Biosynthesis and Green Synthesis of Nanomaterials: New Methodologies and Results, 2nd Edition

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: 1 October 2024 | Viewed by 5830

Special Issue Editor


E-Mail Website
Guest Editor
Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
Interests: natural products; alkaloids; terpenes; plant extracts; synthesis of organic compounds; chemical modification of drugs; organic materials: synthesis and nanostructuration of surfaces; nanoparticles for drug delivery; polymers and applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanomaterials have emerged as an important tool in biomedicine and targeted drug delivery, biosensing and chemical sensing, catalysis and optoelectronic devices. However, there are concerns regarding the sustainability of physicochemically synthesized nanomaterials, which often require toxic solvents, energy-requiring processes, and high temperatures, and produce undesirable chemical wastes. 

The biosynthesis of nanomaterials has recently attracted interest as a new approach to the development of green nanomanufacturing. The biosynthesis processes are environmentally friendly, cost-effective, and easy to be scaled up, and can also bring biocompatibility to the nanomaterials. 

The use of living organisms, such as bacteria, fungi, molds, viruses or microalgae; their components or extracts; and plant extracts or biomolecules (enzymes, peptides, polysaccharides, and poly-amino acids) as catalysts for the sustainable production of nanomaterials, mainly as reducing agents, has significantly expanded during the last few years, and a variety of fabricated nanomaterials have been developed. Nanoparticles made from copper, manganese, selenium, cobalt, silver, gold, platinum, zirconium, palladium, iron, cadmium, yttrium, titanium oxides, zinc oxides, carbon dots, tellurium nanorods or metal sulfide have been prepared. 

This Special Issue provides insight into the biosynthesis and green synthesis of nanomaterials, together with their chemical, biological, therapeutic, and diagnostic applications.

Prof. Dr. Juan Manuel López Romero
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal/oxide/sulfur nanoparticles
  • biochemistry
  • biomimetics
  • drug delivery
  • nanostructured materials
  • biocompatibility
  • plant extracts
  • nano-organics
  • anticancer
  • microbes

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5883 KiB  
Article
In Situ Electrochemical Synthesis of Squamous-like Cu2S Induced by Sulfate-Reducing Bacteria as a Fenton-like Catalyst in Wastewater Treatment: Catalytic Performance and Mechanism
by Liuhui Zhao, Zihao Li, Jing Yang, Jiawen Sun, Xiaofan Zhai, Fubin Ma, Jizhou Duan, Peng Ju and Baorong Hou
Nanomaterials 2024, 14(7), 621; https://doi.org/10.3390/nano14070621 - 02 Apr 2024
Viewed by 537
Abstract
In this paper, a novel method was proposed for the synthesis of Cu2S on copper mesh via electrolysis in SRB culture medium. It was found that following electrolysis in SRB medium, squamous-like Cu2S arrays were obtained on the copper [...] Read more.
In this paper, a novel method was proposed for the synthesis of Cu2S on copper mesh via electrolysis in SRB culture medium. It was found that following electrolysis in SRB medium, squamous-like Cu2S arrays were obtained on the copper mesh, and the Cu2S loading contents varied with the electrolyzing parameters. The resultant Cu2S on copper mesh in SRB (CSCM-SRB) with the highest catalytic MB degradation properties was produced by electrolysis at 3.75 mA/cm2 for 900 s. The optimized MB-degrading conditions were determined to be 1.2 cm2/mL CSCM-SRB with 0.05 M H2O2 at 35 °C when pH = 6, under which the degradation of MB reached over 99% after 120 min of reaction. Disinfecting properties was also proven by antibacterial tests, revealing that an almost 100% antibacterial rate against E. coli was obtained after 8 min. The organic compounds produced by SRB adsorbed on CSCM-SRB strongly promoted the degradation of MB. Furthermore, possible Fenton-like mechanisms of CSCM-SRB were proposed, illustrating that ·O2, ·OH, and 1O2 acted as the main functional species during Fenton-like reactions, leading to effective MB degradation and high antibacterial properties. Finally, a simple device for wastewater treatment was designed, providing possible applications in real environments. Full article
Show Figures

Figure 1

19 pages, 15337 KiB  
Article
Effect of Synthesis Conditions on CuO-NiO Nanocomposites Synthesized via Saponin-Green/Microwave Assisted-Hydrothermal Method
by Amnah Al-Yunus, Wafa Al-Arjan, Hassan Traboulsi, Robson Schuarca, Paul Chando, Ian D. Hosein and Manal Hessien
Nanomaterials 2024, 14(3), 308; https://doi.org/10.3390/nano14030308 - 03 Feb 2024
Cited by 2 | Viewed by 1006
Abstract
This work presents the synthesis of CuO-NiO nanocomposites under different synthesis conditions. Nanocomposites were synthesized by merging a green synthesis process with a microwave-assisted hydrothermal method. The synthesis conditions were as follows: concentration of the metal precursors (0.05, 0.1, and 0.2 M), pH [...] Read more.
This work presents the synthesis of CuO-NiO nanocomposites under different synthesis conditions. Nanocomposites were synthesized by merging a green synthesis process with a microwave-assisted hydrothermal method. The synthesis conditions were as follows: concentration of the metal precursors (0.05, 0.1, and 0.2 M), pH (9, 10, and 11), synthesis temperature (150 °C, 200 °C, and 250 °C), microwave treatment time (15, 30, and 45 min), and extract concentration (20 and 40 mL of 1 g saponin/10 mL water, and 30 mL of 2 g saponin/10 mL water). The phases and crystallite sizes of the calcined nanocomposites were characterized using XRD and band gap via UV-Vis spectroscopy, and their morphologies were investigated using SEM and TEM. The XRD results confirmed the formation of a face-centered cubic phase for nickel oxide, while copper oxide has a monoclinic phase. The calculated crystallite size was in the range of 29–39 nm. The direct band gaps of the samples prepared in this work were in the range of 2.39–3.17 eV. Full article
Show Figures

Figure 1

20 pages, 7589 KiB  
Article
Photocatalytic Degradation of Rhodamine-B and Water Densification via Eco-Friendly Synthesized Cr2O3 and Ag@Cr2O3 Using Garlic Peel Aqueous Extract
by Laila S. Alqarni, Maha D. Alghamdi, Aisha A. Alshahrani, Nasser F. Alotaibi, Shaima M. N. Moustafa, Khulaif Ashammari, Ibtihal A. Alruwaili and Amr Mohammad Nassar
Nanomaterials 2024, 14(3), 289; https://doi.org/10.3390/nano14030289 - 31 Jan 2024
Cited by 1 | Viewed by 901
Abstract
The purification and densification of wastewater play an important role in water recycling, especially if the materials used in water recycling are other types of recycled waste. Therefore, considering this view in this study, the biosynthesis of silver-decorated chromium oxide nanoparticles utilizing a [...] Read more.
The purification and densification of wastewater play an important role in water recycling, especially if the materials used in water recycling are other types of recycled waste. Therefore, considering this view in this study, the biosynthesis of silver-decorated chromium oxide nanoparticles utilizing a wasted Allium sativum (garlic) peel extract is investigated. The aqueous extract of garlic peel (GPE) was treated with silver nitrate, chromium nitrate, and a mixture of silver nitrate and chromium nitrate to synthesize silver nanoparticles (Ag-garlic), chromium oxide nanoparticles (Cr2O3-garlic), and silver-decorated chromium oxide nanoparticles (Ag@Cr2O3-garlic), respectively. The synthesized nanoparticles were elucidated via thermal gravimetric analysis (TGA), infrared spectra (FT-IR), absorption spectra (UV-Vis), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Antimicrobial activity studies were conducted against waterborne germs, bacterial strains (Bacillus subtilis, Enterococcus faecium, Escherichia coli, and Pseudomonas aeruginosa), and fungal strains (Alternaria porri, Aspergillus flavus, Aspergillus niger, Fuserium oxysporum, and Trichoderma longibrachiatum) and showed significant levels of antimicrobial activity. The results revealed that Ag@Cr2O3 significantly improved antimicrobial activity due to their synergistic effect. The photocatalytic activity of nanoparticles was assessed using Rhodamine B dye (5 ppm) under solar irradiation. Cr2O3-garlic exhibited the best activity as a photocatalyst among the studied nanoparticles, with 97.5% degradation efficiency under optimal conditions. Full article
Show Figures

Figure 1

19 pages, 13728 KiB  
Article
Green Synthesis of Silver Nanoparticles Using Jasminum nudiflorum Flower Extract and Their Antifungal and Antioxidant Activity
by Qian Yang, Juan Guo, Xiaofu Long, Chunyang Pan, Guoqin Liu and Jiantao Peng
Nanomaterials 2023, 13(18), 2558; https://doi.org/10.3390/nano13182558 - 14 Sep 2023
Cited by 3 | Viewed by 1449
Abstract
The synthesis of metal nanomaterials is a timely topic due to their widespread use in fields such as crop protection, the environment, medicine, and engineering. Green synthesis of nanoparticles, which uses plant extracts instead of industrial chemical agents to reduce metal ions, has [...] Read more.
The synthesis of metal nanomaterials is a timely topic due to their widespread use in fields such as crop protection, the environment, medicine, and engineering. Green synthesis of nanoparticles, which uses plant extracts instead of industrial chemical agents to reduce metal ions, has been developed to decrease costs, reduce pollution, and improve environmental and human health safety. In this paper, silver nanoparticles (AgNPs) were synthesized from the flower extract of Jasminum nudiflorum. The green synthesized AgNPs were characterized by UV-Vis, FTIR, XRD, SEM, and other technologies. The antifungal activity of the prepared AgNPs against Alternaria longipes was tested using the plate method, the concentration dilution method, and other methods, and the antioxidant activity of the prepared AgNPs was evaluated by DPPH and hydroxyl free scavenging methods. The results showed that AgNPs synthesized from J. nudiflorum flower extract have a face-centered cubic structure (fcc), and the average grain size of the nanoparticles is 13 nm; they are also mainly spherical in shape. Additionally, the concentration of AgNPs (ranging from 16 to 128 μg/mL) significantly inhibited the mycelial growth of A. longipes in comparison to the control. The inhibitory rate gradually increased with increasing AgNP concentration, ranging from 70.64% to 79.60% at a concentration of 128 μg/mL. The minimum inhibitory concentration was observed at 32 μg/mL. AgNPs induced overaccumulation of MDA in A. longipes, resulting in cell membrane damage and nucleic acid leakage. Moreover, the AgNPs have significant antioxidant properties, which increase with increasing concentration. The clearance rate of DPPH was 25.46 ± 0.90% when the concentration of AgNPs was 8 μg/mL, and the clearance rate of the hydroxyl radical was 28.62 ± 0.59% when the concentration of AgNPs was 128 μg/mL. Thus, the flower extract from J. nudiflorum holds potential as an environmentally friendly and green alternative for the synthesis of AgNPs, which have antifungal and antioxidant potential. Full article
Show Figures

Figure 1

27 pages, 15276 KiB  
Article
Innovative Eco-Friendly Microwave-Assisted Rapid Biosynthesis of Ag/AgCl-NPs Coated with Algae Bloom Extract as Multi-Functional Biomaterials with Non-Toxic Effects on Normal Human Cells
by Jeeraporn Pekkoh, Khomsan Ruangrit, Thida Kaewkod, Yingmanee Tragoolpua, Supawitch Hoijang, Laongnuan Srisombat, Antira Wichapein, Wasu Pathom-aree, Yasuo Kato, Guangce Wang and Sirasit Srinuanpan
Nanomaterials 2023, 13(14), 2141; https://doi.org/10.3390/nano13142141 - 24 Jul 2023
Cited by 1 | Viewed by 1411
Abstract
Harmful algal blooms impact human welfare and are a global concern. Sargassum spp., a type of algae or seaweed that can potentially bloom in certain regions of the sea around Thailand, exhibits a noteworthy electron capacity as the sole reducing and stabilizing agent, [...] Read more.
Harmful algal blooms impact human welfare and are a global concern. Sargassum spp., a type of algae or seaweed that can potentially bloom in certain regions of the sea around Thailand, exhibits a noteworthy electron capacity as the sole reducing and stabilizing agent, which suggests its potential for mediating nanoparticle composites. This study proposes an eco-friendly microwave-assisted biosynthesis (MAS) method to fabricate silver nanoparticles coated with Sargassum aqueous extract (Ag/AgCl-NPs-ME). Ag/AgCl-NPs-ME were successfully synthesized in 1 min using a 20 mM AgNO3 solution without additional hazardous chemicals. UV–visible spectroscopy confirmed their formation through a surface plasmon resonance band at 400–500 nm. XRD and FTIR analyses verified their crystalline nature and involvement of organic molecules. TEM and SEM characterization showed well-dispersed Ag/AgCl-NPs-ME with an average size of 36.43 nm. The EDS results confirmed the presence of metallic Ag+ and Cl ions. Ag/AgCl-NPs-ME exhibited significant antioxidant activity against free radicals (DPPH, ABTS, and FRAP), suggesting their effectiveness. They also inhibited enzymes (tyrosinase and ACE) linked to diseases, indicating therapeutic potential. Importantly, the Ag/AgCl-NPs-ME displayed remarkable cytotoxicity against cancer cells (A375, A549, and Caco-2) while remaining non-toxic to normal cells. DNA ladder and TUNEL assays confirmed the activation of apoptosis mechanisms in cancer cells after a 48 h treatment. These findings highlight the versatile applications of Ag/AgCl-NPs-ME in food, cosmetics, pharmaceuticals, and nutraceuticals. Full article
Show Figures

Figure 1

Back to TopTop