Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2136 KiB  
Article
Nutrients, Phytic Acid and Bioactive Compounds in Marketable Pulses
by Lovro Sinkovič, Barbara Pipan, Filip Šibul, Ivana Nemeš, Aleksandra Tepić Horecki and Vladimir Meglič
Plants 2023, 12(1), 170; https://doi.org/10.3390/plants12010170 - 30 Dec 2022
Cited by 13 | Viewed by 3091
Abstract
Pulses are edible seeds of plants belonging to the legume family, which are of great importance for human and animal nutrition. In this study, several nutrients, antinutrients and bioactive compounds were quantified in the seeds of ten pulses, i.e., common and runner beans, [...] Read more.
Pulses are edible seeds of plants belonging to the legume family, which are of great importance for human and animal nutrition. In this study, several nutrients, antinutrients and bioactive compounds were quantified in the seeds of ten pulses, i.e., common and runner beans, field peas, lupins (white, blue and yellow), faba beans, lentils (brown and red) and chickpeas. Homogenised, air-dried seed samples were analysed for various parameters: protein (18.0–43.1%), fat (0.6–18.5%) and phytic acid content (507–2566 mg/100 g dry weight (DW)), phenolic profile (27 phenolic compounds in total) and multi-mineral composition. The analysed phenolic compounds mainly belong to phenolic acids (hydroxybenzoic acids and hydroxycinnamic acids) and/or flavonoids (flavones, flavonols and flavanols). Total phenolic content (TPC) ranged from 719 μg/g DW in chickpeas to 5012 μg/g DW in common beans. A total of ten elements belonging to macro- (Mg, P, S, K and Ca) and micro-minerals (Cr, Mn, Fe, Zn and Mo) were determined. Using cluster analysis, pulses were divided into three groups according to the parameters studied: 1. common and runner bean; 2. field pea, white and blue lupin, faba bean, red and brown lentil and chickpea; and 3. yellow lupin. The most varying phytochemicals in terms of their content in the analysed pulses were phytic acid, quinic acid, catechin and TPC. A perfect positive significant Pearson correlation (1.00) was observed for six pairs of variables within the group of phenolic compounds. Full article
(This article belongs to the Special Issue Breeding and Cultivation Management of Legumes)
Show Figures

Figure 1

17 pages, 380 KiB  
Review
Effects of Different Elicitors on Micropropagation, Biomass and Secondary Metabolite Production of Stevia rebaudiana Bertoni—A Review
by Kamelia Miladinova-Georgieva, Maria Geneva, Ira Stancheva, Maria Petrova, Mariana Sichanova and Elisaveta Kirova
Plants 2023, 12(1), 153; https://doi.org/10.3390/plants12010153 - 29 Dec 2022
Cited by 13 | Viewed by 3149
Abstract
Stevia rebaudiana Bertoni is a valuable plant whose products are increasingly used in medicine, pharmacy and the food industry. This necessitates the use of biotechnological approaches for its mass propagation. Establishing optimal conditions for in vitro cultivation is essential for obtaining high biomass [...] Read more.
Stevia rebaudiana Bertoni is a valuable plant whose products are increasingly used in medicine, pharmacy and the food industry. This necessitates the use of biotechnological approaches for its mass propagation. Establishing optimal conditions for in vitro cultivation is essential for obtaining high biomass and secondary metabolites production. A large number of articles considering the role of plant growth regulators and other additives in the culture medium in the growth and development of Stevia are available in the literature. However, there are no summarized data about the use of nanoparticles in Stevia tissue cultures. Therefore, this review also includes the research conducted so far on the effect of nanoparticles on Stevia micropropagation. Furthermore, the influence of different elicitors on secondary metabolite production and antioxidant activity of in vitro-cultivated Stevia plants have been discussed. By referring to the collected literature, we concluded that biotechnological approaches applied to S. rebaudiana cultivation might improve the agronomic traits of plants and steviol glycosides production. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
14 pages, 7176 KiB  
Article
Transcriptome Analysis Identifies Novel Genes Associated with Low-Temperature Seed Germination in Sweet Corn
by Yingni Xiao, Mei Chen, Nannan Zheng, Zhuoyi Xu, Jie Zhang, Xinmin Hu, Li Li, Riliang Gu, Xuemei Du and Jianhua Wang
Plants 2023, 12(1), 159; https://doi.org/10.3390/plants12010159 - 29 Dec 2022
Cited by 3 | Viewed by 1677
Abstract
Typically, sweet corn, particularly sh2 sweet corn, has low seed vigor owing to its high sugar and low starch content, which is a major problem in sweet corn production, particularly at low temperatures. There is considerable variation in the germination rates among sweet [...] Read more.
Typically, sweet corn, particularly sh2 sweet corn, has low seed vigor owing to its high sugar and low starch content, which is a major problem in sweet corn production, particularly at low temperatures. There is considerable variation in the germination rates among sweet corn varieties under low-temperature conditions, and the underlying mechanisms behind this phenomenon remain unclear. In this study, we screened two inbred sweet corn lines (tolerant line L282 and sensitive line L693) differing in their low-temperature germination rates; while no difference was observed in their germination rates at normal temperatures. To identify the specifically induced genes influencing the germination capacity of sweet corn at low temperatures, a transcriptome analysis of the two lines was conducted at both normal and low temperatures. Compared to the lines at a normal temperature, 3926 and 1404 differently expressed genes (DEGs) were identified from L282 and L693, respectively, under low-temperature conditions. Of them, 830 DEGs were common DEGs (cDEGs) that were identified from both L282 and L693, which were majorly enriched in terms of microtubule-based processes, histone H3-K9 modification, single-organism cellular processes, and carbohydrate metabolic processes. In addition, 3096 special DEGs (sDEGs), with 2199 upregulated and 897 downregulated, were detected in the tolerant line L282, but not in the sensitive line L693. These sDEGs were primarily related to plasma membranes and oxygen-containing compounds. Furthermore, electric conductivity measurements demonstrated that the membrane of L282 experienced less damage, which is consistent with its strong tolerance at low temperatures. These results expand our understanding of the complex mechanisms involved in the cold germination of sweet corn and provide a set of candidate genes for further genetic analysis. Full article
Show Figures

Figure 1

15 pages, 1094 KiB  
Review
Wheat Crop under Waterlogging: Potential Soil and Plant Effects
by Isabel P. Pais, Rita Moreira, José N. Semedo, José C. Ramalho, Fernando C. Lidon, José Coutinho, Benvindo Maçãs and Paula Scotti-Campos
Plants 2023, 12(1), 149; https://doi.org/10.3390/plants12010149 - 28 Dec 2022
Cited by 11 | Viewed by 5584
Abstract
Inundation, excessive precipitation, or inadequate field drainage can cause waterlogging of cultivated land. It is anticipated that climate change will increase the frequency, intensity, and unpredictability of flooding events. This stress affects 10–15 million hectares of wheat every year, resulting in 20–50% yield [...] Read more.
Inundation, excessive precipitation, or inadequate field drainage can cause waterlogging of cultivated land. It is anticipated that climate change will increase the frequency, intensity, and unpredictability of flooding events. This stress affects 10–15 million hectares of wheat every year, resulting in 20–50% yield losses. Since this crop greatly sustains a population’s food demands, providing ca. 20% of the world’s energy and protein diets requirements, it is crucial to understand changes in soil and plant physiology under excess water conditions. Variations in redox potential, pH, nutrient availability, and electrical conductivity of waterlogged soil will be addressed, as well as their impacts in major plant responses, such as root system and plant development. Waterlogging effects at the leaf level will also be addressed, with a particular focus on gas exchanges, photosynthetic pigments, soluble sugars, membrane integrity, lipids, and oxidative stress. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

25 pages, 19514 KiB  
Article
Effects of Long-Term Use of Organic Fertilizer with Different Dosages on Soil Improvement, Nitrogen Transformation, Tea Yield and Quality in Acidified Tea Plantations
by Jianghua Ye, Yuhua Wang, Jiaqian Kang, Yiling Chen, Lei Hong, Mingzhe Li, Yun Jia, Yuchao Wang, Xiaoli Jia, Zeyan Wu and Haibin Wang
Plants 2023, 12(1), 122; https://doi.org/10.3390/plants12010122 - 26 Dec 2022
Cited by 14 | Viewed by 2829
Abstract
In this study, sheep manure fertilizers with different dosages were used for five consecutive years to treat acidified tea plantation soils, and the effects of sheep manure fertilizer on soil pH value, nitrogen transformation, and tea yield and quality were analyzed. The results [...] Read more.
In this study, sheep manure fertilizers with different dosages were used for five consecutive years to treat acidified tea plantation soils, and the effects of sheep manure fertilizer on soil pH value, nitrogen transformation, and tea yield and quality were analyzed. The results showed that soil pH value showed an increasing trend after a continuous use of sheep manure fertilizer from 2018 to 2022. After the use of low dosage of sheep manure fertilizer (6 t/hm2–15 t/hm2), tea yield, the content of tea quality indicators (tea polyphenols, theanine, amino acid, and caffeine) and soil ammonium nitrogen content, ammoniating bacteria number, ammoniating intensity, urease activity and protease activity showed increasing trends and were significantly and positively correlated to soil pH value, while the related indexes showed increasing and then decreasing trends after the use of high dosage of sheep manure fertilizer (18 t/hm2). Secondly, the nitrate nitrogen content, nitrifying bacteria number, nitrifying intensity, nitrate reductase activity, and nitrite reductase activity showed decreasing trends after the use of low dosage of sheep manure fertilizer and showed significant negative correlations with soil pH value, while the related indexes showed decreasing trends after the use of high dosage of sheep manure and then increased. The results of principal component and interaction analysis showed that the effects of sheep manure fertilizers with different dosages on tea yield and quality were mainly based on the transformation ability of ammonium nitrogen and nitrate nitrogen in the soil, and the strong transformation ability of ammonium nitrogen and the high ammonium nitrogen content in the soil were conducive to the improvement of tea yield and quality, and vice versa. The results of topsis comprehensive evaluation and analysis showed that the most influential effect on the fertilization effect was the ammonium nitrogen content in the soil and long-term treatment with 15 t/hm2 of sheep manure fertilizer had the highest proximity to the best fertilization effect. This study provided an important practical basis for the remediation and fertilizer management in acidified tea plantation soils. Full article
(This article belongs to the Special Issue Tea Plants Response to Abiotic Stress)
Show Figures

Figure 1

11 pages, 751 KiB  
Article
Water Deficit-Induced Changes in Phenolic Acid Content in Maize Leaves Is Associated with Altered Expression of Cinnamate 4-Hydroxylase and p-Coumaric Acid 3-Hydroxylase
by Zintle Kolo, Anelisa Majola, Kyle Phillips, Ali Elnaeim Elbasheir Ali, Robert E. Sharp and Ndiko Ludidi
Plants 2023, 12(1), 101; https://doi.org/10.3390/plants12010101 - 25 Dec 2022
Cited by 4 | Viewed by 1820
Abstract
The amino acid phenylalanine is a precursor to phenolic acids that constitute the lignin biosynthetic pathway. Although there is evidence of a role of some phenolic acids in plant responses to pathogens and salinity, characterization of the involvement of phenolic acids in plant [...] Read more.
The amino acid phenylalanine is a precursor to phenolic acids that constitute the lignin biosynthetic pathway. Although there is evidence of a role of some phenolic acids in plant responses to pathogens and salinity, characterization of the involvement of phenolic acids in plant responses to drought is limited. Drought reduces water content in plant tissue and can lead to decreased cell viability and increased cell death. We thus subjected maize seedlings to water deficit and evaluated relative water content and cell viability together with p-coumaric acid, caffeic acid and ferulic acid contents in the leaves. Furthermore, we measured the enzymatic activity of cinnamate 4-hydroxylase (EC 1.14.13.11) and p-coumarate 3-hydroxylase (EC 1.14.17.2) and associated these with the expression of genes encoding cinnamate 4-hydroxylase and p-coumarate-3 hydroxylase in response to water deficit. Water deficit reduced relative water content and cell viability in maize leaves. This corresponded with decreased p-coumaric acid but increased caffeic and ferulic acid content in the leaves. Changes in the phenolic acid content of the maize leaves were associated with increased enzymatic activities of cinnamate 4-hydroxylase and p-coumarate hydroxylase. The increased enzymatic activity of p-coumarate 3-hydroxylase was associated with increased expression of a gene encoding p-coumarate 3-hydroxylase. We thus conclude that metabolic pathways involving phenolic acids may contribute to the regulation of drought responses in maize, and we propose that further work to elucidate this regulation may contribute to the development of new maize varieties with improved drought tolerance. This can be achieved by marker-assisted selection to select maize lines with high levels of expression of genes encoding cinnamate 4-hydroxylase and/or p-coumarate 3-hydroxylase for use in breeding programs aimed and improving drought tolerance, or by overexpression of these genes via genetic engineering to confer drought tolerance. Full article
Show Figures

Figure 1

20 pages, 2440 KiB  
Review
A Systematic Review on the Impacts of Climate Change on Coffee Agrosystems
by Christine Bilen, Daniel El Chami, Valentina Mereu, Antonio Trabucco, Serena Marras and Donatella Spano
Plants 2023, 12(1), 102; https://doi.org/10.3390/plants12010102 - 25 Dec 2022
Cited by 12 | Viewed by 7567
Abstract
Coffee production is fragile, and the Intergovernmental Panel on Climate Change (IPCC) reports indicate that climate change (CC) will reduce worldwide yields on average and decrease coffee-suitable land by 2050. This article adopted the systematic review approach to provide an update of the [...] Read more.
Coffee production is fragile, and the Intergovernmental Panel on Climate Change (IPCC) reports indicate that climate change (CC) will reduce worldwide yields on average and decrease coffee-suitable land by 2050. This article adopted the systematic review approach to provide an update of the literature available on the impacts of climate change on coffee production and other ecosystem services following the framework proposed by the Millenium Ecosystem Assessment. The review identified 148 records from literature considering the effects of climate change and climate variability on coffee production, covering countries mostly from three continents (America, Africa, and Asia). The current literature evaluates and analyses various climate change impacts on single services using qualitative and quantitative methodologies. Impacts have been classified and described according to different impact groups. However, available research products lacked important analytical functions on the precise relationships between the potential risks of CC on coffee farming systems and associated ecosystem services. Consequently, the manuscript recommends further work on ecosystem services and their interrelation to assess the impacts of climate change on coffee following the ecosystem services framework. Full article
(This article belongs to the Special Issue Plant Responses to Future Climate Scenarios)
Show Figures

Figure 1

19 pages, 3382 KiB  
Review
Encapsulation with Natural Polymers to Improve the Properties of Biostimulants in Agriculture
by David Jíménez-Arias, Sarai Morales-Sierra, Patrícia Silva, Henrique Carrêlo, Adriana Gonçalves, José Filipe Teixeira Ganança, Nuno Nunes, Carla S. S. Gouveia, Sónia Alves, João Paulo Borges and Miguel Â. A. Pinheiro de Carvalho
Plants 2023, 12(1), 55; https://doi.org/10.3390/plants12010055 - 22 Dec 2022
Cited by 9 | Viewed by 4523
Abstract
Encapsulation in agriculture today is practically focused on agrochemicals such as pesticides, herbicides, fungicides, or fertilizers to enhance the protective or nutritive aspects of the entrapped active ingredients. However, one of the most promising and environmentally friendly technologies, biostimulants, is hardly explored in [...] Read more.
Encapsulation in agriculture today is practically focused on agrochemicals such as pesticides, herbicides, fungicides, or fertilizers to enhance the protective or nutritive aspects of the entrapped active ingredients. However, one of the most promising and environmentally friendly technologies, biostimulants, is hardly explored in this field. Encapsulation of biostimulants could indeed be an excellent means of counteracting the problems posed by their nature: they are easily biodegradable, and most of them run off through the soil, losing most of the compounds, thus becoming inaccessible to plants. In this respect, encapsulation seems to be a practical and profitable way to increase the stability and durability of biostimulants under field conditions. This review paper aims to provide researchers working on plant biostimulants with a quick overview of how to get started with encapsulation. Here we describe different techniques and offer protocols and suggestions for introduction to polymer science to improve the properties of biostimulants for future agricultural applications. Full article
(This article belongs to the Topic Biostimulants in Agriculture)
Show Figures

Figure 1

21 pages, 3111 KiB  
Article
Multiomic Approaches Reveal Hormonal Modulation and Nitrogen Uptake and Assimilation in the Initial Growth of Maize Inoculated with Herbaspirillum seropedicae
by Luiz Eduardo Souza da Silva Irineu, Cleiton de Paula Soares, Tatiane Sanches Soares, Felipe Astolpho de Almeida, Fabrício Almeida-Silva, Rajesh Kumar Gazara, Carlos Henrique Salvino Gadelha Meneses, Luciano Pasqualoto Canellas, Vanildo Silveira, Thiago Motta Venancio and Fabio Lopes Olivares
Plants 2023, 12(1), 48; https://doi.org/10.3390/plants12010048 - 22 Dec 2022
Cited by 8 | Viewed by 2219
Abstract
Herbaspirillum seropedicae is an endophytic bacterium that can fix nitrogen and synthesize phytohormones, which can lead to a plant growth-promoting effect when used as a microbial inoculant. Studies focused on mechanisms of action are crucial for a better understanding of the bacteria-plant interaction [...] Read more.
Herbaspirillum seropedicae is an endophytic bacterium that can fix nitrogen and synthesize phytohormones, which can lead to a plant growth-promoting effect when used as a microbial inoculant. Studies focused on mechanisms of action are crucial for a better understanding of the bacteria-plant interaction and optimization of plant growth-promoting response. This work aims to understand the underlined mechanisms responsible for the early stimulatory growth effects of H. seropedicae inoculation in maize. To perform these studies, we combined transcriptomic and proteomic approaches with physiological analysis. The results obtained eight days after inoculation (d.a.i) showed increased root biomass (233 and 253%) and shoot biomass (249 and 264%), respectively, for the fresh and dry mass of maize-inoculated seedlings and increased green content and development. Omics data analysis, before a positive biostimulation phenotype (5 d.a.i.) revealed that inoculation increases N-uptake and N-assimilation machinery through differentially expressed nitrate transporters and amino acid pathways, as well carbon/nitrogen metabolism integration by the tricarboxylic acid cycle and the polyamine pathway. Additionally, phytohormone levels of root and shoot tissues increased in bacterium-inoculated-maize plants, leading to feedback regulation by the ubiquitin-proteasome system. The early biostimulatory effect of H. seropedicae partially results from hormonal modulation coupled with efficient nutrient uptake-assimilation and a boost in primary anabolic metabolism of carbon–nitrogen integrative pathways. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

28 pages, 4500 KiB  
Article
Pedoclimatic Conditions Influence the Morphological, Phytochemical and Biological Features of Mentha pulegium L.
by Laura Cornara, Federica Sgrò, Francesco Maria Raimondo, Mariarosaria Ingegneri, Luca Mastracci, Valeria D’Angelo, Maria Paola Germanò, Domenico Trombetta and Antonella Smeriglio
Plants 2023, 12(1), 24; https://doi.org/10.3390/plants12010024 - 21 Dec 2022
Cited by 8 | Viewed by 1657
Abstract
In this study, Mentha pulegium leaves and flowers harvested in three different Sicilian areas were investigated from a micromorphological, phytochemical and biological point of view. Light and scanning electron microscopy showed the presence of spherocrystalline masses of diosmin both in the leaf epidermal [...] Read more.
In this study, Mentha pulegium leaves and flowers harvested in three different Sicilian areas were investigated from a micromorphological, phytochemical and biological point of view. Light and scanning electron microscopy showed the presence of spherocrystalline masses of diosmin both in the leaf epidermal cells and in thin flower petals. Two different chemotypes were identified (I, kaempferide/rosmarinic acid; II, jaceidin isomer A). Phytochemical screening identified plant from collection site II as the richest in total phenolics (16.74 g GAE/100 g DE) and that from collection site I as the richest in flavonoids (46.56 g RE/100 g DE). Seventy-seven metabolites were identified both in flower and leaf extracts. Plant from site II showed the best antioxidant (0.90–83.72 µg/mL) and anti-inflammatory (27.44–196.31 µg/mL) activity expressed as half-maximal inhibitory concentration (IC50) evaluated by DPPH, TEAC, FRAP, ORAC, BSA denaturation and protease inhibition assays. These data were also corroborated by in vitro cell-based assays on lymphocytes and erythrocytes. Moreover, plant of site II showed the best antiangiogenic properties (IC50 33.43–33.60 µg/mL) in vivo on a chick chorioallantoic membrane. In conclusion, pedoclimatic conditions influence the chemotype and the biological activity of M. pulegium, with chemotype I showing the most promising biological properties. Full article
(This article belongs to the Special Issue Antioxidant Activity of Medicinal and Aromatic Plants)
Show Figures

Figure 1

13 pages, 4296 KiB  
Article
Antimicrobial, Antibiofilm, and Antioxidant Properties of Essential Oil of Foeniculum vulgare Mill. Leaves
by Michela Di Napoli, Giusy Castagliuolo, Natale Badalamenti, Viviana Maresca, Adriana Basile, Maurizio Bruno, Mario Varcamonti and Anna Zanfardino
Plants 2022, 11(24), 3573; https://doi.org/10.3390/plants11243573 - 17 Dec 2022
Cited by 12 | Viewed by 2175
Abstract
Foeniculum vulgare (Apiaceae) is an aromatic fennel with important practices in medicinal and traditional fields, used in the treatment of digestive complications, and gastrointestinal and respiratory disorders. Its leaves and stems, tender and fresh, are used in the production of pasta dressing and [...] Read more.
Foeniculum vulgare (Apiaceae) is an aromatic fennel with important practices in medicinal and traditional fields, used in the treatment of digestive complications, and gastrointestinal and respiratory disorders. Its leaves and stems, tender and fresh, are used in the production of pasta dressing and main courses, while its seeds, with a strong smell of anise, are excellent flavoring for baked goods, meat dishes, fish, and alcoholic beverages. The aim of this work is concerning the extraction of essential oil (EO) from the leaves of F. vulgare subsp. vulgare var. vulgare, investigating antimicrobial, antibiofilm, and antioxidant efficacy. In particular, GC-MS analysis showed how the chemical composition of EO was influenced by the massive presence of monoterpene hydrocarbons (α-pinene 33.75%) and phenylpropanoids (estragole 25.06%). F. vulgare subsp. vulgare var. vulgare EO shows excellent antimicrobial activity against both Gram-positive and Gram-negative strains. This EO can inhibit biofilm formation at very low concentrations and has a good ability to scavenge oxygen radicals in vitro. F. vulgare subsp. vulgare var. vulgare EO also has an increased activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes and decreased ROS levels in zymosan opsonized PMNs (OZ). Full article
Show Figures

Graphical abstract

20 pages, 4868 KiB  
Article
Dynamics Changes in Basal Area Increment, Carbon Isotopes Composition and Water Use Efficiency in Pine as Response to Water and Heat Stress in Silesia, Poland
by Barbara Sensuła and Sławomir Wilczyński
Plants 2022, 11(24), 3569; https://doi.org/10.3390/plants11243569 - 17 Dec 2022
Cited by 5 | Viewed by 1710
Abstract
Trees can be used as archives of changes in the environment. In this paper, we present the results of the analysis of the impact of water stress and increase in air temperature on BAI and carbon stable isotopic composition and water use efficiency [...] Read more.
Trees can be used as archives of changes in the environment. In this paper, we present the results of the analysis of the impact of water stress and increase in air temperature on BAI and carbon stable isotopic composition and water use efficiency of pine. Dendrochronological methods together with mass spectrometry techniques give a possibility to conduct a detailed investigation of pine growing in four industrial forests in Silesia (Poland). Detailed analysis-based bootstrap and moving correlation between climatic indices (temperature, precipitation, and Standardized Precipitation-Evapotranspiration Index) and tree parameters give the chance to check if the climatic signals recorded by trees can be hidden or modified over a longer period of time. Trees have been found to be very sensitive to weather conditions, but their sensitivity can be modified and masked by the effect of pollution. Scots pine trees at all sites systematically increased the basal area increment (BAI) and the intrinsic water use efficiency (iWUE) and decreased δ13C in the last century. Furthermore, their sensitivity to the climatic factor remained at a relatively high level. Industrial pollution caused a small reduction in the wood growth of pines and an increase in the heterogeneity of annual growth responses of trees. The main factors influencing the formation of wood in the pines were thermal conditions in the winter season and pluvial conditions in the previous autumn, and also in spring and summer in the year of tree ring formation. The impact of thermal and pluvial conditions in the year of tree ring formation has also been reflected in the isotopic composition of tree rings and water use efficiency. Three different scenarios of trees’ reaction link to the reduction of stomata conductance or changes in photosynthesis rate as the response to climate changes in the last 40 years have been proposed. Full article
Show Figures

Figure 1

16 pages, 1814 KiB  
Article
Evaluation of Polyphenolic Composition and Antimicrobial Properties of Sanguisorba officinalis L. and Sanguisorba minor Scop.
by Alexandra-Cristina Tocai (Moţoc), Floricuta Ranga, Andrei George Teodorescu, Annamaria Pallag, Andreea Margareta Vlad, Livia Bandici and Simona Ioana Vicas
Plants 2022, 11(24), 3561; https://doi.org/10.3390/plants11243561 - 16 Dec 2022
Cited by 8 | Viewed by 2928
Abstract
The most widespread Sanguisorba species are Sanguisorba officinalis L. and Sanguisorba minor Scop. which are also found in the Romanian flora and classified as medicinal plants because of hemostatic, antibacterial, antitumor, antioxidant and antiviral activities. This study aimed to characterize and compare Sanguisorba [...] Read more.
The most widespread Sanguisorba species are Sanguisorba officinalis L. and Sanguisorba minor Scop. which are also found in the Romanian flora and classified as medicinal plants because of hemostatic, antibacterial, antitumor, antioxidant and antiviral activities. This study aimed to characterize and compare Sanguisorba species in order to highlight which species is more valuable according to phenolic profile and antimicrobial activity. Based on high-performance liquid chromatography equipped with photodiode array detection and mass spectrometry (electrospray ionization) (HPLC–DAD-MS (ESI+)) analysis, it was evident that the ethanol extract obtained from the leaves of S. minor Scop. contains the highest content of phenolic compounds at 160.96 mg/g p.s., followed by the flower and root extract (131.56 mg/g dw and 121.36 mg/g dw, respectively). While in S. officinalis, the highest amount of phenols was recorded in the root extract (127.06 mg/g), followed by the flower and leaves extract (102.31 mg/g and 81.09 mg/g dw, respectively). Our results show that among the two species, S. minor Scop. is richer in phenolic compounds compared with the S. officinalis L. sample. In addition, the antimicrobial potential of each plant organ of Sanguisorba species was investigated. The ethanol extract of S. minor Scop. leaves exhibited better antibacterial activity against all of the bacteria tested, especially on Staphylococcus aureus, with an inhibition zone of 15.33 ± 0.83 mm. Due to the chemical composition and antimicrobial effect, the Sanguisorba species can be used as food supplements with beneficial effects on human health. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

25 pages, 3106 KiB  
Article
Volatile Chemical Variation of Essential Oils and Their Correlation with Insects, Phenology, Ontogeny and Microclimate: Piper mollicomum Kunth, a Case of Study
by Daniel de Brito-Machado, Ygor Jessé Ramos, Anna Carina Antunes e Defaveri, George Azevedo de Queiroz, Elsie Franklin Guimarães and Davyson de Lima Moreira
Plants 2022, 11(24), 3535; https://doi.org/10.3390/plants11243535 - 15 Dec 2022
Cited by 4 | Viewed by 1899
Abstract
The aim of this study was to monitor the volatile chemical composition from leaves and reproductive organs of Piper mollicomum Kunth (PM), in its reproduction period, as well as register inflorescence visitors, microclimate and phenological information. The essential oils (EOs) obtained from the [...] Read more.
The aim of this study was to monitor the volatile chemical composition from leaves and reproductive organs of Piper mollicomum Kunth (PM), in its reproduction period, as well as register inflorescence visitors, microclimate and phenological information. The essential oils (EOs) obtained from the different fresh organs by hydrodistillation were identified and quantified by Gas Chromatography/Mass Spectrometry (GC/MS) and by GC coupled to a Flame Ionization Detector (GC/FID), respectively. The cercentage content of some volatiles present in reproductive organs, such as limonene, 1,8-cineole, linalool and eupatoriochromene, increased during the maturation period of the inflorescences, and decreased during the fruiting period, suggesting a defense/attraction activities. Furtermore, a biosynthetic dichotomy between 1,8-cineole (leaves) and linalool (reproductive organs) was recorded. A high frequency of bee visits was registered weekly, and some correlations showed a positive relationship between this variable and terpenes. Microclimate has an impact on this species’ phenological cycles and insect visiting behavior. All correlations between volatiles, insects, phenology and microclimate allowed us to present important data about the complex information network in PM. These results are extremely relevant for the understanding of the mechanisms of chemical–ecological plant–insect interactions in Piperaceae, a basal angiosperm. Full article
Show Figures

Figure 1

26 pages, 2656 KiB  
Review
Plant Cell Wall Integrity Perturbations and Priming for Defense
by Sivakumar Swaminathan, Vincenzo Lionetti and Olga A. Zabotina
Plants 2022, 11(24), 3539; https://doi.org/10.3390/plants11243539 - 15 Dec 2022
Cited by 18 | Viewed by 4927
Abstract
A plant cell wall is a highly complex structure consisting of networks of polysaccharides, proteins, and polyphenols that dynamically change during growth and development in various tissues. The cell wall not only acts as a physical barrier but also dynamically responds to disturbances [...] Read more.
A plant cell wall is a highly complex structure consisting of networks of polysaccharides, proteins, and polyphenols that dynamically change during growth and development in various tissues. The cell wall not only acts as a physical barrier but also dynamically responds to disturbances caused by biotic and abiotic stresses. Plants have well-established surveillance mechanisms to detect any cell wall perturbations. Specific immune signaling pathways are triggered to contrast biotic or abiotic forces, including cascades dedicated to reinforcing the cell wall structure. This review summarizes the recent developments in molecular mechanisms underlying maintenance of cell wall integrity in plant–pathogen and parasitic interactions. Subjects such as the effect of altered expression of endogenous plant cell-wall-related genes or apoplastic expression of microbial cell-wall-modifying enzymes on cell wall integrity are covered. Targeted genetic modifications as a tool to study the potential of cell wall elicitors, priming of signaling pathways, and the outcome of disease resistance phenotypes are also discussed. The prime importance of understanding the intricate details and complete picture of plant immunity emerges, ultimately to engineer new strategies to improve crop productivity and sustainability. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

14 pages, 1906 KiB  
Review
Saponin Biosynthesis in Pulses
by Bianyun Yu, Nii Patterson and L. Irina Zaharia
Plants 2022, 11(24), 3505; https://doi.org/10.3390/plants11243505 - 14 Dec 2022
Cited by 7 | Viewed by 2863
Abstract
Pulses are a group of leguminous crops that are harvested solely for their dry seeds. As the demand for plant-based proteins grows, pulses are becoming important food crops worldwide. In addition to being a rich source of nutrients, pulses also contain saponins that [...] Read more.
Pulses are a group of leguminous crops that are harvested solely for their dry seeds. As the demand for plant-based proteins grows, pulses are becoming important food crops worldwide. In addition to being a rich source of nutrients, pulses also contain saponins that are traditionally considered anti-nutrients, and impart bitterness and astringency. Saponins are plant secondary metabolites with great structural and functional diversity. Given their diverse functional properties and biological activities, both undesirable and beneficial, saponins have received growing attention. It can be expected that redirecting metabolic fluxes to control the saponin levels and produce desired saponins would be an effective approach to improve the nutritional and sensory quality of the pulses. However, little effort has been made toward understanding saponin biosynthesis in pulses, and, thus there exist sizable knowledge gaps regarding its pathway and regulatory network. In this paper, we summarize the research progress made on saponin biosynthesis in pulses. Additionally, phylogenetic relationships of putative biosynthetic enzymes among multiple pulse species provide a glimpse of the evolutionary routes and functional diversification of saponin biosynthetic enzymes. The review will help us to advance our understanding of saponin biosynthesis and aid in the development of molecular and biotechnological tools for the systematic optimization of metabolic fluxes, in order to produce the desired saponins in pulses. Full article
(This article belongs to the Special Issue Seed Biology at the System Level)
Show Figures

Figure 1

11 pages, 1426 KiB  
Article
Physio-Biochemical Responses of Sweet Cherry Leaf to Natural Cold Conditions
by Matej Vosnjak, Helena Sircelj, Dominik Vodnik and Valentina Usenik
Plants 2022, 11(24), 3507; https://doi.org/10.3390/plants11243507 - 14 Dec 2022
Cited by 2 | Viewed by 1242
Abstract
Trees of the sweet cherry cultivar ‘Grace Star’ (Prunus avium L.) were exposed to low temperatures without frost for two consecutive nights under natural conditions 36 d after flowering, to study the effects on the physiological properties and metabolic status of leaves. [...] Read more.
Trees of the sweet cherry cultivar ‘Grace Star’ (Prunus avium L.) were exposed to low temperatures without frost for two consecutive nights under natural conditions 36 d after flowering, to study the effects on the physiological properties and metabolic status of leaves. The response was studied by measuring chlorophyll fluorescence and gas exchange parameters and by analyzing chloroplast pigments (i) immediately after exposure, (ii) 24 h and (iii) 48 h later. The first exposure at 2.4 (±0.2) °C and a minimum of 0.8 °C elicited more changes than the second exposure at 4.9 (±0.3) °C and a minimum of 2.4 °C. After the first exposure, the maximum quantum yield of PS II (Fv/Fm), effective quantum efficiency of PS II, net photosynthesis (PN), stomatal conductance (gs), transpiration, and intercellular CO2 concentration were significantly lower, and after the second exposure, the content of chlorophyll b, total chlorophyll, β-carotene, and lutein were lower. The content of antheraxanthin and zeaxanthin was higher immediately after both exposures, and that of antheraxanthin was also higher 24 h later. Recovery took longer in trees that were exposed twice. Fv/Fm recovered within 48 h, but the de-epoxidation state of the xanthophyll cycle pool, PN, and gs did not reach the level of controls, indicating that the stress effect lasted several days which is probably sufficient to cause fruit drop and reduce yield. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

13 pages, 1145 KiB  
Article
Analysis of Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata (L.) Walp) Genotypes Using Single Nucleotide Polymorphism Markers
by Mbali Thembi Gumede, Abe Shegro Gerrano, Assefa Beyene Amelework and Albert Thembinkosi Modi
Plants 2022, 11(24), 3480; https://doi.org/10.3390/plants11243480 - 12 Dec 2022
Cited by 7 | Viewed by 1613
Abstract
Cowpea (Vigna unguiculata (L.) Walp) is an important legume crop with immense potential for nutritional and food security, income generation, and livestock feed in Sub-Saharan Africa. The crop is highly tolerant to heat and drought stresses which makes it an extremely important [...] Read more.
Cowpea (Vigna unguiculata (L.) Walp) is an important legume crop with immense potential for nutritional and food security, income generation, and livestock feed in Sub-Saharan Africa. The crop is highly tolerant to heat and drought stresses which makes it an extremely important crop for improving resilience in crop production in the face of climate change. This study was carried out to assess the genetic diversity and population structure of 90 cowpea accessions using single nucleotide polymorphism (SNP) markers. Out of 11,940 SNPs used, 5864 SNPs were polymorphic and maintained for genome diversity analysis. Polymorphic information content (PIC) values ranged from 0.22 to 0.32 with a mean value of 0.27. The model-based Bayesian STRUCTURE analysis classified 90 cowpea accessions into four subpopulations at K = 4, while the distance-based cluster analysis grouped the accessions into three distinct clusters. The analysis of molecular variance (AMOVA) revealed that 59% and 69% of the total molecular variation was attributed to among individual variation for model-based and distance-based populations, respectively, and 18% was attributed to within individual variations. Furthermore, the low heterozygosity among cowpea accessions and the high inbreeding coefficient observed in this study suggests that the accessions reached an acceptable level of homozygosity. This study would serve as a reference for future selection and breeding programs of cowpea with desirable traits and systematic conservation of these plant genetic resources. Full article
Show Figures

Figure 1

22 pages, 2972 KiB  
Article
Chemical Composition and Biological Activity of Tanacetum balsamita Essential Oils Obtained from Different Plant Organs
by Milena D. Vukic, Nenad L. Vukovic, Ana D. Obradovic, Lucia Galovičová, Natália Čmiková, Miroslava Kačániová and Milos M. Matic
Plants 2022, 11(24), 3474; https://doi.org/10.3390/plants11243474 - 12 Dec 2022
Cited by 5 | Viewed by 1869
Abstract
The aim of this study is to evaluate the chemical composition of Tanacetum balsamita L. essential oils (EOs) obtained from different plant organs, flowers (FEO), leaves (LEO), and stems (SEO), as well as to assess their biological properties. The results obtained by using [...] Read more.
The aim of this study is to evaluate the chemical composition of Tanacetum balsamita L. essential oils (EOs) obtained from different plant organs, flowers (FEO), leaves (LEO), and stems (SEO), as well as to assess their biological properties. The results obtained by using GC and GC/MS analysis indicate that this plant belongs to the carvone chemotype. Moreover, we examined the oil’s antimicrobial and antitumor potential. Antimicrobial effects were determined using minimum inhibitory concentrations assay and the vapor phase method. Obtained results indicate better antimicrobial activity of investigated EO samples compared to the commercially available antibiotics. On the treatment with FEO, Y. enterocolitica and H. influenzae showed high sensitivity, while treatment with LEO and SEO showed the highest effects against S. aureus. The vapor phase method, as an in situ antibacterial analysis, was performed using LEO. Obtained results showed that this EO has significant activity toward S. pneumoniae in the apple and carrot models, L. monocytogenes in the pear model, and Y. enterocolitica in the white radish model. The potential antitumor mechanisms of FEO, LEO, and SEO were determined by the means of cell viability, redox potential, and migratory capacity in the MDA-MB-231 and MDA-MB-468 cell lines. The results show that these EOs exert antiviability potential in a time- and dose-dependent manner. Moreover, treatments with these EOs decreased the levels of superoxide anion radical and increased the levels of nitric oxide in both tested cell lines. The results regarding total and reduced glutathione revealed, overall, an increase in the levels of total glutathione and a decrease in the levels of reduced glutathione, indicating strong antioxidative potential in tested cancer cells in response to the prooxidative effects of the tested EOs. The tested EOs also exerted a drop in migratory capacity, which indicates that they can be potentially used as chemotherapeutic agents. Full article
Show Figures

Figure 1

34 pages, 1469 KiB  
Review
Strawberry Biostimulation: From Mechanisms of Action to Plant Growth and Fruit Quality
by Carlos Alberto Garza-Alonso, Emilio Olivares-Sáenz, Susana González-Morales, Marcelino Cabrera-De la Fuente, Antonio Juárez-Maldonado, José Antonio González-Fuentes, Gonzalo Tortella, Marin Virgilio Valdés-Caballero and Adalberto Benavides-Mendoza
Plants 2022, 11(24), 3463; https://doi.org/10.3390/plants11243463 - 10 Dec 2022
Cited by 12 | Viewed by 3207
Abstract
The objective of this review is to present a compilation of the application of various biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and, there is currently no review on this topic in the literature. Plant biostimulation consists of using [...] Read more.
The objective of this review is to present a compilation of the application of various biostimulants in strawberry plants. Strawberry cultivation is of great importance worldwide, and, there is currently no review on this topic in the literature. Plant biostimulation consists of using or applying physical, chemical, or biological stimuli that trigger a response—called induction or elicitation—with a positive effect on crop growth, development, and quality. Biostimulation provides tolerance to biotic and abiotic stress, and more absorption and accumulation of nutrients, favoring the metabolism of the plants. The strawberry is a highly appreciated fruit for its high organoleptic and nutraceutical qualities since it is rich in phenolic compounds, vitamins, and minerals, in addition to being a product with high commercial value. This review aims to present an overview of the information on using different biostimulation techniques in strawberries. The information obtained from publications from 2000–2022 is organized according to the biostimulant’s physical, chemical, or biological nature. The biochemical or physiological impact on plant productivity, yield, fruit quality, and postharvest life is described for each class of biostimulant. Information gaps are also pointed out, highlighting the topics in which more significant research effort is necessary. Full article
(This article belongs to the Special Issue Plant Biostimulation)
Show Figures

Figure 1

15 pages, 1394 KiB  
Article
Elicitation of Bacillus cereus-Amazcala (B.c-A) with SiO2 Nanoparticles Improves Its Role as a Plant Growth-Promoting Bacteria (PGPB) in Chili Pepper Plants
by Noelia I. Ferrusquía-Jiménez, Beatriz González-Arias, Alicia Rosales, Karen Esquivel, Eleazar M. Escamilla-Silva, Adrian E. Ortega-Torres and Ramón G. Guevara-González
Plants 2022, 11(24), 3445; https://doi.org/10.3390/plants11243445 - 9 Dec 2022
Cited by 18 | Viewed by 1993
Abstract
Agriculture needs to decrease the use of agrochemicals due to their high toxicity and adopt new strategies to achieve sustainable food production. Therefore, nanoparticles (NPs) and plant growth-promoting bacteria (PGPB) have been proposed as viable strategies to obtain better crop yields with less [...] Read more.
Agriculture needs to decrease the use of agrochemicals due to their high toxicity and adopt new strategies to achieve sustainable food production. Therefore, nanoparticles (NPs) and plant growth-promoting bacteria (PGPB) have been proposed as viable strategies to obtain better crop yields with less environmental impact. Here, we describe the effect of silica nanoparticles (SiO2-NPs) on survival, antioxidant enzymatic activity, phosphate solubilization capacity, and gibberellin production of Bacillus cereus-Amazcala (B.c-A). Moreover, the effect of the co-application of SiO2-NPs and B.c-A on seed germination, physiological characteristics, and antioxidant enzymatic activity of chili pepper plants was investigated under greenhouse conditions. The results indicated that SiO2-NPs at 100 ppm enhanced the role of B.c-A as PGPB by increasing its phosphate solubilization capacity and the production of GA7. Moreover, B.c-A catalase (CAT) and superoxide dismutase (SOD) activities were increased with SiO2-NPs 100 ppm treatment, indicating that SiO2-NPs act as a eustressor, inducing defense-related responses. The co-application of SiO2-NPs 100 ppm and B.c-A improved chili pepper growth. There was an increase in seed germination percentage, plant height, number of leaves, and number and yield of fruits. There was also an increase in CAT and PAL activities in chili pepper plants, indicating that bacteria–NP treatment induces plant immunity. Full article
(This article belongs to the Special Issue Eustressors to Enhance Plant Performance)
Show Figures

Figure 1

11 pages, 2012 KiB  
Article
After-Effects of Hydrochar Amendment on Water Spinach Production, N Leaching, and N2O Emission from a Vegetable Soil under Varying N-Inputs
by Haijun Sun, Ying Chen and Zhenghua Yi
Plants 2022, 11(24), 3444; https://doi.org/10.3390/plants11243444 - 9 Dec 2022
Cited by 7 | Viewed by 1497
Abstract
Biochar use in agriculture brings significant agronomic and environmental co-benefits, which are a function of biochar and crop types and nitrogen (N) rates. We here conducted a soil column experiment to evaluate the after-effects of hydrochar amendment at 0.5 and 2.0 wt% on [...] Read more.
Biochar use in agriculture brings significant agronomic and environmental co-benefits, which are a function of biochar and crop types and nitrogen (N) rates. We here conducted a soil column experiment to evaluate the after-effects of hydrochar amendment at 0.5 and 2.0 wt% on vegetable production, N recovery and losses via leaching and nitrous oxide (N2O) emission from water-spinach (Ipomoea aquatica Forsk)-planted vegetable soil receiving three N inputs (120, 160, and 200 kg/ha). The results showed that hydrochar with 2.0 wt% significantly (p < 0.05) improved the biomass yield of water spinach, receiving 120–160 kg N/ha by 11.6–14.2%, compared with no change in the hydrochar treatment. Hydrochar had no effect on total N content of water spinach, and only increased the total N recovery under 2.0 wt% given hydrochar amended treatment with 120 kg N/ha. Neither pH or EC of leachate was changed with N reduction or hydrochar application. However, in some cases, hydrochar changes the NH4+, NO3 and total N concentrations in leachate. When applied at 2.0 wt%, hydrochar significantly (p < 0.05) increased total N leaching losses by 28.9% and 57.1%, under 120 and 160 kg N/ha plot, respectively. Hydrochar applied at two rates increased the N2O emissions by 109–133% under 200 kg N/ha but decreased them by 46–67% under 160 kg N/ha. Therefore, after three years of application, hydrochar still improves the production of leafy vegetable, but the impacts on N leaching and N2O emission vary, depending on inorganic N and hydrochar application rates. Full article
Show Figures

Figure 1

16 pages, 2396 KiB  
Article
Improvement of Anther Culture to integrate Doubled Haploid Technology in Temperate Rice (Oryza sativa L.) Breeding
by Csaba Lantos, Mihály Jancsó, Árpád Székely, Éva Nagy, Tímea Szalóki and János Pauk
Plants 2022, 11(24), 3446; https://doi.org/10.3390/plants11243446 - 9 Dec 2022
Cited by 7 | Viewed by 2070
Abstract
Doubled haploid (DH) plant production, such as anther culture (AC), is an effective tool used in modern rice breeding programs. The improved efficient protocols applied can shorten the process of breeding. The effect of combinations of plant growth regulators (2.5 mg/L NAA, 1 [...] Read more.
Doubled haploid (DH) plant production, such as anther culture (AC), is an effective tool used in modern rice breeding programs. The improved efficient protocols applied can shorten the process of breeding. The effect of combinations of plant growth regulators (2.5 mg/L NAA, 1 mg/L 2,4-D and 0.5 mg/L kinetin; 2 mg/L 2,4-D and 0.5 mg/L BAP) in the induction medium were compared in AC for five rice breeding materials and combinations. Induction of calli ranged from 264.6 ± 67.07 to 468.8 ± 123.2 calli/100 anthers in AC of rice genotypes. Two basal media (MS and N6) and two combinations of growth regulators (1 mg/L NAA, 1 mg/L BAP and 1 mg/L kinetin; 1.5 mg/L BAP, 0.5 mg/L NAA and 0.5 mg/L kinetin) were used as regeneration media. The in vitro green plant production was the highest with the application of the N6NDK induction medium (NAA, 2,4-D and kinetin) and the MS-based regeneration medium (1 mg/L NAA, 1 mg/BAP and 1 mg/L kinetin) in anther culture of the ‘1009’ genotype (95.2 green plantlets/100 anthers). The mean of five genotypes was 24.48 green plantlets/100 anthers for the best treatment. Flow cytometric analyses conducted identified the microspore origin of the haploid calli produced in AC, while the uniformity of spontaneous DH plants was checked in the DH1 and DH2 generations. Spontaneous chromosome doubling ranged from 38.1% to 57.9% (mean 42.1%), depending on the breeding source. The generated and selected DH lines were tested in micro- and small-plot field experiments to identify promising lines for a pedigree breeding program. The improved AC method was integrated in a Hungarian temperate rice pedigree breeding program. Full article
(This article belongs to the Collection Advances in Plant Breeding)
Show Figures

Figure 1

29 pages, 3586 KiB  
Review
An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention
by Katya Carbone and Fabio Gervasi
Plants 2022, 11(24), 3434; https://doi.org/10.3390/plants11243434 - 8 Dec 2022
Cited by 16 | Viewed by 3846
Abstract
The medicinal potential of hop (Humulus lupulus L.) is widely cited in ancient literature and is also allowed in several official pharmacopoeias for the treatment of a variety of ailments, mainly related to anxiety states. This is due to the plethora of [...] Read more.
The medicinal potential of hop (Humulus lupulus L.) is widely cited in ancient literature and is also allowed in several official pharmacopoeias for the treatment of a variety of ailments, mainly related to anxiety states. This is due to the plethora of phytoconstituents (e.g., bitter acids, polyphenols, prenyl flavonoids) present in the female inflorescences, commonly known as cones or strobili, endowed with anti-inflammatory, antioxidant, antimicrobial, and phytoestrogen activities. Hop has recently attracted the interest of the scientific community due to the presence of xanthohumol, whose strong anti-cancer activity against various types of cancer cells has been well documented, and for the presence of 8-prenyl naringenin, the most potent known phytoestrogen. Studies in the literature have also shown that hop compounds can hinder numerous signalling pathways, including ERK1/2 phosphorylation, regulation of AP-1 activity, PI3K-Akt, and nuclear factor NF-κB, which are the main targets of the antiproliferative action of bitter acids and prenylflavonoids. In light of these considerations, the aim of this review was to provide an up-to-date overview of the main biologically active compounds found in hops, as well as their in vitro and in vivo applications for human health and disease prevention. To this end, a quantitative literature analysis approach was used, using VOSviewer software to extract and process Scopus bibliometric data. In addition, data on the pharmacokinetics of bioactive hop compounds and clinical studies in the literature were analysed. To make the information more complete, studies on the beneficial properties of the other two species belonging to the genus Humulus, H. japonicus and H. yunnanensis, were also reviewed for the first time. Full article
(This article belongs to the Special Issue Humulus lupulus: From Field to Glass and Beyond)
Show Figures

Figure 1

18 pages, 2065 KiB  
Article
Valorization of Quercus suber L. Bark as a Source of Phytochemicals with Antimicrobial Activity against Apple Tree Diseases
by Eva Sánchez-Hernández, Vicente González-García, José Casanova-Gascón, Juan J. Barriuso-Vargas, Joaquín Balduque-Gil, Belén Lorenzo-Vidal, Jesús Martín-Gil and Pablo Martín-Ramos
Plants 2022, 11(24), 3415; https://doi.org/10.3390/plants11243415 - 7 Dec 2022
Cited by 7 | Viewed by 2139
Abstract
Cork, an anatomic adaptation of the bark of Quercus suber L. through its suberization process, finds its main application in the production of bottle stoppers. Its processing results in a large waste stream of cork fragments, granulates, and dust, which may be susceptible [...] Read more.
Cork, an anatomic adaptation of the bark of Quercus suber L. through its suberization process, finds its main application in the production of bottle stoppers. Its processing results in a large waste stream of cork fragments, granulates, and dust, which may be susceptible to valorization. The work presented here explored the use of its extracts to inhibit the growth of phytopathogenic microorganisms associated with apple tree diseases. The in vitro antimicrobial activity of cork aqueous ammonia extract was assayed against four fungi, viz. Monilinia fructigena and M. laxa (brown rot), Neofussicoccum parvum (dieback), and Phytophthora cactorum (collar and root rot), and two bacteria, viz. Erwinia amylovora and Pseudomonas syringae pv. syringae, either alone or in combination with chitosan oligomers (COS). Effective concentration values of EC90 in the 675–3450 μg·mL−1 range, depending on the fungal pathogen, were obtained in growth inhibition tests, which were substantially improved for the conjugate complexes (340–801 μg·mL−1) as a result of strong synergism with COS. Similar enhanced behavior was also observed in antibacterial activity assays, with MIC values of 375 and 750 μg·mL−1 for the conjugate complexes against P. syringae pv. syringae and E. amylovora, respectively. This in vitro inhibitory activity was substantially higher than those exhibited by azoxystrobin and fosetyl-Al, which were tested for comparison purposes, and stood out among those reported for other natural compounds in the literature. The observed antimicrobial activity may be mainly attributed to the presence of glycerin and vanillic acid, identified by gas chromatography–mass spectroscopy. In the first step towards in-field application, the COS–Q. suber bark extract conjugate complex was further tested ex situ against P. cactorum on artificially inoculated excised stems of the ‘Garnem’ almond rootstock, achieving high protection at a dose of 3750 μg·mL−1. These results suggest that cork industrial leftovers may, thus, be a promising source of bioactive compounds for integrated pest management. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Graphical abstract

16 pages, 2015 KiB  
Review
Regulatory Mechanisms of Heat Stress Response and Thermomorphogenesis in Plants
by Yunzhuan Zhou, Fuxiang Xu, Yanan Shao and Junna He
Plants 2022, 11(24), 3410; https://doi.org/10.3390/plants11243410 - 7 Dec 2022
Cited by 13 | Viewed by 4210
Abstract
As worldwide warming intensifies, the average temperature of the earth continues to increase. Temperature is a key factor for the growth and development of all organisms and governs the distribution and seasonal behavior of plants. High temperatures lead to various biochemical, physiological, and [...] Read more.
As worldwide warming intensifies, the average temperature of the earth continues to increase. Temperature is a key factor for the growth and development of all organisms and governs the distribution and seasonal behavior of plants. High temperatures lead to various biochemical, physiological, and morphological changes in plants and threaten plant productivity. As sessile organisms, plants are subjected to various hostile environmental factors and forced to change their cellular state and morphological architecture to successfully deal with the damage they suffer. Therefore, plants have evolved multiple strategies to cope with an abnormal rise in temperature. There are two main mechanisms by which plants respond to elevated environmental temperatures. One is the heat stress response, which is activated under extremely high temperatures; the other is the thermomorphogenesis response, which is activated under moderately elevated temperatures, below the heat-stress range. In this review, we summarize recent progress in the study of these two important heat-responsive molecular regulatory pathways mediated, respectively, by the Heat Shock Transcription Factor (HSF)–Heat Shock Protein (HSP) pathway and PHYTOCHROME INTER-ACTING FACTOR 4 (PIF4) pathways in plants and elucidate the regulatory mechanisms of the genes involved in these pathways to provide comprehensive data for researchers studying the heat response. We also discuss future perspectives in this field. Full article
(This article belongs to the Special Issue Regulation of Plant Responses to Heat and Drought Stress)
Show Figures

Figure 1

14 pages, 828 KiB  
Article
Susceptibility of Novel Promising Citrus Rootstocks to White Root Rot
by Juan M. Arjona-López, Frederick G. Gmitter, Jr., Estefanía Romero-Rodríguez, Jude W. Grosser, Aurea Hervalejo, Carlos J. López-Herrera and Francisco J. Arenas-Arenas
Plants 2022, 11(23), 3388; https://doi.org/10.3390/plants11233388 - 5 Dec 2022
Cited by 5 | Viewed by 1605
Abstract
Citrus is one of the most important fruit crops in Mediterranean countries such as Spain, which is one of the main citrus-producing countries worldwide. Soil-borne pathogens, such as Rosellinia necatrix, are relevant limiting biotic factors in fruit trees, due to their tricky [...] Read more.
Citrus is one of the most important fruit crops in Mediterranean countries such as Spain, which is one of the main citrus-producing countries worldwide. Soil-borne pathogens, such as Rosellinia necatrix, are relevant limiting biotic factors in fruit trees, due to their tricky management. This fungus is a polyphagous plant pathogen with worldwide distribution, causing white root rot in woody crops, including citrus trees in Spain. The objective of this study was to evaluate the tolerance of new plant material against R. necatrix infection. Therefore, plants of 12 different citrus rootstocks were inoculated with one R. necatrix isolate. During the assay, and periodically, above-ground symptoms and chlorophyll content were evaluated. At the end of the experiment, leaf area and plant biomass measures were obtained. Rootstocks B11R5T64 and B11R5T60 achieved the lowest disease incidence of symptoms and reduction of biomass, and were similar to their respective controls in chlorophyll content and leaf area. Carrizo citrange, CL-5146 and UFR-5 were the most affected rootstocks in symptoms and biomass reduction. This work provides information about R. necatrix-tolerant citrus rootstocks, which can constitute a new integrated, sustainable and effective long-term strategy to avoid white root rot. Full article
(This article belongs to the Special Issue Integrated Disease Management in Fruit Crops)
Show Figures

Figure 1

35 pages, 1207 KiB  
Review
Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview
by Daniela Trono and Nicola Pecchioni
Plants 2022, 11(23), 3358; https://doi.org/10.3390/plants11233358 - 2 Dec 2022
Cited by 11 | Viewed by 4267
Abstract
Wheat represents one of the most important staple food crops worldwide and its genetic improvement is fundamental to meeting the global demand of the growing population. However, the environmental stresses, worsened by climate change, and the increasing deterioration of arable land make it [...] Read more.
Wheat represents one of the most important staple food crops worldwide and its genetic improvement is fundamental to meeting the global demand of the growing population. However, the environmental stresses, worsened by climate change, and the increasing deterioration of arable land make it very difficult to fulfil this demand. In light of this, the tolerance of wheat to abiotic stresses has become a key objective of genetic improvement, as an effective strategy to ensure high yields without increasing the cultivated land. Genetic erosion related to modern agriculture, whereby elite, high-yielding wheat varieties are the product of high selection pressure, has reduced the overall genetic diversity, including the allelic diversity of genes that could be advantageous for adaptation to adverse environmental conditions. This makes traditional breeding a less effective or slower approach to generating new stress-tolerant wheat varieties. Either mining for the diversity of not-adapted large germplasm pools, or generating new diversity, are the mainstream approaches to be pursued. The advent of genetic engineering has opened the possibility to create new plant variability and its application has provided a strong complement to traditional breeding. Genetic engineering strategies such as transgenesis and genome editing have then provided the opportunity to improve environmental tolerance traits of agronomic importance in cultivated species. As for wheat, several laboratories worldwide have successfully produced transgenic wheat lines with enhanced tolerance to abiotic stresses, and, more recently, significant improvements in the CRISPR/Cas9 tools available for targeted variations within the wheat genome have been achieved. In light of this, the present review aims to provide successful examples of genetic engineering applications for the improvement of wheat adaptation to drought, salinity and extreme temperatures, which represent the most frequent and most severe events causing the greatest losses in wheat production worldwide. Full article
(This article belongs to the Special Issue Responses of Wheat to Abiotic Stress)
Show Figures

Figure 1

25 pages, 1008 KiB  
Article
Can Lunar and Martian Soils Support Food Plant Production? Effects of Horse/Swine Monogastric Manure Fertilisation on Regolith Simulants Enzymatic Activity, Nutrient Bioavailability, and Lettuce Growth
by Antonio G. Caporale, Mariana Amato, Luigi G. Duri, Rocco Bochicchio, Stefania De Pascale, Giuseppe Di Rauso Simeone, Mario Palladino, Antonio Pannico, Maria A. Rao, Youssef Rouphael and Paola Adamo
Plants 2022, 11(23), 3345; https://doi.org/10.3390/plants11233345 - 2 Dec 2022
Cited by 10 | Viewed by 3010
Abstract
To make feasible the crewed missions to the Moon or Mars, space research is focusing on the development of bioregenerative life support systems (BLSS) designed to produce food crops based on in situ resource utilisation (ISRU), allowing to reduce terrestrial input and to [...] Read more.
To make feasible the crewed missions to the Moon or Mars, space research is focusing on the development of bioregenerative life support systems (BLSS) designed to produce food crops based on in situ resource utilisation (ISRU), allowing to reduce terrestrial input and to recycle organic wastes. In this regard, a major question concerns the suitability of native regoliths for plant growth and how their agronomic performance is affected by additions of organic matter from crew waste. We tested plant growth substrates consisting of MMS-1 (Mars) or LHS-1 (Lunar) simulants mixed with a commercial horse/swine monogastric manure (i.e., an analogue of crew excreta and crop residues) at varying rates (100:0, 90:10, 70:30, 50:50, w/w). Specifically, we measured: (i) lettuce (Lactuca sativa L. cultivar ‘Grand Rapids’) growth (at 30 days in open gas exchange climate chamber with no fertilisation), plant physiology, and nutrient uptake; as well as (ii) microbial biomass C and N, enzymatic activity, and nutrient bioavailability in the simulant/manure mixtures after plant growth. We discussed mechanisms of different plant yield, architecture, and physiology as a function of chemical, physico-hydraulic, and biological properties of different substrates. A better agronomic performance, in terms of plant growth and optically measured chlorophyll content, nutrient availability, and enzymatic activity, was provided by substrates containing MMS-1, in comparison to LHS-1-based ones, despite a lower volume of readily available water (likely due to the high-frequency low-volume irrigation strategy applied in our experiment and foreseen in space settings). Other physical and chemical properties, along with a different bioavailability of essential nutrients for plants and rhizosphere biota, alkalinity, and release of promptly bioavailable Na from substrates, were identified as the factors leading to the better ranking of MMS-1 in plant above and below-ground mass and physiology. Pure Mars (MMS-1) and Lunar (LHS-1) simulants were able to sustain plant growth even in absence of fertilisation, but the amendment with the monogastric manure significantly improved above- and below-ground plant biomass; moreover, the maximum lettuce leaf production, across combinations of simulants and amendment rates, was obtained in treatments resulting in a finer root system. Increasing rates of monogastric manure stimulated the growth of microbial biomass and enzymatic activities, such as dehydrogenase and alkaline phosphomonoesterase, which, in turn, fostered nutrient bioavailability. Consequently, nutrient uptake and translocation into lettuce leaves were enhanced with manure supply, with positive outcomes in the nutritional value of edible biomass for space crews. The best crop growth response was achieved with the 70:30 simulant/manure mixture due to good availability of nutrients and water compared to low amendment rates, and better-saturated hydraulic conductivity compared to high organic matter application. A 70:30 simulant/manure mixture is also a more sustainable option than a 50:50 mixture for a BLSS developed on ISRU strategy. Matching crop growth performance and (bio)chemical, mineralogical, and physico-hydraulic characteristics of possible plant growth media for space farming allows a better understanding of the processes and dynamics occurring in the experimental substrate/plant system, potentially suitable for an extra-terrestrial BLSS. Full article
Show Figures

Figure 1

15 pages, 2964 KiB  
Article
Metabolomics Approach to Characterize Green Olive Leaf Extracts Classified Based on Variety and Season
by Graziana Difonzo, Maria Assunta Crescenzi, Sonia Piacente, Giuseppe Altamura, Francesco Caponio and Paola Montoro
Plants 2022, 11(23), 3321; https://doi.org/10.3390/plants11233321 - 1 Dec 2022
Cited by 10 | Viewed by 1756
Abstract
The huge interest in the health-related properties of plant polyphenols to be applied in food and health-related sectors has brought about the development of sensitive analytical methods for metabolomic characterization. Olive leaves constitute a valuable waste rich in polyphenols with functional properties. A [...] Read more.
The huge interest in the health-related properties of plant polyphenols to be applied in food and health-related sectors has brought about the development of sensitive analytical methods for metabolomic characterization. Olive leaves constitute a valuable waste rich in polyphenols with functional properties. A (HR)LC-ESI-ORBITRAP-MS analysis with a multivariate statistical analysis approach using PCA and/or PLS-DA projection methods were applied to identify polyphenols in olive leaf extracts of five varieties from the Apulia region (Italy) in two different seasonal times. A total of 26 metabolites were identified, further finding that although metabolites are common among the different cultivars, they differ in the relative intensity of each peak and within each cultivar in the two seasonal periods taken into consideration. The results of the total phenol contents showed the highest content in November for Bambina and Cima di Mola varieties (1816 and 1788 mg/100 g, respectively), followed by Coratina, Leccino, and Cima di Melfi; a similar trend was found for the antioxidant activity and RapidOxy evaluations by reaching in Bambina values of 45 mmol TE/100 g and 85 min of induction time. Full article
Show Figures

Graphical abstract

12 pages, 2345 KiB  
Article
An In Vitro Protocol for Propagating Castanea sativa Italian Cultivars
by Vera Pavese, Paola Ruffa, Silvia Abbà, Rita Lourenço Costa, Elena Corredoira, Cristian Silvestri, Daniela Torello Marinoni and Roberto Botta
Plants 2022, 11(23), 3308; https://doi.org/10.3390/plants11233308 - 30 Nov 2022
Cited by 3 | Viewed by 1673
Abstract
Castanea sativa cv. ‘Garrone Rosso’ and ‘Marrone di Castel del Rio’ are two of the most prized varieties in Italy due to their valuable and healthy nuts used for fresh consumption and in the confectionery industry. Despite the growing demand for chestnuts, there [...] Read more.
Castanea sativa cv. ‘Garrone Rosso’ and ‘Marrone di Castel del Rio’ are two of the most prized varieties in Italy due to their valuable and healthy nuts used for fresh consumption and in the confectionery industry. Despite the growing demand for chestnuts, there are constraints regarding plant propagation that hamper the renewal and new planting of orchards in different areas. Castanea sativa is susceptible to diseases that have caused a reduction in its area of production. For this reason, in vitro culture represents a valuable technique for germplasm preservation and plant multiplication enabling production of a high number of plants for use in breeding programs. Here we present an in vitro micropropagation protocol for Italian Castanea sativa cv. ‘Marrone di Castel del Rio’ and cv. ‘Garrone Rosso’ to contribute to the preservation and enhancement of the Italian germplasm. Nodal explants were used as the starting material for in vitro establishment. The cv. ‘Marrone di Castel del Rio’ showed a high percentage of survival explants (92%) when subjected to long bleach exposure (25 min), in contrast to what was observed for the ‘Garrone Rosso’ cultivar. Ascorbic acid was found to be the best compound to counteract phenol exudation. The MS3B and DKW media supplied with 0.5 mg/L BAP were effective for in vitro establishment, while the DKW medium (0.1 mg/L BAP and 0.05 mg/L IBA) was preferable for the proliferation phase. A double-layer rooting methodology was used and 35% rooting was observed with 25 mg/L IBA rooting treatment. Full article
(This article belongs to the Special Issue Nut Tree Breeding: Conventional and Innovative Strategies)
Show Figures

Figure 1

18 pages, 1540 KiB  
Article
Differential Effects of Ammonium (NH4+) and Potassium (K+) Nutrition on Photoassimilate Partitioning and Growth of Tobacco Seedlings
by Oluwaseun Olayemi Aluko, Chuanzong Li, Guang Yuan, Tongjia Nong, Haiying Xiang, Qian Wang, Xuemei Li and Haobao Liu
Plants 2022, 11(23), 3295; https://doi.org/10.3390/plants11233295 - 29 Nov 2022
Cited by 4 | Viewed by 1559
Abstract
Plants utilize carbohydrates as the main energy source, but much focus has been on the impact of N and K on plant growth. Less is known about the combined impact of NH4+ and K+ nutrition on photoassimilate distribution among plant [...] Read more.
Plants utilize carbohydrates as the main energy source, but much focus has been on the impact of N and K on plant growth. Less is known about the combined impact of NH4+ and K+ nutrition on photoassimilate distribution among plant organs, and the resultant effect of such distribution on growth of tobacco seedlings, hence this study. Here, we investigated the synergetic effect of NH4+ and K+ nutrition on photoassimilate distribution, and their resultant effect on growth of tobacco seedlings. Soluble sugar and starch content peaks under moderate NH4+ and moderate K+ (2-2 mM), leading to improved plant growth, as evidenced by the increase in tobacco weight and root activity. Whereas, a drastic reduction in the above indicators was observed in plants under high NH4+ and low K+ (20-0.2 mM), due to low carbohydrate synthesis and poor photoassimilate distribution. A strong positive linear relationship also exists between carbohydrate (soluble sugar and starch) and the activities of these enzymes but not for invertase. Our findings demonstrated that NH4+ and K+-induced ion imbalance influences plant growth and is critical for photoassimilate distribution among organs of tobacco seedlings. Full article
Show Figures

Figure 1

13 pages, 2756 KiB  
Article
Changes in Metabolic Profile of Rice Leaves Induced by Humic Acids
by Natália Aguiar Canellas, Fábio Lopes Olivares, Rakiely Martins da Silva and Luciano Pasqualoto Canellas
Plants 2022, 11(23), 3261; https://doi.org/10.3390/plants11233261 - 27 Nov 2022
Cited by 3 | Viewed by 1359
Abstract
The use of humic substances in agriculture as a biostimulant emerged as one of the promising methods to promote sustainable production. Different molecular, biochemical, and physiological processes are triggered, resulting in nutrient efficiency use and protection against abiotic stress. Understanding plant changes promoted [...] Read more.
The use of humic substances in agriculture as a biostimulant emerged as one of the promising methods to promote sustainable production. Different molecular, biochemical, and physiological processes are triggered, resulting in nutrient efficiency use and protection against abiotic stress. Understanding plant changes promoted by humic substances is essential for innovative and tailored biostimulation technologies. Cell metabolites are the final target of the response chain, and the metabolomic approach can be helpful in unveiling pathways related to plant response. This study aimed to evaluate a global metabolic alteration of rice leaves induced by humic acids (HA) applied in a hydroponics system. Using 1H NMR and GC-TOF/MS analysis, we observed a significant decrease in all main metabolites classes in leaves treated with HA, including lipids, organic acids, amino acids, and carbohydrates. Metabolites in higher concentrations in HA-treated plants are candidates as markers of HA bioactivity, including amino acids, intermediates of tricarboxylic acid cycle, and lipids, and aromatic compounds related to plant-stress response. Full article
(This article belongs to the Special Issue Advances in Cereal Science and Cereal Quality)
Show Figures

Figure 1

17 pages, 12020 KiB  
Article
A Multiscale Lightweight and Efficient Model Based on YOLOv7: Applied to Citrus Orchard
by Junyang Chen, Hui Liu, Yating Zhang, Daike Zhang, Hongkun Ouyang and Xiaoyan Chen
Plants 2022, 11(23), 3260; https://doi.org/10.3390/plants11233260 - 27 Nov 2022
Cited by 42 | Viewed by 5043
Abstract
With the gradual increase in the annual production of citrus, the efficiency of human labor has become the bottleneck limiting production. To achieve an unmanned citrus picking technology, the detection accuracy, prediction speed, and lightweight deployment of the model are important issues. Traditional [...] Read more.
With the gradual increase in the annual production of citrus, the efficiency of human labor has become the bottleneck limiting production. To achieve an unmanned citrus picking technology, the detection accuracy, prediction speed, and lightweight deployment of the model are important issues. Traditional object detection methods often fail to achieve balanced effects in all aspects. Therefore, an improved YOLOv7 network model is proposed, which introduces a small object detection layer, lightweight convolution, and a CBAM (Convolutional Block Attention Module) attention mechanism to achieve multi-scale feature extraction and fusion and reduce the number of parameters of the model. The performance of the model was tested on the test set of citrus fruit. The average accuracy (mAP@0.5) reached 97.29%, the average prediction time was 69.38 ms, and the number of parameters and computation costs were reduced by 11.21 M and 28.71 G compared with the original YOLOv7. At the same time, the Citrus-YOLOv7 model’s results show that it performs better compared with the current state-of-the-art network models. Therefore, the proposed Citrus-YOLOv7 model can contribute to solving the problem of citrus detection. Full article
(This article belongs to the Collection Application of AI in Plants)
Show Figures

Figure 1

23 pages, 2640 KiB  
Article
Metal- and Organ-Specific Response to Heavy Metal-Induced Stress Mediated by Antioxidant Enzymes’ Activities, Polyamines, and Plant Hormones Levels in Populus deltoides
by Marko Kebert, Saša Kostić, Vanja Vuksanović, Anđelina Gavranović Markić, Biljana Kiprovski, Martina Zorić and Saša Orlović
Plants 2022, 11(23), 3246; https://doi.org/10.3390/plants11233246 - 26 Nov 2022
Cited by 7 | Viewed by 1835
Abstract
Besides anthropogenic factors, climate change causes altered precipitation patterns that indirectly affect the increase of heavy metals in soils due to hydrological effects and enhanced leaching (i.e., Cd and Ni), especially in the vicinity of mines and smelters. Phytoextraction is a well-known, powerful [...] Read more.
Besides anthropogenic factors, climate change causes altered precipitation patterns that indirectly affect the increase of heavy metals in soils due to hydrological effects and enhanced leaching (i.e., Cd and Ni), especially in the vicinity of mines and smelters. Phytoextraction is a well-known, powerful “green” technique for environmental clean-up that uses plants to extract, sequester, and/or detoxify heavy metals, and it makes significant contributions to the removal of persistent inorganic pollutants from soils. Poplar species, due to their growth features, high transpiration rate, large biomass, and feasible reproduction represent great candidates for phytoextraction technology. However, the consequences of concomitant oxidative stress upon plant metabolism and the mechanism of the poplar’s tolerance to heavy metal-induced stress are still not completely understood. In this study, cuttings of poplar species (Populus deltoides W. Bartram ex Marshall) were separately exposed to two heavy metals (Cd2+ and Ni2+) that were triple the maximum allowed amount (MAA) (according to national legislation). The aim of the study was to estimate the effects of heavy metals on: (I) the accumulation of free and conjugated polyamines, (II) plant hormones (including abscisic acid-ABA and indole-3-acetic acid-IAA), and (III) the activities of different antioxidant enzymes at root and leaf levels. By using the selected ion monitoring (SIM) mode of gas chromatography with mass spectrometry (GC/MS) coupled with the isotopically labeled technique, amounts of ABA and IAA were quantified, while polyamine amounts were determined by using high-performance liquid chromatography (HPLC) with fluorometric detection after derivatization. The results showed that P. deltoides responded to elevated concentrations of heavy metals in soils by exhibiting metal- and organ-specific tolerance. Knowledge about tolerance mechanisms is of great importance for the development of phytoremediation technology and afforestation programs for polluted soils. Full article
Show Figures

Graphical abstract

24 pages, 4346 KiB  
Article
Soil Treatment with Nitric Oxide-Releasing Chitosan Nanoparticles Protects the Root System and Promotes the Growth of Soybean Plants under Copper Stress
by Diego G. Gomes, Tatiane V. Debiasi, Milena T. Pelegrino, Rodrigo M. Pereira, Gabrijel Ondrasek, Bruno L. Batista, Amedea B. Seabra and Halley C. Oliveira
Plants 2022, 11(23), 3245; https://doi.org/10.3390/plants11233245 - 26 Nov 2022
Cited by 11 | Viewed by 1587
Abstract
The nanoencapsulation of nitric oxide (NO) donors is an attractive technique to protect these molecules from rapid degradation, expanding, and enabling their use in agriculture. Here, we evaluated the effect of the soil application of chitosan nanoparticles containing S-nitroso-MSA (a S-nitrosothiol) on the [...] Read more.
The nanoencapsulation of nitric oxide (NO) donors is an attractive technique to protect these molecules from rapid degradation, expanding, and enabling their use in agriculture. Here, we evaluated the effect of the soil application of chitosan nanoparticles containing S-nitroso-MSA (a S-nitrosothiol) on the protection of soybeans (Glycine max cv. BRS 257) against copper (Cu) stress. Soybeans were grown in a greenhouse in soil supplemented with 164 and 244 mg kg−1 Cu and treated with a free or nanoencapsulated NO donor at 1 mM, as well as with nanoparticles without NO. There were also soybean plants treated with distilled water and maintained in soil without Cu addition (control), and with Cu addition (water). The exogenous application of the nanoencapsulated and free S-nitroso-MSA improved the growth and promoted the maintenance of the photosynthetic activity in Cu-stressed plants. However, only the nanoencapsulated S-nitroso-MSA increased the bioavailability of NO in the roots, providing a more significant induction of the antioxidant activity, the attenuation of oxidative damage, and a greater capacity to mitigate the root nutritional imbalance triggered by Cu stress. The results suggest that the nanoencapsulation of the NO donors enables a more efficient delivery of NO for the protection of soybean plants under Cu stress. Full article
Show Figures

Figure 1

12 pages, 1549 KiB  
Article
A Modeled High-Density Fed-Batch Culture Improves Biomass Growth and β-Glucans Accumulation in Microchloropsis salina
by Darío Ocaranza, Iván Balic, Tamara Bruna, Ignacio Moreno, Oscar Díaz, Adrián A. Moreno and Nelson Caro
Plants 2022, 11(23), 3229; https://doi.org/10.3390/plants11233229 - 25 Nov 2022
Cited by 2 | Viewed by 1464
Abstract
Algae and microalgae are used as a source of different biomolecules, such as lipids and carbohydrates. Among carbohydrates, polysaccharides, such as β-glucans, are important for their application as antioxidants, antisepsis, and immunomodulators. In the present work, the β-glucans production potential of Microchloropsis salina [...] Read more.
Algae and microalgae are used as a source of different biomolecules, such as lipids and carbohydrates. Among carbohydrates, polysaccharides, such as β-glucans, are important for their application as antioxidants, antisepsis, and immunomodulators. In the present work, the β-glucans production potential of Microchloropsis salina was assessed using two different culture conditions: a high-density batch and a modeled high-density fed-batch. From the biochemical parameters determined from these two cultures conditions, it was possible to establish that the modeled high-density fed-batch culture improves the biomass growth. It was possible to obtain a biomass productivity equal to 8.00 × 10−2 ± 2.00 × 10−3 g/(L × day), while the batch condition reached 5.13 × 10−2 ± 4.00 × 10−4 g/(L × day). The same phenomenon was observed when analyzing the β-glucans accumulation, reaching volumetric productivity equal to 5.96 × 10−3 ± 2.00 × 10−4 g of product/(L × day) against the 4.10 × 10−3 ± 2.00 × 10−4 g of product/(L × day) obtained in batch conditions. These data establish a baseline condition to optimize and significantly increase β-glucan productivity, as well as biomass, adding a new and productive source of this polymer, and integrating its use in potential applications in the human and animal nutraceutical industry. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

14 pages, 5428 KiB  
Article
Phenylalanine Ammonia Lyase GmPAL1.1 Promotes Seed Vigor under High-Temperature and -Humidity Stress and Enhances Seed Germination under Salt and Drought Stress in Transgenic Arabidopsis
by Xi Zhang, Yingzi Shen, Kebing Mu, Wanhan Cai, Yangyang Zhao, Hang Shen, Xinhui Wang and Hao Ma
Plants 2022, 11(23), 3239; https://doi.org/10.3390/plants11233239 - 25 Nov 2022
Cited by 9 | Viewed by 1708
Abstract
Seed vigor is an important agronomic attribute, essentially associated with crop yield. High-temperature and humidity (HTH) stress directly affects seed development of plants, resulting in the decrease of seed vigor. Therefore, it is particularly important to discover HTH-tolerant genes related to seed vigor. [...] Read more.
Seed vigor is an important agronomic attribute, essentially associated with crop yield. High-temperature and humidity (HTH) stress directly affects seed development of plants, resulting in the decrease of seed vigor. Therefore, it is particularly important to discover HTH-tolerant genes related to seed vigor. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the first rate-limiting enzyme in the phenylpropanoid biosynthesis pathway and a key enzyme involved in plant growth and development and environmental adaptation. However, the biological function of PAL in seed vigor remains unknown. Here, GmPAL1.1 was cloned from soybean, and its protein was located in the cytoplasm and cell membrane. GmPAL1.1 was significantly induced by HTH stress in developing seeds. The overexpression of GmPAL1.1 in Arabidopsis (OE) accumulated lower level of ROS in the developing seeds and in the leaves than the WT at the physiological maturity stage under HTH stress, and the activities of SOD, POD, and CAT and flavonoid contents were significantly increased, while MDA production was markedly reduced in the leaves of the OE lines than in those of the WT. The germination rate and viability of mature seeds of the OE lines harvested after HTH stress were higher than those of the WT. Compared to the control, the overexpression of GmPAL1.1 in Arabidopsis enhanced the tolerance to salt and drought stresses during germination. Our results suggested the overexpression of GmPAL1.1 in Arabidopsis promoted seed vigor at the physiological maturation period under HTH stress and increased the seeds’ tolerance to salt and drought during germination. Full article
(This article belongs to the Special Issue Current Research on Seed Development, Germination and Vigor)
Show Figures

Figure 1

16 pages, 1262 KiB  
Review
Allelopathy and Allelochemicals of Solidago canadensis L. and S. altissima L. for Their Naturalization
by Hisashi Kato-Noguchi and Midori Kato
Plants 2022, 11(23), 3235; https://doi.org/10.3390/plants11233235 - 25 Nov 2022
Cited by 17 | Viewed by 3144
Abstract
Solidago canadensis L. and Solidago altissima L. are native to North America and have naturalized many other continents including Europa and Asia. Their species is an aggressive colonizer and forms thick monospecific stands. The evidence of the allelopathy for S. canadensis and S. [...] Read more.
Solidago canadensis L. and Solidago altissima L. are native to North America and have naturalized many other continents including Europa and Asia. Their species is an aggressive colonizer and forms thick monospecific stands. The evidence of the allelopathy for S. canadensis and S. altissima has accumulated in the literature since the late 20th century. The root exudates, extracts, essential oil and rhizosphere soil of S. canadensis suppressed the germination, growth and the arbuscular mycorrhizal colonization of several plants, including native plant species. Allelochemicals such as fatty acids, terpenes, flavonoids, polyphenols and their related compounds were identified in the extracts and essential oil of S. canadensis. The concentrations of total phenolics, total flavonoids and total saponins in the rhizosphere soil of S. canadensis obtained from the invasive ranges were greater than those from the native ranges. Allelochemicals such as terpenes, flavonoids, polyacetylene and phenols were also identified in the extracts, essential oil and the rhizosphere soil in S. altissima. Among the identified allelochemicals of S. altissima, the cis-dehydromatricaria ester may be involved in the allelopathy considering its growth inhibitory activity and its concentration in the rhizosphere soil. Therefore, the allelopathy of S. canadensis and S. altissima may support their invasiveness, naturalization and formation of thick monospecific stands. This is the first review article focusing on the allelopathy of both of S. canadensis and S. altissima. Full article
Show Figures

Graphical abstract

18 pages, 1110 KiB  
Review
In Vitro Conservation through Slow Growth Storage Technique of Fruit Species: An Overview of the Last 10 Years
by Carla Benelli, Waed Tarraf, Tolga Izgu and Anna De Carlo
Plants 2022, 11(23), 3188; https://doi.org/10.3390/plants11233188 - 22 Nov 2022
Cited by 7 | Viewed by 3688
Abstract
Plant genetic resources conservation may be a potential option for the improvement of agricultural crops through modern biotechnologies, and in vitro conservation is a tool available to safeguard plant biodiversity. Ex situ conservation of plant genetic resources using the in vitro procedures is [...] Read more.
Plant genetic resources conservation may be a potential option for the improvement of agricultural crops through modern biotechnologies, and in vitro conservation is a tool available to safeguard plant biodiversity. Ex situ conservation of plant genetic resources using the in vitro procedures is in progress in many countries. The slow growth storage (SGS) technique is a valid in vitro approach to preserve several vegetatively propagated species by controlling the growth and development of plantlets, economizing storage space and labor and reducing costs. Moreover, SGS prolongs the timing between subcultures, lowers the risk of losing germplasm through handling errors, such as contamination problems, and decreases the risk of genetic instability due to the reduction in the number of subcultures. SGS is applied by considering different factors: temperature, light or darkness conditions, medium composition, including mineral or sucrose concentrations, and the presence/absence of plant growth regulators, osmotic agents and growth inhibitors. SGS protocols for some fruit species have been well defined, others require additional research. The present review focuses on the effect of several factors that influence the SGS of in vitro shoots derived from temperate and tropical fruit species during the last ten years. Full article
Show Figures

Figure 1

21 pages, 5201 KiB  
Article
The Fate of Endemic Species Specialized in Island Habitat under Climate Change in a Mediterranean High Mountain
by Antonio J. Mendoza-Fernández, Ángel Fernández-Ceular, Domingo Alcaraz-Segura, Miguel Ballesteros and Julio Peñas
Plants 2022, 11(23), 3193; https://doi.org/10.3390/plants11233193 - 22 Nov 2022
Cited by 6 | Viewed by 2047
Abstract
Mediterranean high-mountain endemic species are particularly vulnerable to climatic changes in temperature, precipitation and snow-cover dynamics. Sierra Nevada (Spain) is a biodiversity hotspot in the western Mediterranean, with an enormous plant species richness and endemicity. Moehringia fontqueri is a threatened endemic plant restricted [...] Read more.
Mediterranean high-mountain endemic species are particularly vulnerable to climatic changes in temperature, precipitation and snow-cover dynamics. Sierra Nevada (Spain) is a biodiversity hotspot in the western Mediterranean, with an enormous plant species richness and endemicity. Moehringia fontqueri is a threatened endemic plant restricted to north-facing siliceous rocks along a few ridges of the eastern Sierra Nevada. To guide conservation actions against climate change effects, here we propose the simultaneous assessment of the current reproductive success and the possible species’ range changes between current and future climatic conditions, assessing separately different subpopulations by altitude. Reproductive success was tested through the seed-set data analysis. The species’ current habitat suitability was modeled in Maxent using species occurrences, topographic, satellite and climatic variables. Future habitat suitability was carried out for two climatic scenarios (RCP 2.6 and 8.5). The results showed the lowest reproductive success at the lowest altitudes, and vice versa at the highest altitudes. Habitat suitability decreased by 80% from current conditions to the worst-case scenario (RCP 8.5). The lowest subpopulations were identified as the most vulnerable to climate change effects while the highest ones were the nearest to future suitable habitats. Our simultaneous assessment of reproductive success and habitat suitability aims to serve as a model to guide conservation, management and climate change mitigation strategies through adaptive management to safeguard the persistence of the maximum genetic pool of Mediterranean high-mountain plants threatened by climate change. Full article
Show Figures

Figure 1

21 pages, 1083 KiB  
Article
Potassium Application Enhanced Plant Growth, Mineral Composition, Proximate and Phytochemical Content in Trachyandra divaricata Kunth (Sandkool)
by Bakholise Bulawa, Avela Sogoni, Muhali Olaide Jimoh and Charles Petrus Laubscher
Plants 2022, 11(22), 3183; https://doi.org/10.3390/plants11223183 - 21 Nov 2022
Cited by 9 | Viewed by 2465
Abstract
Wild leafy vegetables are commonly included in the diet of people in rural homesteads. Among various wild edible vegetables in South Africa, Trachyandra divaricata (Sandkool) is one of the most abundant but underutilized due to the dearth of literature on its cultivation and [...] Read more.
Wild leafy vegetables are commonly included in the diet of people in rural homesteads. Among various wild edible vegetables in South Africa, Trachyandra divaricata (Sandkool) is one of the most abundant but underutilized due to the dearth of literature on its cultivation and nutritional value. In the present study, the effect of potassium application and pruning on growth dynamics, mineral composition, and proximate and phytochemical content in T. divaricata were evaluated. Treatments consisted of three potassium concentrations (0.0072, 0.0144, and 0.0216 M) supplemented in the form of potassium sulphate (K2SO4) with four pruning levels (unpruned, 5, 10, and 15 cm) applied in each treatment. The potassium doses were added to the nutrient solution, while the control treatment was sustained and irrigated with nutrient solution only. The results revealed a significant increase in flower bud yield, height, total dry and wet weight of shoots and roots, as well as ash and neutral detergent fibre in plants irrigated with 0.0072 M of K2SO4 without pruning. Conversely, chlorophyll content and Ca were comparable among treatments, while the highest yield of Na, P, N, and Zn was recorded in treatment 100 mL of K2SO4 with 10 cm pruning. Likewise, the highest antioxidant value (Polyphenols, Flavonol and DPPH) was obtained from plants irrigated with 0.0072 M of K2SO4 with 10 cm pruning. Based on these findings, T. divaricata is a promising leafy vegetable as a minimum dose (0.0072 M) of K with moderate pruning optimised its productivity in terms of growth, biomass parameters, nutritional content, and antioxidant potential. Due to its rich nutritional value, the plant should be domesticated and studied further for its potential nutraceutical benefits. Full article
Show Figures

Figure 1

18 pages, 3580 KiB  
Review
Full Exploitation of Peach Palm (Bactris gasipaes Kunth): State of the Art and Perspectives
by Kamila de Cássia Spacki, Rúbia Carvalho Gomes Corrêa, Thaís Marques Uber, Lillian Barros, Isabel C. F. R. Ferreira, Rosely Aparecida Peralta, Regina de Fátima Peralta Muniz Moreira, Cristiane Vieira Helm, Edson Alves de Lima, Adelar Bracht and Rosane Marina Peralta
Plants 2022, 11(22), 3175; https://doi.org/10.3390/plants11223175 - 21 Nov 2022
Cited by 8 | Viewed by 5049
Abstract
The peach palm (Bactris gasipaes Kunth) is a palm tree native to the Amazon region, with plantations expanding to the Brazilian Southwest and South regions. This work is a critical review of historical, botanical, social, environmental, and nutritional aspects of edible and [...] Read more.
The peach palm (Bactris gasipaes Kunth) is a palm tree native to the Amazon region, with plantations expanding to the Brazilian Southwest and South regions. This work is a critical review of historical, botanical, social, environmental, and nutritional aspects of edible and nonedible parts of the plant. In Brazil, the importance of the cultivation of B. gasipaes to produce palm heart has grown considerably, due to its advantages in relation to other palm species, such as precocity, rusticity and tillering. The last one is especially important, as it makes the exploitation of peach palm hearts, contrary to what happens with other palm tree species, a non-predatory practice. Of special interest are the recent efforts aiming at the valorization of the fruit as a source of carotenoids and starch. Further developments indicate that the B. gasipaes lignocellulosic wastes hold great potential for being upcycled into valuable biotechnological products such as prebiotics, enzymes, cellulose nanofibrils and high fiber flours. Clean technologies are protagonists of the recovery processes, ensuring the closure of the product’s life cycle in a “green” way. Future research should focus on expanding and making the recovery processes economically viable, which would be of great importance for stimulating the peach palm production chain. Full article
Show Figures

Figure 1

13 pages, 315 KiB  
Review
An Alternative Source of Biopesticides and Improvement in Their Formulation—Recent Advances
by Dragana Šunjka and Špela Mechora
Plants 2022, 11(22), 3172; https://doi.org/10.3390/plants11223172 - 20 Nov 2022
Cited by 11 | Viewed by 3714
Abstract
Plant protection in contemporary agriculture requires intensive pesticide application. Their use has enabled the increase in yields, simplifying cultivation systems and crop protection strategies, through successful control of harmful organisms. However, it has led to the accumulation of pesticides in agricultural products and [...] Read more.
Plant protection in contemporary agriculture requires intensive pesticide application. Their use has enabled the increase in yields, simplifying cultivation systems and crop protection strategies, through successful control of harmful organisms. However, it has led to the accumulation of pesticides in agricultural products and the environment, contaminating the ecosystem and causing adverse health effects. Therefore, finding new possibilities for plant protection and effective control of pests without consequences for humans and the environment is imperative for agricultural production. The most important alternatives to the use of chemical plant protection products are biopesticides. However, in order to increase their application and availability, it is necessary to improve efficacy and stability through new active substances and improved formulations. This paper represents an overview of the recent knowledge in the field of biopesticides and discusses the possibilities of the use of some new active substances and the improvement of formulations. Full article
(This article belongs to the Special Issue Advances in Alternative Measures in Plant Protection)
20 pages, 8769 KiB  
Article
A Copy Paste and Semantic Segmentation-Based Approach for the Classification and Assessment of Significant Rice Diseases
by Zhiyong Li, Peng Chen, Luyu Shuai, Mantao Wang, Liang Zhang, Yuchao Wang and Jiong Mu
Plants 2022, 11(22), 3174; https://doi.org/10.3390/plants11223174 - 20 Nov 2022
Cited by 7 | Viewed by 2248
Abstract
The accurate segmentation of significant rice diseases and assessment of the degree of disease damage are the keys to their early diagnosis and intelligent monitoring and are the core of accurate pest control and information management. Deep learning applied to rice disease detection [...] Read more.
The accurate segmentation of significant rice diseases and assessment of the degree of disease damage are the keys to their early diagnosis and intelligent monitoring and are the core of accurate pest control and information management. Deep learning applied to rice disease detection and segmentation can significantly improve the accuracy of disease detection and identification but requires a large number of training samples to determine the optimal parameters of the model. This study proposed a lightweight network based on copy paste and semantic segmentation for accurate disease region segmentation and severity assessment. First, a dataset for rice significant disease segmentation was selected and collated based on 3 open-source datasets, containing 450 sample images belonging to 3 categories of rice leaf bacterial blight, blast and brown spot. Then, to increase the diversity of samples, a data augmentation method, rice leaf disease copy paste (RLDCP), was proposed that expanded the collected disease samples with the concept of copy and paste. The new RSegformer model was then trained by replacing the new backbone network with the lightweight semantic segmentation network Segformer, combining the attention mechanism and changing the upsampling operator, so that the model could better balance local and global information, speed up the training process and reduce the degree of overfitting of the network. The results show that RLDCP could effectively improve the accuracy and generalisation performance of the semantic segmentation model compared with traditional data augmentation methods and could improve the MIoU of the semantic segmentation model by about 5% with a dataset only twice the size. RSegformer can achieve an 85.38% MIoU at a model size of 14.36 M. The method proposed in this paper can quickly, easily and accurately identify disease occurrence areas, their species and the degree of disease damage, providing a reference for timely and effective rice disease control. Full article
(This article belongs to the Special Issue Deep Learning in Plant Sciences)
Show Figures

Figure 1

25 pages, 1144 KiB  
Review
Fungal Pathogens and Seed Storage in the Dry State
by Isaura Martín, Laura Gálvez, Luis Guasch and Daniel Palmero
Plants 2022, 11(22), 3167; https://doi.org/10.3390/plants11223167 - 18 Nov 2022
Cited by 14 | Viewed by 8548
Abstract
Seeds can harbor a wide range of microorganisms, especially fungi, which can cause different sanitary problems. Seed quality and seed longevity may be drastically reduced by fungi that invade seeds before or after harvest. Seed movement can be a pathway for the spread [...] Read more.
Seeds can harbor a wide range of microorganisms, especially fungi, which can cause different sanitary problems. Seed quality and seed longevity may be drastically reduced by fungi that invade seeds before or after harvest. Seed movement can be a pathway for the spread of diseases into new areas. Some seed-associated fungi can also produce mycotoxins that may cause serious negative effects on humans, animals and the seeds themselves. Seed storage is the most efficient and widely used method for conserving plant genetic resources. The seed storage conditions used in gene banks, low temperature and low seed moisture content, increase seed longevity and are usually favorable for the survival of seed-borne mycoflora. Early detection and identification of seed fungi are essential activities to conserve high-quality seeds and to prevent pathogen dissemination. This article provides an overview of the characteristics and detection methods of seed-borne fungi, with a special focus on their potential effects on gene bank seed conservation. The review includes the following aspects: types of seed-borne fungi, paths of infection and transmission, seed health methods, fungi longevity, risk of pathogen dissemination, the effect of fungi on seed longevity and procedures to reduce the harmful effects of fungi in gene banks. Full article
(This article belongs to the Special Issue Advances in Seed Longevity)
Show Figures

Figure 1

12 pages, 2241 KiB  
Article
The Cultural and Commercial Value of Tulsi (Ocimum tenuiflorum L.): Multidisciplinary Approaches Focusing on Species Authentication
by Sukvinder Kaur Bhamra, Michael Heinrich, Mark R. D. Johnson, Caroline Howard and Adrian Slater
Plants 2022, 11(22), 3160; https://doi.org/10.3390/plants11223160 - 18 Nov 2022
Cited by 3 | Viewed by 5624
Abstract
Tulsi (Holy basil, Ocimum tenuiflorum L., Lamiaceae), native to Asia, has become globalised as the cultural, cosmetic, and medicinal uses of the herb have been popularised. DNA barcoding, a molecular technique used to identify species based on short regions of DNA, can discriminate [...] Read more.
Tulsi (Holy basil, Ocimum tenuiflorum L., Lamiaceae), native to Asia, has become globalised as the cultural, cosmetic, and medicinal uses of the herb have been popularised. DNA barcoding, a molecular technique used to identify species based on short regions of DNA, can discriminate between different species and identify contaminants and adulterants. This study aimed to explore the values associated with Tulsi in the United Kingdom (UK) and authenticate samples using DNA barcoding. A mixed methods approach was used, incorporating social research (i.e., structured interviews) and DNA barcoding of Ocimum samples using the ITS and trnH-psbA barcode regions. Interviews revealed the cultural significance of Tulsi: including origins, knowledge exchange, religious connotations, and medicinal uses. With migration, sharing of plants and seeds has been seen as Tulsi plants are widely grown in South Asian (SA) households across the UK. Vouchered Ocimum specimens (n = 33) were obtained to create reference DNA barcodes which were not available in databases. A potential species substitution of O. gratissimum instead of O. tenuiflorum amongst SA participants was uncovered. Commercial samples (n = 47) were difficult to authenticate, potentially due to DNA degradation during manufacturing processes. This study highlights the cultural significance of Tulsi, despite a potential species substitution, the plant holds a prestigious place amongst SA families in the UK. DNA barcoding was a reliable way to authenticate Ocimum species. Full article
(This article belongs to the Special Issue DNA Barcoding for Herbal Medicines)
Show Figures

Figure 1

13 pages, 983 KiB  
Article
Exploring the Chemical Composition of Bulgarian Lavender Absolute (Lavandula Angustifolia Mill.) by GC/MS and GC-FID
by Daniela Nedeltcheva-Antonova, Kamelia Gechovska, Stanislav Bozhanov and Liudmil Antonov
Plants 2022, 11(22), 3150; https://doi.org/10.3390/plants11223150 - 17 Nov 2022
Cited by 5 | Viewed by 2668
Abstract
Lavender (L. angustifolia Mill.) is an important essential oil-bearing and medicinal plant with high commercial value. Lavender scent components can be derived not only as an essential oil but also as lavender concrete or absolute. The development of reliable analytical methods for [...] Read more.
Lavender (L. angustifolia Mill.) is an important essential oil-bearing and medicinal plant with high commercial value. Lavender scent components can be derived not only as an essential oil but also as lavender concrete or absolute. The development of reliable analytical methods for origin assessment and quality assurance is of significant fundamental importance and high practical interest. Therefore, a comprehensive chemical profiling of seven industrial samples of Bulgarian lavender absolute (L. angustifolia Mill.) was performed by means of gas chromatography–mass spectrometry (GC/MS) and gas chromatography with flame ionization detection (GC-FID). As a result, 111 individual compounds were identified by GC/MS, and their quantitative content was simultaneously determined by GC-FID, representing 94.28–97.43% of the total contents of the lavender absolute. According to our results, the main constituents of lavender absolute (LA) are representatives of the terpene compounds (with the dominating presence of oxygenated monoterpenes, 52.83–80.55%), followed by sesquiterpenes (7.80–15.21%) and triterpenoids (as minor components). Coumarins in various amounts (1.79–14.73%) and aliphatic compounds (hydrocarbons, ketones, esters, etc.) are found, as well. The acyclic monoterpene linalool is the main terpene alcohol and, together with its ester linalyl acetate, are the two main constituents in the LAs. Linalool was found in concentrations of 27.33–38.24% in the LA1-LA6 samples and 20.74% in the LA7 samples. The amount of linalyl acetate was in the range of 26.58 to 37.39% in the LA1–LA6 samples, while, surprisingly, it was not observed in LA7. This study shows that the chemical profile of the studied LAs is close to the lavender essential oil (LO), fulfilling most of the requirements of the International Standard ISO 3515:2002. Full article
(This article belongs to the Special Issue Phytochemistry of Aromatic and Medicinal Plants)
Show Figures

Figure 1

16 pages, 2975 KiB  
Article
Spirulina platensis Ameliorates Oxidative Stress Associated with Antiretroviral Drugs in HepG2 Cells
by Thabani Sibiya, Terisha Ghazi, Jivanka Mohan, Savania Nagiah and Anil A. Chuturgoon
Plants 2022, 11(22), 3143; https://doi.org/10.3390/plants11223143 - 17 Nov 2022
Cited by 6 | Viewed by 2063
Abstract
Lately, Spirulina platensis (SP), as an antioxidant, has exhibited high potency in the treatment of oxidative stress, diabetes, immune disorder, inflammatory stress, and bacterial and viral-related diseases. This study investigated the possible protective role of Spirulina platensis against ARV-induced oxidative stress in HepG2 [...] Read more.
Lately, Spirulina platensis (SP), as an antioxidant, has exhibited high potency in the treatment of oxidative stress, diabetes, immune disorder, inflammatory stress, and bacterial and viral-related diseases. This study investigated the possible protective role of Spirulina platensis against ARV-induced oxidative stress in HepG2 cells. Human liver (HepG2) cells were treated with ARVs ((Lamivudine (3TC): 1.51 µg/mL, tenofovir disoproxil fumarate (TDF): 0.3 µg/mL and Emtricitabine (FTC): 1.8 µg/mL)) for 96 h and thereafter treated with 1.5 µg/mL Spirulina platensis for 24 h. After the treatments, the gene and protein expressions of the antioxidant response pathway were determined using a quantitative polymerase chain reaction (qPCR) and Western blots. The results show that Spirulina platensis decreased the gene expressions of Akt (p < 0.0001) and eNOS (↓p < 0.0001) while, on the contrary, it increased the transcript levels of NRF-2 (↑p = 0.0021), Keap1 (↑p = 0.0002), CAT (↑p < 0.0001), and NQO-1 (↑p = 0.1432) in the HepG2 cells. Furthermore, the results show that Spirulina platensis also decreased the protein expressions of NRF-2 (↓p = 0.1226) and pNRF-2 (↓p = 0.0203). Interestingly, HAART-SP induced an NRF-2 pathway response through upregulating NRF-2 (except for FTC-SP) (↑p < 0.0001), CAT (↑p < 0.0001), and NQO-1 (except for FTC-SP) (↑p < 0.0001) mRNA expression. In addition, NRF-2 (↑p = 0.0085) and pNRF-2 (↑p < 0.0001) protein expression was upregulated in the HepG2 cells post-exposure to HAART-SP. The results, therefore, allude to the fact that Spirulina platensis has the potential to mitigate HAART-adverse drug reactions (HAART toxicity) through the activation of antioxidant response in HepG2 cells. We hereby recommend further studies on Spirulina platensis and HAART synergy. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

0 pages, 3362 KiB  
Article
Arabidopsis thaliana Accessions from the Chernobyl Exclusion Zone Show Decreased Sensitivity to Additional Acute Irradiation
by Mikhail Podlutskii, Darya Babina, Marina Podobed, Ekaterina Bondarenko, Sofia Bitarishvili, Yana Blinova, Ekaterina Shesterikova, Alexander Prazyan, Larisa Turchin, Dmitrii Garbaruk, Maxim Kudin, Gustavo T. Duarte and Polina Volkova
Plants 2022, 11(22), 3142; https://doi.org/10.3390/plants11223142 - 17 Nov 2022
Cited by 10 | Viewed by 3786
Abstract
Chronic ionising radiation exposure is a main consequence of radioactive pollution of the environment. The development of functional genomics approaches coupled with morphological and physiological studies allows new insights into plant adaptation to life under chronic irradiation. Using morphological, reproductive, physiological, and transcriptomic [...] Read more.
Chronic ionising radiation exposure is a main consequence of radioactive pollution of the environment. The development of functional genomics approaches coupled with morphological and physiological studies allows new insights into plant adaptation to life under chronic irradiation. Using morphological, reproductive, physiological, and transcriptomic experiments, we evaluated the way in which Arabidopsis thaliana natural accessions from the Chernobyl exclusion zone recover from chronic low-dose and acute high-dose γ-irradiation of seeds. Plants from radioactively contaminated areas were characterized by lower germination efficiency, suppressed growth, decreased chlorophyll fluorescence, and phytohormonal changes. The transcriptomes of plants chronically exposed to low-dose radiation indicated the repression of mobile genetic elements and deregulation of genes related to abiotic stress tolerance. Furthermore, these chronically irradiated natural accessions showed higher tolerance to acute 150 Gy γ-irradiation of seeds, according to transcriptome and phytohormonal profiles. Overall, the lower sensitivity of the accessions from radioactively contaminated areas to acute high-dose irradiation may come at the cost of their growth performance under normal conditions. Full article
(This article belongs to the Special Issue Effects of Chronic Irradiation in Plants)
Show Figures

Figure 1

Back to TopTop