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Abstract: Harmful algal blooms impact human welfare and are a global concern. Sargassum spp., a
type of algae or seaweed that can potentially bloom in certain regions of the sea around Thailand,
exhibits a noteworthy electron capacity as the sole reducing and stabilizing agent, which suggests its
potential for mediating nanoparticle composites. This study proposes an eco-friendly microwave-
assisted biosynthesis (MAS) method to fabricate silver nanoparticles coated with Sargassum aqueous
extract (Ag/AgCl-NPs-ME). Ag/AgCl-NPs-ME were successfully synthesized in 1 min using a 20 mM
AgNO3 solution without additional hazardous chemicals. UV–visible spectroscopy confirmed their
formation through a surface plasmon resonance band at 400–500 nm. XRD and FTIR analyses verified
their crystalline nature and involvement of organic molecules. TEM and SEM characterization showed
well-dispersed Ag/AgCl-NPs-ME with an average size of 36.43 nm. The EDS results confirmed the
presence of metallic Ag+ and Cl− ions. Ag/AgCl-NPs-ME exhibited significant antioxidant activity
against free radicals (DPPH, ABTS, and FRAP), suggesting their effectiveness. They also inhibited
enzymes (tyrosinase and ACE) linked to diseases, indicating therapeutic potential. Importantly, the
Ag/AgCl-NPs-ME displayed remarkable cytotoxicity against cancer cells (A375, A549, and Caco-2)
while remaining non-toxic to normal cells. DNA ladder and TUNEL assays confirmed the activation
of apoptosis mechanisms in cancer cells after a 48 h treatment. These findings highlight the versatile
applications of Ag/AgCl-NPs-ME in food, cosmetics, pharmaceuticals, and nutraceuticals.

Keywords: anticancer; antioxidant; biosynthesis; macroalgae; microwave; silver nanoparticles

1. Introduction

Harmful macroalgae blooms, such as Sargassum blooms, have significant consequences
for coastal ecosystems, economies, and human activities [1]. These blooms present consider-
able challenges. For example, macroalgal blooms can lead to excessive nutrient enrichment
and oxygen depletion in aquatic ecosystems, causing harm to marine life, including fish,
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shellfish, and other aquatic organisms [1,2]. The rapid proliferation of harmful algal species
can outcompete and displace native species, leading to a decline in biodiversity and dis-
rupting the natural balance of marine ecosystems [1]. Blooms can release toxins and other
harmful substances, leading to degraded water quality, making water unsuitable for drink-
ing, recreational activities, and aquatic life [1–3]. In addition, some harmful algal species
produce toxins that can pose health risks to humans through the consumption of contami-
nated seafood or direct exposure to toxins in the water during recreational activities [1].
However, recent studies have provided valuable insight into their potential for transforma-
tion into innovative solutions [2,3]. Sargassum, in particular, holds promise as a valuable
resource for bioenergy production, primarily due to its high biomass productivity and
unique biochemical composition [4]. Exploiting this potential can contribute to renewable
energy goals and reduce dependence on fossil fuels. Additionally, Sargassum serves as an
abundant source of bioactive compounds with diverse applications in pharmaceuticals and
nutraceuticals. These bioactive compounds encompass antioxidants, anti-inflammatory
agents, and antimicrobial substances, which offer exciting prospects for the development
of novel drugs, functional foods, and dietary supplements [5,6]. Therefore, harnessing the
potential of these compounds derived from Sargassum opens up avenues for advancements
in healthcare and nutrition. By addressing the challenges posed by harmful macroalgae
blooms and capitalizing on the multifaceted benefits of Sargassum, we can not only miti-
gate the negative impacts on coastal environments but also unlock new opportunities for
sustainable energy production, pharmaceutical innovation, and improved nutrition.

Despite numerous studies highlighting the pharmaceutical and nutraceutical poten-
tial of different Sargassum products [7], challenges persist due to their limited solubility
and bioavailability at the target organ [8,9]. Moreover, conventional formulations based
on Sargassum extracts often exhibit toxicity to other organs and tissues [9]. To overcome
these limitations, scientists have turned to nanotechnology-based approaches, utilizing
clean, non-toxic, and environmentally friendly methods to develop biogenic metallic or
metallic oxide nanoparticles (NPs), such as silver nanoparticles (AgNPs) [10], gold nanopar-
ticles (AuNPs) [11], copper nanoparticles (CuNPs) [12], iron oxide nanoparticles (Fe2O3
or Fe3O4) [13], zinc oxide nanoparticles (ZnO NPs) [14], titanium dioxide nanoparticles
(TiO2 NPs) [15], magnesium oxide nanoparticles (MgO NPs) [16], nickel nanoparticles
(NiNPs) [17], selenium nanoparticles (SeNPs) [18], and cerium oxide nanoparticles (CeO2
NPs) [19]. Among the various types of nanoparticles, the green synthesis of AgNPs using
plant extracts is very well known [10] and AgNPs have emerged as highly promising
materials for a wide range of biomedical applications. These applications include tissue
regeneration, cosmetics, industries, healthcare, medical device coatings, and biosensors [20].
The unique properties of AgNPs, such as their small size, large surface area, and enhanced
reactivity, make them ideal candidates for targeted drug delivery, diagnostic imaging,
antimicrobial agents, and wound healing, among other applications. However, these
properties of AgNPs depend on the method of their preparation and are not their gen-
eral features [10]. By incorporating Sargassum-derived bioactive compounds into AgNPs,
researchers can potentially overcome the solubility and bioavailability limitations of Sargas-
sum products while simultaneously taking advantage of the multifunctional properties of
AgNPs. This innovative approach holds great promise in enhancing the efficacy and safety
of pharmaceutical and nutraceutical applications, addressing the existing challenges, and
providing new possibilities for utilizing Sargassum in diverse biomedical fields.

Various synthetic methodologies are available for producing AgNPs, including chemi-
cal [21], photochemical [22], electrochemical [23], microemulsion [24], and microwave tech-
niques [25]. However, many of these techniques involve the use of hazardous substances
and require stringent reaction conditions, leading to chemical toxicity and environmental
pollution [25]. To address these concerns and adhere to the principles of green chemistry,
the biosynthesis of AgNPs has gained prominence due to its simplicity, eco-friendly na-
ture, and cost-effectiveness. Furthermore, AgNPs synthesized through biological methods
exhibit desirable properties, such as high-water solubility, biocompatibility, and reduced
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toxicity [26]. However, compared to chemical approaches, biological processes generally
have slower reaction kinetics. This limitation can be overcome by incorporating microwave
irradiation into the biosynthesis process, enabling rapid and efficient green synthesis of Ag-
NPs. The use of microwave-assisted synthesis (MAS) offers several advantages, including
faster reaction times, lower energy consumption, increased product yield, and uniform heat
distribution within the reaction medium [27]. Numerous studies have demonstrated the
successful production of AgNPs using microwave-assisted methods [27,28]. Specifically,
several research groups have reported the biosynthesis of AgNPs using aqueous extracts of
macroalgae Sargassum (AgNPs-ME), which act as both reducing and capping agents [29,30].
These AgNPs-ME have shown considerable potential for various biotechnological applica-
tions due to their antioxidant properties [11], enzyme inhibitory activity [31], and anticancer
properties [32]. However, the synthesis of AgNPs-ME has predominantly been conducted
using traditional biosynthesis methods, with limited research exploring the application
of microwave-assisted synthesis (MAS) for the green synthesis of AgNPs-ME. Further-
more, comprehensive investigations regarding the characteristics of these nanoparticles
and their biological potential evaluations are scarce in the existing literature. Therefore,
further research in this area is warranted to explore the full potential of microwave-assisted
synthesis for the green synthesis of AgNPs-ME and to gain a deeper understanding of their
properties and potential applications in biotechnology.

The objective of this study was to develop a microwave-assisted biosynthesis method
for the production of AgNPs using a Sargassum macroalgae extract (Ag/AgCl-NPs-ME) as
the sole reducing and stabilizing agent, eliminating the need for additional chemical agents.
The research focused on investigating the impact of the reaction conditions, specifically the
synthesis times and AgNO3 concentration, on the synthesis process of Ag/AgCl-NPs-ME.
Multiple analytical techniques were employed to thoroughly characterize the synthesized
Ag/AgCl-NPs-ME, including UV–vis spectroscopy, scanning electron microscopy (SEM),
transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR),
and X-ray diffraction (XRD). In addition to characterization, the antioxidant properties
of the synthesized Ag/AgCl-NPs-ME were evaluated to determine their potential as an-
tioxidants. The enzyme inhibition potential of Ag/AgCl-NPs-ME against tyrosinase and
angiotensin-converting enzyme (ACE) was investigated to measure their potential health
benefits in vitro. Furthermore, this study makes a significant contribution by meticulously
assessing the in vitro cytotoxicity of the synthesized Ag/AgCl-NPs-ME against normal
human cells, A375 skin cancer cells, A549 lung cancer cells, and Caco-2 colon cancer cells.

2. Materials and Methods
2.1. Preparation of Macroalgal Extract

The dried biomass of Sargassum spp., obtained from the Applied Algal Research
Laboratory at Chiang Mai University, Thailand, underwent a week-long process of solar
drying until a consistent weight was achieved. Subsequently, the dried biomass was finely
ground into powder form and subjected to the extraction process using a modified version
of the water extraction technique described by Balarama et al. [29]. Specifically, 20 g of
the powdered biomass was mixed with 200 mL of distilled water and heated to 60 ◦C for
20 min. The resulting extract was then subjected to centrifugation at 6000 rpm for 20 min,
followed by filtration through Whatman filter paper No. 1. Finally, the extract was stored
at a temperature of 4 ◦C to ensure its preservation for future use. The extract contained
polysaccharides at 730.54 mg/g extract, proteins at 135.90 mg/g extract, and total phenolic
at 1.25 mg GAE/g extract.

2.2. Biosynthesis of Silver Nanoparticles

Silver nanoparticles (Ag/AgCl-NPs-macroalgal extract; Ag/AgCl-NPs-ME) were
synthesized using two different methods: a rapid microwave-assisted technique and a
conventional continuous stirring approach. In the microwave-assisted synthesis, a solution
containing 18 mL of 1 mM silver nitrate (AgNO3) and 2 mL of macroalgal extract under-
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went microwave irradiation (Sharp R-221F-K) at 800 W power, 2450 MHz frequency, and
100 ◦C temperature for various synthesis durations ranging from 0 to 4 min. The formation
of Ag/AgCl-NPs-ME was monitored by analyzing the reaction mixture at specific time
intervals (0, 1, 2, 3, and 4 min) within the 300–600 nm range using a UV–vis spectropho-
tometer. Additionally, the impact of different AgNO3 concentrations (ranging from 1 to
25 mM) was investigated under the optimized synthesis time. In the conventional method,
Ag/AgCl-NPs-ME were produced by combining 18 mL of the 1 mM AgNO3 solution
with 2 mL of macroalgal extract and continuously stirring the mixture in darkness for
24 h at room temperature. Subsequently, a larger-scale synthesis of Ag/AgCl-NPs-ME
was performed based on the optimized synthesis time and AgNO3 concentration. The
resulting Ag/AgCl-NPs-ME pellet was collected and washed by centrifugation at 6000 rpm
for 40 min. To obtain a powdered form, the pellet was then lyophilized and stored in a
desiccator at room temperature for further characterization studies and evaluation of its
biological potential.

2.3. Characterization of Synthesized Ag/AgCl-NPs-ME

The formation of Ag/AgCl-NPs-ME was assessed using the Agilent Cary 60 UV–
vis spectrophotometer, operating within a wavelength range of 300–600 nm. An X-ray
diffraction (XRD) analysis was conducted using the Rigaku SmartLab instrument, which
was equipped with Cu Ka radiation (λ = 1.5406 Å). The scanning range for 2θ spanned
from 10◦ to 90◦ with scan steps of 0.01◦, enabling the identification of the nanoparticle
phases. The morphology of the sample was examined using both transmission electron
microscopy (TEM) with a JEOL JEM-2010 instrument and scanning electron microscopy
(SEM) with a JEOL JSM-IT800 instrument. TEM also facilitated the capture of the selected
area electron diffraction (SAED) pattern of the nanoparticles. The chemical composition
of the nanoparticles was determined through energy dispersive X-ray spectroscopy (EDS)
analysis, which was performed in conjunction with the SEM. Additionally, the functionality
of the sample was evaluated using attenuated total reflectance-Fourier transform infrared
spectroscopy (ATR-FTIR) with a Bruker TENSOR27 instrument, covering the scanning
wavenumber range of 400 cm−1 to 4000 cm−1.

2.4. Biological Potentials
2.4.1. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity

The ability to scavenge DPPH radicals was assessed using a modified protocol based
on Ruangrit et al.’s method [6]. A 1.5 mL microcentrifuge tube was utilized to combine
200 µL of Ag/AgCl-NPs-ME (5–40 µg/mL) with 400 µL of a 0.3 mM methanolic solution
of DPPH. The mixture was then incubated at room temperature, shielded from light, while
continuously agitated at 300 rpm. After a 20-min incubation period, the absorbance of the
solution was measured at 517 nm. The DPPH radical scavenging activity was determined
using the following equation:

DPPH radical scavenging activity (%) = {[A − (B − C)]/A} × 100 (1)

where A, B, and C correspond to the absorbance values of the control blank (lacking
Ag/AgCl-NPs-ME), the Ag/AgCl-NPs-ME solution, and the Ag/AgCl-NPs-ME solution
without DPPH, respectively. The half maximal inhibitory concentration (IC50) value was cal-
culated as the concentration of Ag/AgCl-NPs-ME required to inhibit the radical scavenging
activity by 50%.

2.4.2. 2,2′-Azino-Bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS) Radical
Scavenging Activity

The ABTS radical scavenging activity was evaluated using a modified method based
on Pekkoh et al.’s approach [33]. The preparation of the ABTS working reagent involved
combining 1 mL of 0.015 mM ABTS with 1 mL of 2.45 mM potassium persulfate (K2S2O8)
in a light-protected environment for 16 h at room temperature. Subsequently, the resulting
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mixture was diluted with distilled water to achieve an ABTS working solution with an
absorbance (OD734) of 0.700 ± 0.020. In a 96-well plate, 200 µL of the ABTS solution and
10 µL of the Ag/AgCl-NPs-ME solution (10–50 µg/mL) were carefully added, thoroughly
mixed, and shielded from light for 10 min at 37 ◦C. Afterward, the absorbance was mea-
sured at 734 nm. The determination of the ABTS radical scavenging activity was calculated
using Equation (2):

ABTS radical scavenging activity (%) = {[A − (B − C)]/A} × 100 (2)

where A represents the absorbance of the control blank (lacking Ag/AgCl-NPs-ME), B denotes
the absorbance of the Ag/AgCl-NPs-ME solution, and C signifies the absorbance of the
Ag/AgCl-NPs-ME solution without ABTS. The concentration at which the tested Ag/AgCl-
NPs-ME inhibited 50% of the radical scavenging activity was determined as the IC50.

2.4.3. Ferric-Reducing Antioxidant Power Activity

The capacity of Ag/AgCl-NPs-ME to convert Fe3+-TPTZ to Fe2+-TPTZ was assessed
using the ferric-reducing antioxidant power (FRAP) test, adapted from a technique de-
veloped by Pekkoh et al. [34]. To prepare the FRAP reagent, a mixture was prepared
by combining 100 mL of a 300 mM acetic acid buffer (pH 3.6), 10 mL of a 40 mM hy-
drochloric acid (HCl) solution containing 10 mM 2,4,6-tripyridyl-s-triazine (TPTZ), and
10 mL of a 20 mM iron(III) chloride hexahydrate (FeCl36H2O) solution. Following a 30-min
incubation of Ag/AgCl-NPs-ME (10–50 µg/mL) in a dark chamber at 37 ◦C, 150 µL of
the FRAP reagent was added to each well of a 96-well plate. The absorbance was then
measured at 593 nm. A standard curve of ferrous sulfate heptahydrate (FeSO4·7H2O) was
created by adding the FRAP reagent to a range of Fe2+ solutions of known concentrations
(0.36–2.88 mM FeSO4·7H2O in 155 µL working reaction volume = 21–177 µg Fe2+/mL),
which allows the enhancement of the Fe2+ concentration by the Ag/AgCl-NPs-ME to be
calculated, thereby determining “FRAP activity (µg Fe2+/mL)”. The IC50 was determined
as the concentration of the Ag/AgCl-NPs-ME that resulted in a 50% reduction of the
Fe3+-TPTZ.

2.4.4. Tyrosinase Inhibitory Activity

The inhibitory effect of Ag/AgCl-NPs-ME on the tyrosinase activity was evaluated
using the spectrophotometric method outlined by Pekkoh et al. [34]. The test was conducted
in a 96-well microplate by combining 264 µL of 0.85 mM l-3,4-dihydroxyphenylalanine
(L-DOPA) substrate in 20 mM phosphate buffer (pH 6.8) with 50 µL of Ag/AgCl-NPs-
ME (5–25 µg/mL). The mixture was allowed to incubate at room temperature for 10 min.
Subsequently, 6 µL of the tyrosinase enzyme derived from mushrooms (1000 U/mL) was
added to initiate the reaction. The absorbance at 492 nm was then measured. The degree of
tyrosinase inhibition was determined using Equation (3).

Tyrosinase inhibition activity (%) = {[A − (B − C)]/A} × 100 (3)

where A denotes the absorbance of the control blank (without Ag/AgCl-NPs-ME), B
represents the absorbance of the Ag/AgCl-NPs-ME solution, and C signifies the absorbance
of the Ag/AgCl-NPs-ME solution in the absence of the tyrosinase enzyme. To quantify the
concentration at which Ag/AgCl-NPs-ME inhibited 50% of the tyrosinase activity, the IC50
was determined.

The experiment was repeated by varying the concentrations of the L-DOPA substrate
(0.50, 1.00, 1.25, and 1.50 mM) while maintaining the Ag/AgCl-NPs-ME concentration at
20 and 25 µg/mL. A Lineweaver–Burk plot analysis (also known as a double reciprocal
plot) was used to examine how Ag/AgCl-NPs-ME inhibits the tyrosinase enzyme. Using
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the Michaelis–Menten kinetic equation (Equation (4)), we were able to determine both the
Michaelis constant (Km) and the maximal response rate (Vmax):

V0 = Vmax [S]/Km + [S] (4)

where V0 represents the initial velocity of the reaction, Vmax corresponds to the maxi-
mum reaction rate, Km signifies the Michaelis constant, and [S] denotes the concentration
of the substrate.

2.4.5. Angiotensin-Converting Enzyme (ACE) Inhibitory Activity

The ACE-inhibitory activity was assessed by modifying the method described by
Phinyo et al. [35]. In a 96-well microplate, 31 µL of 50 mM sodium borate buffer (pH 8.3)
with 0.3 M NaCl (SBBS) was added to each well. Subsequently, 5 µL of angiotensin-I
converting enzyme (ACE) derived from rabbit lungs (200 mU/mL) was added. The control
reaction consisted of 10 µL of either Ag/AgCl-NPs-ME (0.25–5.00 g/mL) or SBBS. The
reaction was initiated by adding a final volume of 59 µL of 5 mM hippuryl-L-histidyl-
L-leucine (HHL) substrate. Two additional wells were prepared: one without ACE and
the inhibitor Ag/AgCl-NPs-ME (Bi), and another without ACE and HHL (Bs). After an
initial incubation period of 1 h at 37 ◦C, 100 µL of 200 mM sodium tetraborate, 50 µL of
10 mM sodium sulfite, and 50 µL of 3.4 mM TNBS (2,4,6-trinitrobenzenesulfonic acid) were
added to each well. Following another 20 min of incubation at 37 ◦C, the absorbance of the
mixtures was measured at a wavelength of 420 nm. The extent of the ACE inhibition was
determined using Equation (5):

ACE inhibition activity (%) = {[(C − Bi) − (S − Bs)]/(C − Bi)} × 100 (5)

where the absorbance values are represented as follows: C for the control (100% activity), S
for the sample (Ag/AgCl-NPs-ME inhibitor), Bi for the blank inhibitor (HHL alone), and
Bs for the blank sample (Ag/AgCl-NPs-ME alone). The IC50 value was calculated as the
concentration of Ag/AgCl-NPs-ME required to inhibit ACE activity by 50%.

HHL substrate doses of 1, 2, 3, and 4 mM and Ag/AgCl-NPs-ME concentrations of
0.25 and 2.5 µg/mL were used in the subsequent experiments. By analyzing a Lineweaver–
Burke plot, we were able to determine the mechanism by which Ag/AgCl-NPs-ME inhib-
ited the ACE enzyme. As discussed in Section 2.4.4, the Km and Vmax were determined
using the Michaelis–Menten kinetic equation (Equation (4)).

2.4.6. Anticancer Activity
Cytotoxicity of Cancer Cells and Normal Cells

The cytotoxicity of Ag/AgCl-NPs-ME was assessed using the 3-(4,5-dimethylthiazolyl-
2)-2,5-diphenyltetrazolium bromide (MTT) test [35]. Human cancer cell lines, including
A375 melanoma cells, A549 lung adenocarcinoma cells, Caco-2 colorectal carcinoma cells,
and Vero normal cells, were pre-cultured in a 5% CO2 atmosphere at 37 ◦C for 24 h. The pre-
cultivation medium for the A549 cells, Caco-2 cells, and Vero cells consisted of Dulbecco’s
modified eagle medium (DMEM) supplemented with 10% heat-inactivated fetal bovine
serum (FBS), penicillin (100 Units/mL), and streptomycin (100 µg/mL). The A375 cells
were maintained in a medium containing DMEM with pyruvate, 1% 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 10% FBS, 100 U/mL penicillin, and 100 µg/mL
streptomycin. The cells were then seeded at a density of 105 cells/mL in 96-well plates and
incubated at 37 ◦C in a 5% CO2 atmosphere for 24 h. After filling the wells with Ag/AgCl-
NPs-ME at various concentrations, the plates were incubated for 48 h at 37 ◦C in a 5% CO2
atmosphere. Following a 4 h incubation period, a solution of 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) at a concentration of 2 mg/mL was added
to 30 µL of the solution. After incubation, the blue formazan was dissolved by adding
200 µL of dimethyl sulfoxide (DMSO) to each well and thoroughly mixing the contents.
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The absorbance was measured at two different wavelengths, 540 nm and 630 nm. The
percentage of live cells was calculated using Equation (6):

Cell viability (%) = (Atreated cells/Acontrol) × 100 (6)

where Acontrol represents the absorbance of the culture cells serving as the control and
Atreated cells represents the absorbance of the culture cells that received treatment. The
concentration of the Ag/AgCl-NPs-ME that inhibited fifty percent of the culture cells was
determined as the IC50.

Deoxyribonucleic Acid (DNA) Fragmentation Analysis using DNA Ladder Assay

The DNA ladder assay [35] was employed to investigate the DNA fragmentation in the
cells following treatment with Ag/AgCl-NPs-ME. Specifically, cancer cells were incubated
at a concentration of 2× 105 cells/mL in 24-well plates at 37 ◦C with 5% CO2 for 24 h. After
48 h of incubation with Ag/AgCl-NPs-ME at 37 ◦C and 5% CO2, the cells were harvested
by pelleting and then trypsinized using 0.05% trypsin-ethylenediaminetetraacetic acid
(trypsin-EDTA). The resulting cell pellets were then lysed with 30 µL of a lysis solution
consisting of 10 mM tris (hydroxymethyl) aminomethane hydrochloride (Tris-HCl), 2.5 mM
ethylenediamine tetraacetic acid (EDTA), 100 mM sodium chloride (NaCl), and 1% sodium
dodecyl sulfate (SDS) at pH 8.0. This lysing procedure was repeated three times to ensure
complete cell lysis. The lysate was thoroughly mixed using a vortex mixer, followed by
the addition of 5 M NaCl, proteinase K, and ribonuclease A (RNase A) at concentrations
of 10 mg/mL each. The combined solution was then incubated for three hours at 37 ◦C.
Subsequently, the DNA fragmentation analysis was performed on a 2% agarose gel at
60 volts for a duration of 3 h. The resulting DNA fragments were visualized using a UV
transilluminator.

DNA Fragmentation Analysis Using TUNEL Assay

DNA fragmentation induced by apoptosis can be detected using the well-established
TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) test [35], em-
ploying the DNA fragmentation imaging kit from Merck, Germany, which incorporates
terminal deoxynucleotidyl transferase and fluorescein-labeled dUTP. In this study, cancer
cells were treated with Ag/AgCl-NPs-ME for 48 h at a concentration of 2 × 105 cells/mL.
After collecting the cells, they were subjected to three washes with phosphate-buffered
saline (PBS, pH 7.4). Following the washes, the cells were fixed with 4% paraformaldehyde
(100 µL) and incubated at room temperature for 10 min. Subsequently, the fixed cells were
treated with 0.1% Triton X-100 (100 µL) and incubated at room temperature for 20 min. The
cells were then washed twice with phosphate-buffered saline (pH 7.4). After centrifugation,
the cells were treated with an enzyme solution containing terminal deoxynucleotidyl trans-
ferase (TdT) (45 µL) and incubated at 37 ◦C in a 5% CO2 atmosphere for 1 h. Following the
incubation, the cells were treated with a nuclei dye combination (Hoechst 33,342) (150 µL)
and incubated in the dark at room temperature for 15 min. The excess reagent was removed
by centrifugation at 5000× g and 4 ◦C for 5 min. Fluorescent DNA fragments were visual-
ized using an inverted fluorescence microscope (ECLIPSE Ts2R-FL, Nikon, Tokyo, Japan).
Finally, the resulting pellets were resuspended using ProLongTM gold antifade mountant
from Life Technologies, Camarillo, CA, USA.

3. Results and Discussion
3.1. Microwave-Assisted Rapid Biosynthesis of Silver Nanoparticles

Conventional methodologies for the production of biogenic silver nanoparticles (Ag-
NPs) typically involve prolonged shaking in the absence of light, resulting in a significant
time investment. However, microwave-assisted synthesis (MAS) offers several advan-
tages over traditional techniques. Notably, MAS enables shorter synthesis durations,
reduced energy consumption, and improved efficiency in achieving uniform dispersion
of nanoparticles. As a result, MAS has gained widespread adoption for the synthesis of
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AgNPs using various reducing agents and stabilizing ligands, as highlighted in studies by
Revathi et al. [27] and Acar et al. [28]. Building upon this knowledge, our research aimed
to utilize the MAS approach to fabricate AgNPs coated with organic molecules derived
from macroalga Sargassum biomass. To achieve this objective, we systematically optimized
the key process parameters, such as the synthesis time and AgNO3 concentration, to ensure
the desired outcome was attained with precision and efficacy.

The synthesis of Ag/AgCl-NPs using macroalgae extract-mediated MAS methods
encompasses various potential mechanisms. While the specific mechanism may vary based
on the extract and experimental conditions employed, the following provides a general
overview of the process: (I) Reduction of Ag+ ions: macroalgae Sargassum extracts con-
tain diverse organic compounds with inherent reducing properties. These compounds,
including polysaccharides, proteins, polyphenols, flavonoids, and other organic molecules,
interact with Ag+ ions present in the reaction solution. Through redox reactions, these
compounds facilitate the conversion of Ag+ ions to AgNPs [29]. (II) Stabilization and
capping: the organic compounds in the extract assume a critical role in stabilizing and
capping the formed AgNPs. They adsorb onto the nanoparticle surface, preventing ag-
gregation and ensuring colloidal stability. These capping agents function as a protective
layer, impeding nanoparticle growth and agglomeration [36]. (III) Formation of AgCl: in
the presence of chloride ions (Cl−), either naturally occurring or provided by the macroal-
gae Sargassum extract, the reaction can yield AgCl as a byproduct. Cl− ions react with
Ag+ ions, leading to the precipitation of AgCl on the surface of AgNPs. This process
contributes to the development of Ag/AgCl-NPs, where AgCl serves as a constituent of
the nanoparticle structure [36,37]. (IV) Microwave-assisted heating: the use of microwave
irradiation in the synthesis process can generate localized heating, leading to rapid and
efficient reactions. Microwave energy can accelerate the reduction of silver ions and pro-
mote the nucleation and growth of Ag/AgCl-NPs [27,28]. It is important to acknowledge
that the specific mechanism and contributions of individual components within the extract
can vary depending on factors such as the experimental conditions, concentrations, and
intricate interactions [38].

Upon the combination of the AgNO3 solution with the macroalga Sargassum extract, a
remarkable transformation occurred, initiating the formation of AgNPs and leading to a
visible change in color. Initially, the mixture of the Sargassum aqueous extract and AgNO3
solution displayed a light brown hue. Subsequently, employing both synthesis methods,
the color of the mixture transitioned from light brown to medium brown, as visually
depicted in Figure 1a. This perceivable shift in color, recognized as a characteristic optical
phenomenon associated with noble metals, indicates the occurrence of surface plasmon
resonance, thereby serving as an indicative feature of AgNPs synthesis [28]. In line with
the observations presented in Figure 1a, the color and UV–visible absorption spectra of the
AgNPs synthesized through the rapid MAS for 1 min demonstrated similar characteristics
to those synthesized using the conventional approach involving continuous stirring over a
24-h period. Typically, AgNPs exhibit a characteristic peak within the wavelength range of
400 nm to 500 nm [37]. However, in the context of this study, the synthesized AgNPs did
not manifest the broader peak typically observed within this range. This phenomenon can
be attributed to the incomplete reduction of the Ag+ ions, indicating that the synthesis of
the AgNPs was not fully accomplished.



Nanomaterials 2023, 13, 2141 9 of 27
Nanomaterials 2023, 13, x FOR PEER REVIEW 9 of 28 
 

 

 
Figure 1. The UV–visible absorption spectra of the synthesized Ag/AgCl-NPs-ME. (a) The effect of 
microwave-assisted synthesis compared to the conventional method employing continuous stirring, 
(b) the effect of different synthesis times, and (c) the effect of varying AgNO3 molarity. 

Although the UV–visible absorption spectra of the AgNPs synthesized using both 
methods exhibit similarity, the utilization of MAS leads to a notable reduction in the du-
ration of the synthesis process and a decrease in energy consumption. By subjecting the 
reaction mixture to microwave irradiation, the polysaccharides present can undergo deg-
radation, leading to the release of reducing sugars. These reducing sugars play a crucial 
role in efficiently reducing AgNO3 to AgNPs, facilitating their formation [39]. Moreover, 
the by-products resulting from the degradation of the reducing agents act as capping 
agents, contributing to the enhanced stability of the nanoparticles. Furthermore, the rapid 

Figure 1. The UV–visible absorption spectra of the synthesized Ag/AgCl-NPs-ME. (a) The effect of
microwave-assisted synthesis compared to the conventional method employing continuous stirring,
(b) the effect of different synthesis times, and (c) the effect of varying AgNO3 molarity.



Nanomaterials 2023, 13, 2141 10 of 27

Although the UV–visible absorption spectra of the AgNPs synthesized using both
methods exhibit similarity, the utilization of MAS leads to a notable reduction in the
duration of the synthesis process and a decrease in energy consumption. By subjecting
the reaction mixture to microwave irradiation, the polysaccharides present can undergo
degradation, leading to the release of reducing sugars. These reducing sugars play a crucial
role in efficiently reducing AgNO3 to AgNPs, facilitating their formation [39]. Moreover,
the by-products resulting from the degradation of the reducing agents act as capping agents,
contributing to the enhanced stability of the nanoparticles. Furthermore, the rapid and
localized heating generated by the microwave irradiation at the reaction sites significantly
accelerates the reaction rate [25]. However, no noticeable changes in absorbance and color
were observed after irradiation periods of 2, 3, and 4 min compared to the 1 min irradiation
period, as shown in Figure 1b. This observation suggests that the availability of the Ag+ ions
may have reached a limit, and/or the complete conversion of Ag+ to Ag was achieved [25].
Considering the substantial significance of shorter synthesis durations and reduced energy
consumption, particularly in the context of large-scale production of AgNPs, the irradiation
time was methodically established and maintained at a fixed duration of 1 min for the
purposes of this study.

It is important to note that when increasing the concentration of AgNO3 from 1 mM
to 15 mM, a clear and noticeable change in the color was observed, transitioning from a
medium brown shade to a darker brown hue, as depicted in Figure 1c. It is also worth
noting that at a AgNO3 concentration of 20 mM, a distinctive peak attributed to the surface
plasmon oscillations of AgNPs appeared within the wavelength range of 420–450 nm,
coinciding with the deepest brown color observed in the reaction mixture. The intensity
of this AgNP peak demonstrated a significant enhancement as the AgNO3 concentration
increased, reaching its maximum intensity at 20 mM. This can be attributed to the successful
completion of the synthesis process, resulting in the formation of AgNPs. However, when
the concentration was further increased to 25 mM AgNO3, the peak intensity became
comparable to that of 20 mM AgNO3 (Figure 1c). This observation suggests that the
quantity of macroalga Sargassum extract used might have been insufficient to fully cap all
the Ag+ ions present in the mixture, which aligns with findings reported by Moshahary
and Mishra [40]. Consequently, 20 mM AgNO3 was selected as the optimal concentration
for subsequent characterization studies and the evaluation of its biological potential.

The differences observed in the spectra of 15 mM AgNO3 compared to 10 mM and
20 mM AgNPs could be attributed to various factors related to nanoparticle synthesis
and behaviors. For example, different concentrations of the AgNO3 used might lead
to variations in the size distribution of the nanoparticles. Smaller nanoparticles may
have different optical properties and absorbance spectra compared to larger ones [41].
Higher concentrations could influence the shape of the nanoparticles formed. AgNPs with
varying shapes (e.g., spherical, rod-shaped) may exhibit different spectral profiles [42]. In
addition, the kinetics of nanoparticle formation and aggregation might differ at various
concentrations, affecting the overall spectral features [43].

Previous studies have indicated the presence of polysaccharides, proteins, flavonoids,
polyphenols, and phenolic compounds in Sargassum aqueous extract, suggesting their
potential involvement in the bioreduction of Ag+ ions to AgNPs and their subsequent
capping within the solution [36,44]. Although the exact mechanism of green synthesis
for AgNPs remains unclear, it is hypothesized that the organic molecules of Sargassum
play a crucial role in the formation and stabilization of AgNPs. These compounds are
likely responsible for binding Ag+ ions, facilitating their reduction and nucleation to form
suitable nuclei. The reduction of Ag+ ions to Ag◦ occurs through a one-step, one-electron
oxidation-reduction mechanism, with the aqueous fraction of this macroalgae acting as a
green reducing agent [29].
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3.2. Characterization of AgNPs Coated with Macroalgal Extract

Fourier transform infrared (FTIR) spectroscopy was employed to investigate the in-
teraction between various functional groups involved in the formation of AgNPs. The
resulting absorption spectrum exhibited distinct characteristic peaks at different wavenum-
bers: 820 cm−1, 1035 cm−1, 1228 cm−1, 1407 cm−1, 1603 cm−1, 2987 cm−1, and 3403 cm−1

(Figure 2a). The peaks observed at 820 cm−1, 1035 cm−1, and 1228 cm−1 are attributed
to the presence of sulfonate groups (S–O) in sulfate polysaccharides [45]. Additionally,
the absorption peaks at 3346 cm−1, corresponding to amino groups (N–H) present in the
proteins and peptides, were evident in the absorption spectrum of the AgNPs [36]. The
absorption peaks at 3346 cm−1 and 1603 cm−1 indicate the stretching vibrations of the O–H
and C–O groups, respectively, associated with the carbohydrate group in the AgNPs [46].
Furthermore, the presence of C–H stretching vibrations at 2987 cm−1, characteristic of
an aliphatic group in the aromatic components, was also detected [36]. The presence of
these distinct FTIR absorption peaks provides confirmation that the synthesized AgNPs
were coated with organic molecules derived from Sargassum, which likely encompassed
carbohydrates, proteins, and phenolic compounds. Identical peaks have been recorded for
the FTIR spectrum of AgNPs coated with the Sargassum extract [29,30].
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The crystal quality of the AgNPs was assessed through X-ray diffraction (XRD) spec-
trum analysis, as depicted in Figure 2b. The resulting chromatic spectrum exhibited distinct
and well-defined Bragg’s reflection peaks at specific 2θ degree values: 27.79◦, 32.20◦, 46.23◦,
54.80◦, 54.47◦, 67.39◦, 74.41◦, 76.67◦, and 85.65◦. These peaks corresponded to the crystallo-
graphic planes of (111), (200), (220), (311), (222), (400), (331), (420), and (422), respectively.
The identification of these planes provided further confirmation of the face-centered cu-
bic structure of both Ag and AgCl, aligning with the standards established by the Joint
Committee on Powder Diffraction Standards (JCPDS) database, specifically file numbers
87–0720 and 31–1238. These results indicate that the MAS technique not only resulted in
the formation of AgNPs, but also facilitated the simultaneous generation of AgCl-NPs.
It is plausible that the presence of Cl− in the marine Sargassum extract facilitated their
interaction with AgNO3, leading to the formation of AgCl. Over time, the AgCl species
underwent a reduction, giving rise to the formation of AgCl-NPs, while other Ag+ ions
contributed to the formation of Ag/AgCl-NPs. Similar observations were observed in
Ag/AgCl-NPs synthesized by algae [37,47]. Aside from the XRD analysis, verification of
the AgNPs’ formation was also conducted through energy-dispersive X-ray spectroscopy
(EDX) analysis. The EDS spectrum of AgNPs is presented in Figure 2c. The spectra ex-
hibited prominent peaks corresponding to Ag atoms and Cl atoms, thus confirming the
successful synthesis of Ag/AgCl-NPs nanohybrids. Moreover, the observed atomic ratio
of Ag to the Cl element was found to exceed 1:1 (Figure 2c), potentially indicating the
co-existence of metallic AgNPs with AgCl-NPs. As a result, the AgNPs produced in this
study were designated as Ag/AgCl-NPs-macroalgal extract (Ag/AgCl-NPs-ME).

The external morphology of the synthesized Ag/AgCl-NPs-ME was examined using
the scanning electron microscopy (SEM) technique. The SEM images revealed a pre-
dominant spherical shape for the synthesized Ag/AgCl-NPs-ME. The particles exhibited a
uniform distribution, with some agglomerates displaying a closely compacted arrangement,
and their size was determined to be below 100 nm (Figure 3a). The observed agglomeration
is likely attributable to the presence of hydrogen bonding, which was also confirmed by
the analysis of the FTIR spectra [38]. In order to gain deeper insight into the morphology
and size distribution of the Ag/AgCl-NPs-ME, transmission electron microscopy (TEM)
was employed. The TEM analysis provided a more detailed view of the topography and
size distribution of the Ag/AgCl-NPs-ME, revealing a well-defined crystalline structure.
The samples consisted of a mixture of spherical nanoparticles (small ~10 nm and large
~172 nm) with varying degrees of aggregation (Figure 3b). Moreover, the crystallographic
nature of the Ag/AgCl-NPs-ME was confirmed through the analysis of the selected area
electron diffraction (SAED) pattern, which exhibited distinct circular rings corresponding
to the Bragg’s diffraction of the (111), (200), and (220) planes (Figure 3c). The TEM ob-
servations of the Ag/AgCl-NPs-ME are consistent with the findings reported in several
previous studies [36,38].

The size and distribution characteristics of Ag/AgCl-NPs-ME were assessed using
dynamic light scattering (DLS) analysis. The DLS analysis clearly revealed a particle size
range of 10 to 175 nm, with an average size of 36.43 nm for Ag/AgCl-NPs-ME (Figure 4a).
The findings from these measurements match those from the TEM study, thus establish-
ing consistency in the findings. The zeta potential (ZP) is a parameter that elucidates
the motion of nanoparticles in an electric field, taking into account their charge and loca-
tion. It serves as an indicator of the electrostatic forces between neighboring and similar
particles in a colloidal solution. In this study, the ZP value of Ag/AgCl-NPs-ME was deter-
mined to be −9.4 mV (Figure 4b), signifying enhanced dispersion and heightened stability
of the nanoparticles. This characteristic makes them promising materials for potential
biomedical applications [38].
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3.3. Biological Potentials
3.3.1. DPPH Radical Scavenging Activity

DPPH (2,2-diphenyl-1-picrylhydrazyl) is a well-known free radical that is capable
of inducing oxidative stress in human cells, contributing to the development of various
diseases [20]. In this study, the potential of Ag/AgCl-NPs-ME (silver/silver chloride
nanoparticles synthesized using macroalgal extracts) as a scavenger of DPPH radicals was
evaluated. The biosynthesized Ag/AgCl-NPs-ME was utilized, with DPPH serving as the
source of free radicals. The results, depicted in Figure 5, demonstrate a positive correlation
between the scavenging activity against DPPH radicals and the concentration of Ag/AgCl-
NPs-ME. Specifically, at concentrations of 5, 10, 20, 30, and 40 µg/mL, Ag/AgCl-NPs-ME
exhibited scavenging potentials of 9.68%, 33.83%, 51.17%, 94.16%, and 100%, respectively.
These findings highlight the concentration-dependent DPPH radical scavenging ability
of Ag/AgCl-NPs-ME. Moreover, Ag/AgCl-NPs-ME exhibited remarkable antioxidant
properties, as indicated by its IC50 value of 14.49 µg/mL (Figure 5). It is noteworthy
that AgNO3 did not show any observable DPPH radical scavenging activity (data not
shown). These results suggest that Ag/AgCl-NPs-ME likely possess potent proton donors,
such as hydroxyl groups found in Sargassum metabolites (e.g., proteins, polysaccharides,
and phytochemicals). These proton donors can effectively interact with unstable free
radicals of DPPH, converting them into more stable products and inhibiting the initiation
step in oxidative chain reactions [6]. Consequently, Ag/AgCl-NPs-ME shows promise
as a DPPH inhibitor, as it is capable of mitigating oxidative stress by scavenging DPPH
free radicals. Similar findings have been reported by Singh et al. [20], Kiran et al. [48],
and Vijayakumar et al. [49], who demonstrated the effective neutralization of DPPH free
radicals by AgNPs coated with various extracts, such as black cumin (Nigella sativa) seed
extracts, Cassia fistula pod extracts, and Eucalyptus tereticornis leaf extracts, yielding IC50
values ranging from 10 to 63 µg/mL. However, it should be noted that the antioxidant
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capacity of AgNPs relies on the properties of the organic molecules bound or capped on
their surfaces [48].
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3.3.2. ABTS Radical Scavenging Activity

ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) is known to induce ox-
idative stress in human cells [20]. It is widely employed to evaluate the antioxidant proper-
ties of compounds that possess hydrogen-donating and chain-breaking capabilities [50]
and operates through an electron transfer mechanism [51]. The ABTS radical scavenging
activity of Ag/AgCl-NPs-ME was assessed, and the results are presented in Figure 5. With
increasing concentrations of Ag/AgCl-NPs-ME from 10 to 50 µg/mL, the ABTS radical
scavenging activity exhibited a corresponding increase from 18.35% to 58.30%, indicating a
progressive dose-dependent protective effect of Ag/AgCl-NPs-ME. Similar findings have
been reported by Elemike et al. [52], Otunola and Afolayan [53], and Tanase et al. [54],
who observed dose-dependent ABTS radical scavenging activity of AgNPs coated with
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various extracts, such as Costus afer leaf extract and Picea abies L. stem bark extract and
spice blend, wherein an increase in the concentration of AgNPs correlated with enhanced
ABTS free radical scavenging activity. Consistent with the results in Figure 5, Ag/AgCl-
NPs-ME exhibited antioxidant potential by effectively scavenging ABTS, as evidenced
by an IC50 value of 42.74 µg/mL. These findings align with previous studies conducted
by Badmus et al. [10], Ajayi and Afolayan [50], and Chokshi et al. [55], who reported
IC50 values ranging from 14 to 124 µg/mL for AgNPs coated with different extracts, in-
cluding Annona muricata leaf extract, alkalinized Cymbopogon citratus Stapf extract, and
de-oiled microalgal water extract. This suggests that the stability of ABTS free radicals
is achieved through the acceptance of hydrogen ions from organic molecules present on
AgNPs. Therefore, Ag/AgCl-NPs-ME not only scavenges DPPH free radicals, but also
stabilizes ABTS free radicals, demonstrating its potential as an inhibitor of oxidative stress
for cellular protection.

3.3.3. Ferric-Reducing Antioxidant Power (FRAP) Activity

The ferric-reducing antioxidant power (FRAP) assay is a commonly employed method
to assess the ability of antioxidant substances to reduce the Fe3+-TPTZ complex to the Fe2+-
TPTZ complex, facilitated by electron-donating antioxidants [34]. This process involves the
donation of a hydrogen atom, leading to the breakdown of the free radical chain [56]. As
shown in Figure 5, Ag/AgCl-NPs-ME demonstrates notable electron-donating antioxidant
or reductant properties by effectively reducing Fe3+ to Fe2+, resulting in FRAP activities
of 1.78, 7.30, 11.78, 16.59, and 22.55 µg Fe2+/mL for concentrations of 10, 20, 30, 40, and
50 µg Ag/AgCl-NPs-ME/mL, respectively. These findings establish a direct relationship
between the concentration of Ag/AgCl-NPs-ME and its FRAP activity. Similar observations
have been reported for AgNPs coated with extracts derived from Nothapodytes nimmoniana
(Graham) Mabb. fruits [51], Cassia roxburghii leaves [57], and Cordia myxa [58]. These
studies indicate that the reducing potential increases proportionally with the quantity of
AgNPs, indicating dose-dependent antioxidant activity of Ag/AgCl-NPs-ME. The effec-
tiveness of Ag/AgCl-NPs-ME as an antioxidant can be attributed to the presence of organic
molecules encapsulated on the surface of the nanoparticles. Furthermore, the IC50 value of
Ag/AgCl-NPs-ME was determined to be 158.87 µg/mL (Figure 5), aligning with previous
reports on AgNPs synthesized using extracts from Nothapodytes nimmoniana (Graham)
Mabb. fruits [51], Cassia roxburghii leaves [57], Cordia myxa [58], and Caesalpinia sappan
aqueous extract [59].

3.3.4. Tyrosinase Inhibition Activity and Kinetic Study

The tyrosinase enzyme, a copper-containing catalyst, plays a vital role in the synthesis
of melanin in human skin cells, utilizing L-DOPA as its substrate. Overexpression of tyrosi-
nase leads to an excessive production of melanin, resulting in various skin issues, such as
dark spots, premature aging, age spots, freckles, and dryness [34]. The inhibition of the ty-
rosinase enzyme is a critical parameter for evaluating skin-lightening activity [60]. Figure 6
presents the tyrosinase inhibition activity of Ag/AgCl-NPs-ME. Within the concentration
range of 5 to 25 µg/mL, the tyrosinase inhibition activity ranges from 22.64% to 51.72%,
demonstrating a dose-dependent effect with an IC50 value of 23.70 µg/mL. These findings
align with previously reported IC50 values for AgNPs synthesized using the aqueous
extract of Hovenia dulcis fruits [61], Bidens frondosa [62], and Sideritis aqueous extract [63],
which range from 15 to 83 µg/mL. The variation in IC50 values may be attributed to the
utilization of different organic molecules in the synthesis of AgNPs.
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To gain a better understanding of the kinetics and mechanism of tyrosinase inhibition,
the inhibition pattern of Ag/AgCl-NPs-ME on the tyrosinase enzyme was assessed using a
Lineweaver–Burke plot (or double reciprocal plot), as illustrated in Figure 6. The Ag/AgCl-
NPs-ME demonstrated a mixed inhibition pattern on the tyrosinase enzyme, as evidenced
by an increase in both Km and Vmax with escalating concentrations of Ag/AgCl-NPs-
ME. This indicates that Ag/AgCl-NPs-ME can bind to the tyrosinase enzyme regardless of
whether the enzyme has already bound the L-DOPA substrate. This suggests that Ag/AgCl-
NPs-ME binds to a distinct site on the enzyme, separate from the L-DOPA binding site,
resulting in the formation of complexes such as [Tyrosinase]–[L-DOPA]–[Ag/AgCl-NPs-
ME] and [Tyrosinase]–[Ag/AgCl-NPs-ME]. Such inhibition often arises from allosteric
action, wherein the inhibitor attaches to a specific location on the enzyme, causing con-
formational changes that reduce the affinity for substrate binding [34]. Consequently,
Ag/AgCl-NPs-ME holds promising potential as a tyrosinase inhibitor for application in
cosmetic and skincare products.
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3.3.5. ACE Inhibitory Activity and Kinetic Study

The angiotensin-converting enzyme (ACE) plays a pivotal role in actively regulating
blood pressure through distinct mechanisms within the renin–angiotensin–aldosterone
system (RAAS) and the kinin nitric oxide system (KNOS) [33]. ACE activity significantly
contributes to the development of hypertension, a notable risk factor associated with
cardiovascular disease [35]. Consequently, inhibiting ACE has emerged as a recognized
therapeutic approach for hypertension [33,35]. The inhibitory activity of Ag/AgCl-NPs-
ME on ACE demonstrated a dose-dependent trend, with an IC50 value of 19.37 µg/mL
(Figure 6). Analysis of the inhibition pattern revealed a mixed type of inhibition for
Ag/AgCl-NPs-ME characterized by an increase in both Km and Vmax (Figure 6). This
suggests that AgNPs-ME can interact with ACE at a distinct site away from the substrate
(HHL), resulting in the formation of complexes such as [ACE enzyme]–[HHL]–[Ag/AgCl-
NPs-ME] and [ACE enzyme]–[Ag/AgCl-NPs-ME], thereby functioning as an ACE inhibitor.
These findings support the potential of Ag/AgCl-NPs-ME as a viable alternative for
antihypertensive therapy.

In a related study, Talapko et al. [64] reported that AgNPs not only exhibit effective
ACE inhibition, but also induce endothelial vasodilation, leading to enhanced blood flow
to the heart, which holds therapeutic implications for hypertension [65]. Nonetheless, it is
crucial to acknowledge the potential side effects associated with AgNPs-ME, as highlighted
by Ramirez-Lee et al. [66]. The toxicity of AgNPs primarily arises from the partial solubi-
lization and release of Ag ions [67]. Animal studies have demonstrated that the side effects
of AgNPs depend on various factors, including size, dosage, and duration of exposure,
aligning with the considerations for all pharmaceutical agents and medical devices [65].
Recently, Gomes et al. [68] proposed surface modification of AgNPs through conjugation
with polymeric materials, such as polyethylene glycol (PEG)-poly lactide (PLA), chitosan,
silica-based compounds, and poly(lactic-co-glycolic acid) (PLGA), as a strategy to mitigate
the toxicity associated with AgNPs. Further investigations encompassing surface modifica-
tion, toxicity testing, and clinical evaluation of Ag/AgCl-NPs-ME are required to ensure
their efficacy and safety as therapeutic interventions.

3.3.6. Anticancer Activity

The cytotoxicity of Ag/AgCl-NPs-ME was evaluated using the MTT assay, which
involves the reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
The assessment focused on three human cancer cell lines (A375, A549, and Caco-2) and
normal Vero cells for comparison. The results reveal a consistent decline in the cell viability
as the concentration of Ag/AgCl-NPs-ME increases (Figure 7). After a 48 h treatment
period, Ag/AgCl-NPs-ME exhibited notable antiproliferative activity, as demonstrated
by IC50 values of 16.33 µg/mL (A375), 21.70 µg/mL (A549), 9.25 µg/mL (Caco-2), and
38.00 µg/mL (Vero) (Figure 7). The low IC50 values signify that Ag/AgCl-NPs-ME exerts
potent anticancer effects at relatively low concentrations, resulting in a significant inhibition
of proliferation across all three cancer cell lines, while exerting a minimal impact on normal
cells. It is essential to acknowledge that there are no established standard IC50 values or
ranges for comparative analysis. Typically, AgNPs are expected to exhibit lower IC50 values
against cancer cells than normal cells. In a similar vein, Gomes et al. [68] suggested that
AgNPs, which selectively target cancer cells without posing harm to normal cells, hold
promise as a model for the development of cancer treatment strategies.

Previous studies have employed the selectivity index (SI) as a means to evaluate
the preferential targeting of compounds between cancer and normal cells [35]. The SI
was determined by dividing the average IC50 value in the normal cell line by the IC50
value in the cancer cell line obtained from each independent experiment. For Ag/AgCl-
NPs-ME, the SI values ranged from 1.78 to 4.11, indicating its greater efficacy against
cancer cells while demonstrating reduced toxicity towards normal cells. Notably, an SI
value ≥ 10 is commonly regarded as indicative of a promising candidate that merits further
investigation [69]. Potential anticancer samples may be categorized with a lower SI value of
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3, as suggested by Weerapreeyakul et al. [70]. An SI value of 2 is indicative of a potentially
useful alternative or supplemental therapy for cancer [71]. Furthermore, Krzywik et al. [72]
suggested that compounds with an SI greater than 1.0 exhibit a preferential effectiveness
against cancer cells compared to normal cells. These findings highlight the potential
utility of Ag/AgCl-NPs-ME as an inhibitor for cancer treatment. Notably, the heightened
sensitivity of cancer cells observed in this study compared to normal cells holds promise
for the development of effective anticancer applications with reduced systemic toxicity.
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Figure 7. The impact of the Ag/AgCl-NPs-ME on the cytotoxicity of skin cancer A375 cells, lung
cancer A549 cells, and colon cancer Caco-2 cells. The treatment was compared with control cells,
represented by normal Vero cells, over a period of 48 h. Cell viability was assessed using the 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction (MTT) assay, as shown in (a), and
the results were calculated to enable comparisons with the control cells, as depicted in (b).

In the literature, AgNPs have demonstrated promising potential in exerting effects
on cancer cells through a range of mechanisms [68]. The precise mechanisms of action
may vary depending on factors such as the nanoparticles’ size, shape, surface properties,
and concentration, and the characteristics of the targeted cancer cells [73]. The following
elucidates several methods by which AgNPs might influence cancer cells: (I) Cytotoxicity:
AgNPs possess cytotoxic effects on cancer cells, potentially inducing cell death by activating
apoptosis, a regulated process of cellular demise. Consequently, these nanoparticles impede
uncontrolled cell proliferation within cancerous tissues [74]. (II) Anti-proliferative activity:
AgNPs have been observed to impede cell proliferation in cancer cells. By interfering with
cellular processes governing cell division and growth, these nanoparticles can impede or
halt the proliferation of cancer cells [75]. (III) DNA damage: AgNPs have the capability to
inflict DNA damage in cancer cells. This DNA damage disrupts critical cellular functions
and contributes to the inhibition of cancer cell growth and proliferation [42]. (IV) Generation
of reactive oxygen species (ROS): AgNPs have the capacity to generate reactive oxygen
species (ROS) within cancer cells. Elevated ROS levels induce oxidative stress, thereby
instigating cytotoxic effects and promoting apoptosis in cancer cells [76]. (V) Disruption
of cell signaling pathways: AgNPs may disrupt essential signaling pathways vital for
the survival and growth of cancer cells [77]. By interfering with these pathways, the
nanoparticles impede cancer cell proliferation and survival.

Cancer is characterized by uncontrolled cellular proliferation and the suppression of
apoptosis in the affected cells. Traditional approaches to cancer treatment have predomi-
nantly focused on inhibiting cell division and inducing apoptosis to eliminate malignant
cells [35]. In this investigation, we conducted a thorough examination of the morpho-
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logical alterations associated with apoptosis to elucidate the apoptotic effects exerted by
Ag/AgCl-NPs-ME. Following a 48 h exposure to varying concentrations of Ag/AgCl-
NPs-ME, the treated cancer cells exhibited diminished cellular adhesion, cellular shrink-
age, and a rounded morphology in comparison to the untreated cells (Figure 8). The
concentration-dependent response of Ag/AgCl-NPs-ME further validated the presence
of apoptosis-related features, including cellular shrinkage, membrane blebbing, nuclear
chromatin condensation, the formation of apoptotic bodies, and engulfment by neigh-
boring cells (Figure 8). These findings are consistent with previous studies conducted by
Phinyo et al. [35] and Pekkoh et al. [78]. Additionally, we investigated the activation of
DNA fragmentation, a distinctive hallmark of apoptotic cell death, to corroborate the oc-
currence of apoptosis. Through agarose gel electrophoresis analysis (Figure 9), we detected
DNA fragments ranging from 200 to 1000 bp in cancer cells treated with Ag/AgCl-NPs-ME.
Notably, as the concentration of Ag/AgCl-NPs-ME increased, more pronounced DNA
bands were observed, indicating the ability of this nanomaterial to induce apoptosis-
associated DNA fragmentation across all three types of cancer cells.
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Figure 8. The morphological changes observed in skin cancer A375 cells, lung cancer A549 cells, colon
cancer Caco-2 cells, and normal Vero cells following a 48 h treatment with the Ag/AgCl-NPs-ME. A
comparison was made between the treated cells and the control cells (which remained untreated) to
assess the impact of the extract on cellular morphology.
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Figure 9. The analysis of deoxyribonucleic acid (DNA) fragmentation in skin cancer A375 cells, lung
cancer A549 cells, and colon cancer Caco-2 cells following a 48 h treatment with the Ag/AgCl-NPs-
ME. The treated cells are compared to the control cells, represented by normal Vero cells, using
agarose gel electrophoresis, as shown in (a). Additionally, the agarose gel is inverted to display the
DNA fragmentation pattern in black and white, as depicted in (b).

The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay
is a method for confirming DNA fragmentation in apoptotic processes [34]. In this study,
we examined the impact of Ag/AgCl-NPs-ME on DNA damage in three distinct types
of cancer cells. To achieve this, we employed 4′,6-diamidino-2-phenylindole (DAPI) and
TUNEL fluorescent dyes to label the cancer cells following a 48 h treatment with Ag/AgCl-
NPs-ME. DAPI staining, which emits blue fluorescence, facilitated the visualization of the
cell viability by highlighting the cellular nuclei. Conversely, TUNEL labeling allowed for
the identification of DNA degradation. In this process, the labeled dUTP was integrated
into the free hydroxyl termini resulting from genomic DNA fragmentation, catalyzed by
terminal deoxynucleotidyl transferase (TdT) [34]. As illustrated in Figure 10, the results
demonstrate green fluorescence in the nuclei of all three cancer cell types subsequent
to treatment with Ag/AgCl-NPs-ME, indicating positive TUNEL labeling. In contrast,
the nuclei of the untreated cancer cells did not exhibit such fluorescence, suggesting that
all three cancer cell types experienced similar levels of DNA fragmentation, which was
further corroborated by agarose gel electrophoresis analysis. These findings highlight
the potential of Ag/AgCl-NPs-ME for prospective cancer treatment applications. How-
ever, additional investigations are needed to analyze the expression of apoptosis-related
genes, thereby enhancing our comprehension of the molecular mechanisms governing the
apoptotic pathways in cancer cells subjected to Ag/AgCl-NPs-ME treatment. Such under-
standing will enable a comprehensive evaluation of their potential for clinical applications
in cancer treatment.
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Figure 10. The results of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
assay conducted on skin cancer A375 cells, lung cancer A549 cells, and colon cancer Caco-2 cells
following a 48 h treatment with the Ag/AgCl-NPs-ME. The treated cells are compared to control
cells, represented by normal Vero cells. The cells were stained with 4′,6-diamidino-2-phenylindole
(DAPI) and TUNEL and observed using a fluorescent microscope.
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After conducting a comprehensive investigation, it should be highlighted that the
Ag/AgCl-NPs-ME exhibits promising potential as a prospective solution for scavenging
harmful free radicals, mitigating enzyme-related diseases, and acting as a therapeutic agent
for cancer. However, it is imperative to acknowledge that this study was confined to in vitro
experimentation. To gain deeper insight into the response of the Ag/AgCl-NPs-ME within
an organism, whether it be a laboratory animal or a human, further research incorporating
in vivo assays is required. In vivo studies enable the examination of the actual impact
on living organisms, whereas clinical trials or medical studies can be conducted using
either in vitro or in vivo approaches. These methodologies share a common objective of
advancing our understanding of illness, disease, and the normal biological functioning of
the human body. Thus, it is crucial to emphasize the necessity for both in vitro and in vivo
investigations to ascertain the potential outcomes when employing the Ag/AgCl-NPs-ME
in practical applications.

4. Conclusions

Sargassum spp., a macroalgal species known to cause harmful blooms in certain regions
of the sea around Thailand, contains organic compounds (i.e., polysaccharides, proteins,
flavonoids, polyphenols, and phenolic compounds) with functional groups (i.e., hydroxyl
(−OH), carbonyl (C=O), amino (−NH2), carboxyl (−COOH), and phenolic (−C6H5OH))
that can potentially serve as both stabilizing and reducing agents in the rapid biosynthesis
of Ag/AgCl-NPs-ME through microwave-assisted synthesis. Characterization of the syn-
thesized Ag/AgCl-NPs was performed utilizing a wide range of methods, such as UV–vis,
FTIR, XRD, SEM, TEM, and DLS, which collectively confirmed their favorable dispersion
and stability. Additionally, these nanoparticles exhibited notable antioxidant activities,
demonstrated high inhibitory effects on enzymes associated with diseases, showed strong
cytotoxic effects on cancer cells, and were non-toxic to normal human cells. These findings
highlight the significant biotechnological potential of Ag/AgCl-NPs-ME.
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