Ion-Exchange Membranes and Processes

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Processing and Engineering".

Deadline for manuscript submissions: closed (29 February 2020) | Viewed by 33839

Special Issue Editor


E-Mail Website
Guest Editor
Department of Physical Chemistry, Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
Interests: ion exchange membranes (monopoler, bipoler) and processes (electrodialysis, dialisis, etc.); transport phenomena in systems with ion exchange membranes (IEMs); concentration polarization, limiting current, coupled phenomena of concentration polarization (water splitting, electroconvection, gravitation convection, etc.); chemical reactions coupled with ions transfer in ampholyte (phosphates, ammonium, aminoacids, proteins, etc.) contaning IEM systems; IEMs fouling; IEM modification; IEM characterization (specific electrical conductivity, diffusion permeability, perselectivity, transport numbers, structure–properties relationship, current–voltage characteristics, chronopotentiommetry, electrochemical impedance spectroscopy, mass transfer characteristics, etc.); experimental techniques development for IEM and membrane system investigation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear colleagues,

Ion exchange membranes and processes with their use are very attractive for the development of low reagent and environmentally-friendly technologies for purification, separation, and concentration of various substances.

The aim of the Special Issue is to obtain a holistic picture of the latest advances in the synthesis of new ion exchange materials, the modification of known and experimental ion exchange membranes, the experimental and theoretical study of their characteristics, and the use of these membranes in various processes.

The scope of the Special Issue is:

  • Commercial, experimental and modified ion exchange membranes (monopolar, bipolar, mosaic, composite, multilayer; organic, inorganic; homogeneous, heterogeneous, etc.);
  • Their transport characteristics, structure–properties relationship;
  • Concentration polarization and coupled phenomena (water splitting, electroconvection, gravitational convection, etc.) that occur when an electric field is applied;
  • The behavior of ion exchange membranes in various processes (dialysis, electrodialysis, electrolysis, capacitive deionization, fuel cells, microfluidic devices, bioreactors, potentiometric sensors, etc.);
  • Ion exchange membranes fouling, scaling and ways to counter these phenomena;
  • New methods of studying the properties of ion exchange membranes and membrane systems;
  • New areas of application of ion exchange membranes.

Prof. Dr. Natalia Pismenskaya
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Ion exchange membrane
  • Structure–properties relationship
  • Modification
  • Concentration polarization phenomena
  • Fouling
  • Applications

Related Special Issues

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

4 pages, 191 KiB  
Editorial
Ion-Exchange Membranes and Processes
by Natalia Pismenskaya and Victor Nikonenko
Membranes 2021, 11(11), 814; https://doi.org/10.3390/membranes11110814 - 26 Oct 2021
Cited by 2 | Viewed by 1713
Abstract
Synthetic ion exchange membranes (IEMs) are made from organic, inorganic, or mixed and composite materials [...] Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)

Research

Jump to: Editorial

12 pages, 4348 KiB  
Article
Purification of Methylsulfonylmethane from Mixtures Containing Salt by Conventional Electrodialysis
by Xinlai Wei, Yaoming Wang, Haiyang Yan, Ke Wu and Tongwen Xu
Membranes 2020, 10(2), 23; https://doi.org/10.3390/membranes10020023 - 01 Feb 2020
Cited by 9 | Viewed by 4246
Abstract
Methylsulfonylmethane (MSM) is one of the main sources of sulfur for living bodies, but it is hard to obtain as a pure compound. Conventional electrodialysis (CED) is a mature technology that can be used for the separation and purification of biochemical products. In [...] Read more.
Methylsulfonylmethane (MSM) is one of the main sources of sulfur for living bodies, but it is hard to obtain as a pure compound. Conventional electrodialysis (CED) is a mature technology that can be used for the separation and purification of biochemical products. In this study, the purification of MSM from mixtures containing salt was performed by CED. The effects of operating conditions such as operation voltage drop, feed MSM concentration, and electrolyte salt concentration on the separation performances were investigated. The results showed that the current efficiency reached 74.0%, and the energy consumption could be 12.3 Wh·L−1. As for the recovery rate and desalination rate, the highest recovery rate could be 97.4%, and the desalination rate was 98.5%. Based on process energy consumption calculation, the total cost of the whole process was estimated at only 2.34 $·t−1. Thus, CED is highly efficient and cost-effective for the separation and purification of MSM. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Graphical abstract

20 pages, 9228 KiB  
Article
Systematic Study of the Impact of Pulsed Electric Field Parameters (Pulse/Pause Duration and Frequency) on ED Performances during Acid Whey Treatment
by Guillaume Dufton, Sergey Mikhaylin, Sami Gaaloul and Laurent Bazinet
Membranes 2020, 10(1), 14; https://doi.org/10.3390/membranes10010014 - 11 Jan 2020
Cited by 20 | Viewed by 3122
Abstract
Processing acid whey is still a challenge for the dairy industry due to its high lactic acid and mineral contents. Their removal processes represent a high investment and running cost in addition to significant production of polluting effluents. A previous study showed that [...] Read more.
Processing acid whey is still a challenge for the dairy industry due to its high lactic acid and mineral contents. Their removal processes represent a high investment and running cost in addition to significant production of polluting effluents. A previous study showed that the use of electrodialysis with the application of pulsed electric fields (PEFs) was sufficiently efficient to produce dryable acid whey with reduced scaling issues during the process. In the present work, eight PEF conditions using different pulse/pause durations and frequencies were tested for 1) process optimization and 2) understanding of the underlying mechanisms involved in PEF process improvements. Best results were obtained for PEF conditions (5 s/5 s) and (15 s/15 s) with almost complete scaling mitigation and minimal energy consumption (5.3 ± 0.4 Wh/g of lactic acid vs. 9.33 ± 1.38 Wh/g for continuous current). Longer pause times also led to better divalent ion demineralization at the expense of sodium elimination induced by stronger affinity with the membrane and longer retention times. For the first time, PEF parameters of relatively low frequencies (<1) were studied in sub-limiting current conditions on a complex solution such as acid whey. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Graphical abstract

15 pages, 1941 KiB  
Article
Neutralization Dialysis for Phenylalanine and Mineral Salt Separation. Simple Theory and Experiment
by Anton Kozmai, Elena Goleva, Vera Vasil’eva, Victor Nikonenko and Natalia Pismenskaya
Membranes 2019, 9(12), 171; https://doi.org/10.3390/membranes9120171 - 10 Dec 2019
Cited by 13 | Viewed by 2822
Abstract
A simple non-steady state mathematical model is proposed for the process of purification of an amino acid solution from mineral salts by the method of neutralization dialysis (ND), carried out in a circulating hydrodynamic mode. The model takes into account the characteristics of [...] Read more.
A simple non-steady state mathematical model is proposed for the process of purification of an amino acid solution from mineral salts by the method of neutralization dialysis (ND), carried out in a circulating hydrodynamic mode. The model takes into account the characteristics of membranes (thickness, exchange capacity and electric conductivity) and solution (concentration and components nature) as well as the solution flow rate in dialyzer compartments. In contrast to the known models, the new model considers a local change in the ion concentration in membranes and the adjacent diffusion layers. In addition, the model takes into consideration the ability of the amino acid to enter the protonation/deprotonation reactions. A comparison of the results of simulations with experimental data allows us to conclude that the model adequately describes the ND of a strong electrolyte (NaCl) and amino acid (phenylalanine) mixture solutions in the case where the diffusion ability of amino acids in membranes is much less, than mineral salts. An example shows the application of the model to predict the fluxes of salt ions through ion exchange membranes as well as pH of the desalination solution at a higher than in experiments flow rate of solutions in ND dialyzer compartments. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Figure 1

20 pages, 2462 KiB  
Article
Concentration Dependencies of Diffusion Permeability of Anion-Exchange Membranes in Sodium Hydrogen Carbonate, Monosodium Phosphate, and Potassium Hydrogen Tartrate Solutions
by Natalia Pismenskaya, Veronika Sarapulova, Ekaterina Nevakshenova, Natalia Kononenko, Maria Fomenko and Victor Nikonenko
Membranes 2019, 9(12), 170; https://doi.org/10.3390/membranes9120170 - 10 Dec 2019
Cited by 15 | Viewed by 3340
Abstract
The concentration dependencies of diffusion permeability of homogeneous (AMX-Sb and AX) and heterogeneous (MA-41 and FTAM-EDI) anion-exchange membranes (AEMs) is obtained in solutions of ampholytes (sodium bicarbonate, NaHCO3; monosodium phosphate, NaH2PO4; and potassium hydrogen tartrate, KHT) and [...] Read more.
The concentration dependencies of diffusion permeability of homogeneous (AMX-Sb and AX) and heterogeneous (MA-41 and FTAM-EDI) anion-exchange membranes (AEMs) is obtained in solutions of ampholytes (sodium bicarbonate, NaHCO3; monosodium phosphate, NaH2PO4; and potassium hydrogen tartrate, KHT) and a strong electrolyte (sodium chloride, NaCl). It is established that the diffusion permeability of AEMs increases with dilution of the ampholyte solutions, while it decreases in the case of the strong electrolyte solution. The factors causing the unusual form of concentration dependencies of AEMs in the ampholyte solutions are considered: (1) the enrichment of the internal AEM solution with multiply charged counterions and (2) the increase in the pore size of AEMs with dilution of the external solution. The enrichment of the internal solution of AEMs with multiply charged counterions is caused by the Donnan exclusion of protons, which are the products of protolysis reactions. The increase in the pore size is conditioned by the stretching of the elastic polymer matrix due to the penetration of strongly hydrated anions of carbonic, phosphoric, and tartaric acids into the AEMs. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Graphical abstract

13 pages, 6093 KiB  
Article
A Study of Ralex Membrane Morphology by SEM
by Elmara M. Akberova, Vera I. Vasil’eva, Victor I. Zabolotsky and Lubos Novak
Membranes 2019, 9(12), 169; https://doi.org/10.3390/membranes9120169 - 06 Dec 2019
Cited by 16 | Viewed by 4062
Abstract
A comparative analysis of the effect of the manufacturing technology of heterogeneousion-exchange membranes Ralex CM Pes manufactured by MEGA a.s. (Czech Republic) on the structural properties of their surface and cross section by SEM was carried out. The CM Pes membrane is a [...] Read more.
A comparative analysis of the effect of the manufacturing technology of heterogeneousion-exchange membranes Ralex CM Pes manufactured by MEGA a.s. (Czech Republic) on the structural properties of their surface and cross section by SEM was carried out. The CM Pes membrane is a composite of a sulfonated ion-exchanger with inert binder of polyethylene and reinforcing polyester fiber. In the manufacture of membranes Ralex the influence of two factors was investigated. First, the time of ion-exchange grain millingvaried at a constant resin/polyethylene ratio. Second, the ratio of the cation-exchanger and the inert binder of polyethylene varied. It has been found that the membrane surface becomes more electrically homogeneous with the growth of the ion-exchanger loading and a decrease in its particle size. With an increase in the milling time of resin grainsfrom 5 to 80 min a more than 1.5-fold decrease in their radius and in the distance between them was revealed.Besides, there is a 1.5-fold decrease in the fraction, as well as in the size of pores and structure defects. The fraction of the ion-exchange phase on the membrane surface decreases by 7%. With an increase in the resin loading from 45 to 70 wt %, the growth of the fraction of conducting regions on the surface is almost twofold, while their sizes remain practically unchanged. More significant changes in the surface structure of the studied membranes are established in comparison with the cross section. An increase in the resin content in the membranes from 45 to 70 wt % corresponds to a 43% increment of its fraction on the cross-section.The increase in the ion-exchanger content of Ralex membranes is accompanied by the growth of the fraction of macropores and structure defects on the membrane surface by 70% and a twofold decrease in the distance between conducting zones. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Figure 1

18 pages, 1134 KiB  
Article
How Molecular Weight Cut-Offs and Physicochemical Properties of Polyether Sulfone Membranes Affect Peptide Migration and Selectivity during Electrodialysis with Filtration Membranes
by Sabita Kadel, Geneviève Pellerin, Jacinthe Thibodeau, Véronique Perreault, Carole Lainé and Laurent Bazinet
Membranes 2019, 9(11), 153; https://doi.org/10.3390/membranes9110153 - 13 Nov 2019
Cited by 30 | Viewed by 7261
Abstract
Filtration membranes (FMs) are an integral part of electrodialysis with filtration membranes (EDFM), a green and promising technology for bioactive peptide fractionation. Therefore, it is paramount to understand how physicochemical properties of FMs impact global and selective peptide migration to anionic (A [...] Read more.
Filtration membranes (FMs) are an integral part of electrodialysis with filtration membranes (EDFM), a green and promising technology for bioactive peptide fractionation. Therefore, it is paramount to understand how physicochemical properties of FMs impact global and selective peptide migration to anionic (ARC) and cationic (C+RC) peptide recovery compartments during their simultaneous separation by EDFM. In this context, six polyether sulfone (PES) membranes with molecular weight cut-offs (MWCO) of 5, 10, 20, 50, 100 and 300 kDa were characterized and used during EDFM to separate peptides from a complex whey protein hydrolysate. Surface charge, roughness, thickness and surface/pores nature of studied PES membranes were similar with small differences in conductivity, porosity and pore size distribution. Interestingly, global peptides migration to both recovery compartments increased linearly as a function of MWCO. However, peptide selectivity changed according to the recovery compartments and/or the peptide’s charge and MW with an increase in MWCO of FMs. Indeed, in ARC, the relative abundance (RA) of peptides having low negative charge and MW (IDALNENK and VLVLDTDYK) decreased (45% to 19%) with an increase in MWCO, while the opposite for peptides having high negative charge and MW (TPEVDDEALEK, TPEVDDEALEKFDK & VYVEELKPTPEGDLEILLQK) (increased from 16% to 43%). Concurrently, in C+RC, regardless of MWCO used, the highest RA was observed for peptides having low positive charge and MW (IPAVFK & ALPMHIR). It was the first time that the significant impact of charge, MWCO and pore size distribution of PES membranes on a wide range of MWCO was demonstrated on EDFM performances. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Figure 1

14 pages, 1925 KiB  
Article
Effect of Carbon Dioxide Loading on Removal of Heat Stable Salts from Amine Solvent by Electrodialysis
by Evgeniia Grushevenko, Stepan Bazhenov, Vladimir Vasilevsky, Eduard Novitsky, Maxim Shalygin and Alexey Volkov
Membranes 2019, 9(11), 152; https://doi.org/10.3390/membranes9110152 - 13 Nov 2019
Cited by 14 | Viewed by 3424
Abstract
Heat stable salts (HSS) formed and continuously accumulated in the amine-based solvents due to solvent degradation and impurities in the feed gas can dramatically change the efficiency of the amine scrubbing process. HSS can be removed by using different methods including membrane separation [...] Read more.
Heat stable salts (HSS) formed and continuously accumulated in the amine-based solvents due to solvent degradation and impurities in the feed gas can dramatically change the efficiency of the amine scrubbing process. HSS can be removed by using different methods including membrane separation such as electrodialysis (ED). In this work, we studied the effect of CO2 loading of the lean 30 wt % monoethanolamine (MEA) solution on the efficiency of HSS removal and MEA loss. In the model MEA solution containing HSS on the level of 48 meq/L, the carbon dioxide concentration was varied from 0.2 down to 0 mole (CO2)/mole (MEA). The reclaiming of model MEA solution was carried out by lab-scale two-stage ED unit when the concentrate stream after the first stage was additionally treated using ED (second stage) that allowed reducing MEA loss. It was shown that the decrease of carbon dioxide content from 0.2 down to 0 mole (CO2)/mole (MEA) resulted in a substantial reduction of both parameters—the MEA loss and the specific power consumption with respect to extracted HSS (from 140 down 37 kJ per 1 g of recovered HSS anions). This can be explained by the drop in the total concentration of ions formed by the interaction of MEA solution with carbon dioxide. However, the change of CO2 loading is associated with additional power consumption towards further solvent regeneration in the column. Based on the preliminary estimations of power consumption required for additional CO2 stripping with the respect to the power consumption of ED stage, it seems that lean solvent CO2 loading of 0.1 mole/mole provides an optimum for the power input at 25.9 MJ/kg(solvent). Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Figure 1

16 pages, 2126 KiB  
Article
Perfluorosulfonic Acid Membranes Thermally Treated and Modified by Dopants with Proton-Acceptor Properties for Asparaginate and Potassium Ions Determination in Pharmaceuticals
by Anna Parshina, Tatyana Kolganova, Ekaterina Safronova, Alexander Osipov, Ekaterina Lapshina, Anastasia Yelnikova, Olga Bobreshova and Andrey Yaroslavtsev
Membranes 2019, 9(11), 142; https://doi.org/10.3390/membranes9110142 - 30 Oct 2019
Cited by 10 | Viewed by 3025
Abstract
The influence of incorporation of the dopants with proton-acceptor properties into perfluorosulfonic acid cation exchange membranes (MF-4SC and Nafion), and their treatment conditions on the characteristics of Donnan potential (DP)-sensors (analytical signal is the Donnan potential) in the aqueous solutions containing asparaginate and [...] Read more.
The influence of incorporation of the dopants with proton-acceptor properties into perfluorosulfonic acid cation exchange membranes (MF-4SC and Nafion), and their treatment conditions on the characteristics of Donnan potential (DP)-sensors (analytical signal is the Donnan potential) in the aqueous solutions containing asparaginate and potassium ions in a wide pH range was investigated. A silica, surface modified by 3-aminopropyl and 3-(2-imidazolin-1-yl)-propyl groups, was used as the dopant. The membranes were subjected to mechanical deformation and thermal treatment at various relative humidities. The relationship between water uptake and diffusion permeability of membranes subjected to modification and treatment and the cross sensitivity of DP-sensors based on them to counter and co-ions was studied. The multisensory systems for the simultaneous determination of asparaginate and potassium ions in a concentration range from 1.0 × 10−4 to 1.0 × 10−2 M and pH range from 4 to 8 were developed. An array of cross-sensitive DP-sensors based on MF-4SC membranes containing 3 wt.% SiO2 modified by 10 mol.% 3-aminopropyl and 3-(2-imidazolin-1-yl)-propyl was used for the potassium asparaginate hemihydrate and magnesium asparaginate pentahydrate determination in Panangin® (with an error of 2 and 4%, respectively). Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Graphical abstract

Back to TopTop