Article
The Maize ZmBES1/BZR1-9 Transcription Factor Accelerates Flowering in Transgenic Arabidopsis and Rice
by Yuan Liu, Hongwanjun Zhang, Wenqi Feng, Xiaolong Lin, Aijun Gao, Yang Cao, Qingqing Yang, Yingge Wang, Wanchen Li, Fengling Fu and Haoqiang Yu
Plants 2023, 12(16), 2995; https://doi.org/10.3390/plants12162995 - 19 Aug 2023
Viewed by 1006
Abstract
In model plants, the BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors play vital roles in regulating growth, development, and stimuli response. However, the roles of maize ZmBES1/BZR1 members are largely unknown. In this research, the ZmBES1/BZR1-9 gene was ectopically expressed in Arabidopsis [...] Read more.
In model plants, the BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors play vital roles in regulating growth, development, and stimuli response. However, the roles of maize ZmBES1/BZR1 members are largely unknown. In this research, the ZmBES1/BZR1-9 gene was ectopically expressed in Arabidopsis and rice for the phenotyping of flowering. We found that the complementation and overexpression of ZmBES1/BZR1-9 in bes1-D mutant and wild type Arabidopsis both resulted in early flowering that was about 10 days shorter than in the untransformed control under long-day conditions. In addition, there was no difference in the rosette leaf number between all transgenic lines and the control. Subsequently, the ZmBES1/BZR1-9 gene was overexpressed in rice. It was found that overexpression lines of rice exhibited early flowering with heading dates that were 8 days shorter compared with untransformed plants. Moreover, the results of RNA-seq and qRT-PCR showed that five flowering-regulated genes, namely At2-MMP, AtPCC1, AtMYB56, AtPELPK1, and AtPRP10, were significantly up-regulated in all complementary and overexpressing lines of Arabidopsis. Meanwhile, the results of RNA-seq showed that 69 and 33 differentially expressed genes (DEGs) were up- and down-regulated in transgenic rice, respectively. Four flowering-related genes, namely OsGA20OX1, OsCCR19, OsBTBN19, and OsRNS4 were significantly up-regulated in transgenic lines. To sum up, our findings demonstrate that ZmBES1/BZR1-9 is involved in controlling flowering and provide insights into further underlying roles of BES1/BZR1s in regulating growth and development in crops. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

12 pages, 2095 KiB  
Article
Effect of Reducing Nitrogen Fertilization and Adding Organic Fertilizer on Net Photosynthetic Rate, Root Nodules and Yield in Peanut
by Guanchu Zhang, Qiangbo Liu, Zhimeng Zhang, Dunwei Ci, Jialei Zhang, Yang Xu, Qing Guo, Manlin Xu and Kang He
Plants 2023, 12(16), 2902; https://doi.org/10.3390/plants12162902 - 09 Aug 2023
Cited by 4 | Viewed by 1340
Abstract
Long-term excessive application of chemical fertilizers can cause many problems, such as soil degradation and environmental pollution. Therefore, we reduced conventional nitrogen fertilization and added organic fertilizers in some cases to investigate the response of photosynthetic characteristics, root nodules and yield on reduced [...] Read more.
Long-term excessive application of chemical fertilizers can cause many problems, such as soil degradation and environmental pollution. Therefore, we reduced conventional nitrogen fertilization and added organic fertilizers in some cases to investigate the response of photosynthetic characteristics, root nodules and yield on reduced nitrogen fertilization. Compared to conventional nitrogen fertilization, the 25% and 35% nitrogen reduction treatments reduced the leaf area index, net photosynthetic rate, 100-fruit weight, 100-kernel weight and the yield of peanut, but had no significant effect on the kernel rate. With constant N fertilizer, adding organic fertilization alone increased leaf area index, chlorophyll, net photosynthetic rate and yield of peanut. In compounded treatments of nitrogen and organic fertilizer, the highest yields were achieved in the 25% N reduction with the 3000 kg/hm−2 organic fertilizer treatment (T3) and the 4500 kg/hm−2 organic fertilizer treatment (T4); furthermore, the net photosynthetic rate, leaf area index, yield and fertilizer contribution were significantly higher in these two treatments than in the conventional fertilizer treatments. Nitrogen fertilizer had significant effects on the quantity and fresh weight of root nodules. Concretely, nitrogen reduction increased the quantity and fresh weight of root nodules of peanut in the early stage of fertility but decreased them in the harvest stage. Nitrogen reduction with an additional organic fertilizer in the late stage of fertility increased the quantity and fresh weight of root nodules of peanut. Considering the property of root nodules was significantly positively correlated with net photosynthetic rate and yield, the arguments above may be the mechanism of the highest yields found in T3 and T4. This work can provide empirical and instructional support for a balanced fertilization strategy in peanut agriculture and high-yielding and efficient cultivation of peanut. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

17 pages, 3605 KiB  
Article
A High-Continuity Genome Assembly of Chinese Flowering Cabbage (Brassica rapa var. parachinensis) Provides New Insights into Brassica Genome Structure Evolution
by Guangguang Li, Ding Jiang, Juntao Wang, Yi Liao, Ting Zhang, Hua Zhang, Xiuchun Dai, Hailong Ren, Changming Chen and Yansong Zheng
Plants 2023, 12(13), 2498; https://doi.org/10.3390/plants12132498 - 29 Jun 2023
Cited by 1 | Viewed by 1435
Abstract
Chinese flowering cabbage (Brassica rapa var. parachinensis) is a popular and widely cultivated leaf vegetable crop in Asia. Here, we performed a high quality de novo assembly of the 384 Mb genome of 10 chromosomes of a typical cultivar of Chinese [...] Read more.
Chinese flowering cabbage (Brassica rapa var. parachinensis) is a popular and widely cultivated leaf vegetable crop in Asia. Here, we performed a high quality de novo assembly of the 384 Mb genome of 10 chromosomes of a typical cultivar of Chinese flowering cabbage with an integrated approach using PacBio, Illumina, and Hi-C technology. We modeled 47,598 protein-coding genes in this analysis and annotated 52% (205.9/384) of its genome as repetitive sequences including 17% in DNA transposons and 22% in long terminal retrotransposons (LTRs). Phylogenetic analysis reveals the genome of the Chinese flowering cabbage has a closer evolutionary relationship with the AA diploid progenitor of the allotetraploid species, Brassica juncea. Comparative genomic analysis of Brassica species with different subgenome types (A, B and C) reveals that the pericentromeric regions on chromosome 5 and 6 of the AA genome have been significantly expanded compared to the orthologous genomic regions in the BB and CC genomes, largely driven by LTR-retrotransposon amplification. Furthermore, we identified a large number of structural variations (SVs) within the B. rapa lines that could impact coding genes, suggesting the functional significance of SVs on Brassica genome evolution. Overall, our high-quality genome assembly of the Chinese flowering cabbage provides a valuable genetic resource for deciphering the genome evolution of Brassica species and it can potentially serve as the reference genome guiding the molecular breeding practice of B. rapa crops. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

13 pages, 5906 KiB  
Article
Compositional Changes in Hydroponically Cultivated Salicornia europaea at Different Growth Stages
by Ariel E. Turcios, Lukas Braem, Camille Jonard, Tom Lemans, Iwona Cybulska and Jutta Papenbrock
Plants 2023, 12(13), 2472; https://doi.org/10.3390/plants12132472 - 28 Jun 2023
Viewed by 1291
Abstract
Abiotic stress conditions, such as salinity, affect plant development and productivity and threaten the sustainability of agricultural production. Salt has been proven to accumulate in soil and water over time as a result of various anthropogenic activities and climatic changes. Species of the [...] Read more.
Abiotic stress conditions, such as salinity, affect plant development and productivity and threaten the sustainability of agricultural production. Salt has been proven to accumulate in soil and water over time as a result of various anthropogenic activities and climatic changes. Species of the genus Salicornia thrive in the most saline environments and have a wide climatic tolerance. They can be found in a variety of subtropical, oceanic, and continental environments. This study aims to establish Salicornia europaea as a novel source of plant-based compounds that can grow in areas unsuitable for other crops. The morphological and compositional changes in the tissues of S. europaea in different consecutive developmental stages have not been investigated so far. Therefore, a comprehensive study of changes during the lifecycle of S. europaea was carried out, following changes in the plant’s composition, including biomass yield, and soluble and insoluble compounds. For this, plants were cultivated in hydroponics for 15 weeks and harvested weekly to analyze biomass production, to determine soluble and insoluble compounds, protein content, and polyphenols. According to the results, glucan, xylan, and lignin increase with plant age, while water extractives decrease. Protein content is higher in young plants, while flavonoid content depends on the phenological stage, decreasing in the early flowering stage and then increasing as plants enter early senescence. Our results can aid in finding the optimal harvesting stage of S. europaea, depending on the component of interest. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

14 pages, 4188 KiB  
Article
Expression of RsPORB Is Associated with Radish Root Color
by Da-Hye Kim, Sun-Hyung Lim and Jong-Yeol Lee
Plants 2023, 12(11), 2214; https://doi.org/10.3390/plants12112214 - 03 Jun 2023
Cited by 1 | Viewed by 1326
Abstract
Radish (Raphanus sativus) plants exhibit varied root colors due to the accumulation of chlorophylls and anthocyanins compounds that are beneficial for both human health and visual quality. The mechanisms of chlorophyll biosynthesis have been extensively studied in foliar tissues but remain [...] Read more.
Radish (Raphanus sativus) plants exhibit varied root colors due to the accumulation of chlorophylls and anthocyanins compounds that are beneficial for both human health and visual quality. The mechanisms of chlorophyll biosynthesis have been extensively studied in foliar tissues but remain largely unknown in other tissues. In this study, we examined the role of NADPH:protochlorophyllide oxidoreductases (PORs), which are key enzymes in chlorophyll biosynthesis, in radish roots. The transcript level of RsPORB was abundantly expressed in green roots and positively correlated with chlorophyll content in radish roots. Sequences of the RsPORB coding region were identical between white (948) and green (847) radish breeding lines. Additionally, virus-induced gene silencing assay with RsPORB exhibited reduced chlorophyll contents, verifying that RsPORB is a functional enzyme for chlorophyll biosynthesis. Sequence comparison of RsPORB promoters from white and green radishes showed several insertions and deletions (InDels) and single-nucleotide polymorphisms. Promoter activation assays using radish root protoplasts verified that InDels of the RsPORB promoter contribute to its expression level. These results suggested that RsPORB is one of the key genes underlying chlorophyll biosynthesis and green coloration in non-foliar tissues, such as roots. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

17 pages, 4045 KiB  
Article
Induction of Axillary Bud Swelling of Hevea brasiliensis to Regenerate Plants through Somatic Embryogenesis and Analysis of Genetic Stability
by Taihua Wang, Jinu Udayabhanu, Xiaochuan Gu, Rizhi Wu, Shichao Xin, Qiuhui Chen, Yuanyuan Zhang, Xianfeng Yang, Suna Peng, Jianmiao Chen and Tiandai Huang
Plants 2023, 12(9), 1803; https://doi.org/10.3390/plants12091803 - 28 Apr 2023
Cited by 2 | Viewed by 2027
Abstract
To overcome rubber tree (RT) tissue culture explant source limitations, the current study aimed to establish a new Hevea brasiliensis somatic embryogenesis (SE) system, laying the technical foundation for the establishment of an axillary-bud-based seedling regeneration system. In this study, in vitro plantlets [...] Read more.
To overcome rubber tree (RT) tissue culture explant source limitations, the current study aimed to establish a new Hevea brasiliensis somatic embryogenesis (SE) system, laying the technical foundation for the establishment of an axillary-bud-based seedling regeneration system. In this study, in vitro plantlets of Hevea brasiliensis Chinese Academy of Tropical Agricultural Sciences 917 (CATAS 917) were used as the experimental materials. Firstly, the optimum conditions for axillary bud swelling were studied; then, the effects of phenology, the swelling time of axillary buds (ABs), and medium of embryogenic callus induction were studied. Plantlets were obtained through somatic embryogenesis. Flow cytometry, inter-simple sequence repeat (ISSR molecular marker) and chromosome karyotype analysis were used to study the genetic stability of regenerated plants along with budding seedlings (BSs) and secondary somatic embryo seedlings (SSESs) as the control. The results show that the rubber tree’s phenology period was mature, and the axillary bud induction rate was the highest in the 2 mg/L 6-benzyladenine (6-BA) medium (up to 85.83%). Later, 3-day-old swelling axillary buds were used as explants for callogenesis and somatic embryogenesis. The callus induction rate was optimum in MH (Medium in Hevea) + 1.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) + 1.5 mg/L 1-naphthalene acetic acid (NAA) + 1.5 mg/L Kinetin (KT) + 70 g/L sucrose (56.55%). The regenerated plants were obtained after the 175-day culture of explants through callus induction, embryogenic callus induction, somatic embryo development, and plant regeneration. Compared with the secondary somatic embryo seedling control, axillary bud regeneration plants (ABRPs) were normal diploid plants at the cellular and molecular level, with a variation rate of 7.74%. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

13 pages, 7114 KiB  
Article
Analysis of the Complete Mitochondrial Genome of the Bitter Gourd (Momordica charantia)
by Yu Niu, Ting Zhang, Muxi Chen, Guoju Chen, Zhaohua Liu, Renbo Yu, Xu Han, Kunhao Chen, Aizheng Huang, Changming Chen and Yan Yang
Plants 2023, 12(8), 1686; https://doi.org/10.3390/plants12081686 - 17 Apr 2023
Cited by 3 | Viewed by 1402
Abstract
Bitter gourd (Momordica charantia L.) is a significant vegetable. Although it has a special bitter taste, it is still popular with the public. The industrialization of bitter gourd could be hampered by a lack of genetic resources. The bitter gourd’s mitochondrial and [...] Read more.
Bitter gourd (Momordica charantia L.) is a significant vegetable. Although it has a special bitter taste, it is still popular with the public. The industrialization of bitter gourd could be hampered by a lack of genetic resources. The bitter gourd’s mitochondrial and chloroplast genomes have not been extensively studied. In the present study, the mitochondrial genome of bitter gourd was sequenced and assembled, and its substructure was investigated. The mitochondrial genome of bitter gourd is 331,440 bp with 24 unique core genes, 16 variable genes, 3 rRNAs, and 23 tRNAs. We identified 134 SSRs and 15 tandem repeats in the entire mitochondrial genome of bitter gourd. Moreover, 402 pairs of repeats with a length greater than or equal to 30 were observed in total. The longest palindromic repeat was 523 bp, and the longest forward repeat was 342 bp. We found 20 homologous DNA fragments in bitter gourd, and the summary insert length was 19,427 bp, accounting for 5.86% of the mitochondrial genome. We predicted a total of 447 potential RNA editing sites in 39 unique PCGs and also discovered that the ccmFN gene has been edited the most often, at 38 times. This study provides a basis for a better understanding and analysis of differences in the evolution and inheritance patterns of cucurbit mitochondrial genomes. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

18 pages, 3819 KiB  
Article
Plant-Programmed Cell Death-Associated Genes Participation in Pinus sylvestris L. Trunk Tissue Formation
by Yulia L. Moshchenskaya, Natalia A. Galibina, Kseniya M. Nikerova, Tatiana V. Tarelkina, Maksim A. Korzhenevsky, Irina N. Sofronova, Maria A. Ershova and Ludmila I. Semenova
Plants 2022, 11(24), 3438; https://doi.org/10.3390/plants11243438 - 09 Dec 2022
Cited by 2 | Viewed by 1504
Abstract
Molecular genetic markers of various PCD (programmed cell death) variants during xylo- and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process. Gene profiles [...] Read more.
Molecular genetic markers of various PCD (programmed cell death) variants during xylo- and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process. Gene profiles of serine and cysteine proteases (endopeptidases), endonucleases, and metacaspases families are often considered markers of the final xylogenesis stage. In the present study, we examined the gene expression profiles of the BFN (bifunctional endonuclease) family—BFN, BFN1, BFN2, BFN3, and peptidase (cysteine endopeptidase, CEP and metacaspase, MC5) in the radial row, in addition to the vascular phloem and cambium (F1), differentiating xylem (F2), sapwood (SW), and transition zone during the active cambial growth period of uneven-aged pine trees (25-, 63- and 164-cambial age (c.a.) years old). We have shown that the expression patterns of the PCD-related genes did not depend on the cambial age but were largely determined by plant tissue type. In the radial row F1-F2-SW, we studied the activities of enzymes, including sucrose in metabolism (sucrose synthase, three forms of invertase); antioxidant system (AOS) enzymes (superoxide dismutase, catalase); and peroxidase andpolyphenol oxidase, which belonged to AOS enzymes and were involved in the synthesis of phenolic components of cell walls. The activity of the enzymes indicated that the trunk tissues of pine trees had varying metabolic status. Molecular genetic PCD regulation mechanisms during xylem vascular and mechanical element formation and parenchyma cells’ PCD during the formation of Scots pine heartwood were discussed. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

9 pages, 583 KiB  
Article
Non-Authenticity of Spring Barley Genotypes Revealed in Gene Bank Accessions
by Antonín Dreiseitl and Marta Zavřelová
Plants 2022, 11(22), 3059; https://doi.org/10.3390/plants11223059 - 11 Nov 2022
Viewed by 816
Abstract
Plant research and breeding depends on plant genotypes; therefore, genotype authenticity of accessions is the basic requirement for users of gene banks. Surprisingly, this extremely important topic is rarely reported in the scientific community. Non-authentic are accessions that are mislabelled and undesirable genotypes [...] Read more.
Plant research and breeding depends on plant genotypes; therefore, genotype authenticity of accessions is the basic requirement for users of gene banks. Surprisingly, this extremely important topic is rarely reported in the scientific community. Non-authentic are accessions that are mislabelled and undesirable genotypes of heterogeneous accessions. In barley, we try to uncover both named problems on the basis of postulated major powdery mildew resistance genes. These are diverse, environmentally stable and their use is well documented and suitable for genotype characterization. In this contribution, we postulate resistance genes in 15 varieties represented by 157 derived lines of 32 accessions originating from seven foreign gene banks and compare these findings with previous results including those 15 identically labelled varieties from our domestic gene bank. We found that 37.5% of the gene bank accessions investigated herein were heterogeneous, and at least 20.0% were mislabelled. A large-scale molecular characterisation of varieties is now being carried out, and using authentic varieties must be one of the key requirements. Therefore, accessions of each variety from a minimum of three gene banks whose identity has been verified by reliable methods should be compared before starting new experiments. These will involve molecular varietal characterisation to serve as a foundation for future plant science research and effective crop improvement. Full article
(This article belongs to the Special Issue Molecular Biology of Plant Growth and Development)
Show Figures

Figure 1

Back to TopTop