Application of Radiological Imaging: Diagnosis, Therapy Monitoring and Pathophysiology in Oncology

A special issue of Journal of Clinical Medicine (ISSN 2077-0383). This special issue belongs to the section "Nuclear Medicine & Radiology".

Deadline for manuscript submissions: closed (31 July 2021) | Viewed by 21983

Special Issue Editor


E-Mail Website
Guest Editor
Department of Diagnostic and Interventional Radiology, University Hospital of Leipzig, D-04103 Leipzig, Germany
Interests: MRI; CT; DWI; oncologic imaging; radiomics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, there has been extensive research regarding imaging of oncologic diseases. The role of imaging has rapidly evolved from sole detection and measurement of malignant lesions to prognostication, treatment prediction and prediction of histologic features of tumors.

From this, a novel field has emerged: Radiomics, which can aid in all of different clinical aspects of oncologic imaging. Due to the advent of artificial intelligence in imaging research and even in clinical routine, the field of oncologic imaging will be significantly improved. The advent of hybrid imaging with PET-CT and PET-MRT helps to better characterize tumors in a morphological and functional way.

Thus, cutting-edge studies utilizing these novel techniques have shown promising results in various tumors where imaging can aid in several different aspects of oncology.

There is no doubt that clinical translation of these novel techniques will be achieved soon.

In this Special Issue, we aim to highlight recent advances in the context of diagnosis, therapy monitoring, and the prediction of prognosis in the field of oncology. Papers investigating these novel aspects of oncologic imaging are welcomed in this Special Issue.

Dr. Hans-Jonas Meyer
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Clinical Medicine is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • radiomics
  • texture analysis
  • AI
  • oncologic imaging
  • CT
  • PET
  • MRI
  • DWI

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

15 pages, 1697 KiB  
Article
The Utility of Metabolic Parameters on Baseline F-18 FDG PET/CT in Predicting Treatment Response and Survival in Paediatric and Adolescent Hodgkin Lymphoma
by Janet Denise Reed, Andries Masenge, Ane Buchner, Fareed Omar, David Reynders, Mariza Vorster, Christophe Van de Wiele and Mike Sathekge
J. Clin. Med. 2021, 10(24), 5979; https://doi.org/10.3390/jcm10245979 - 20 Dec 2021
Cited by 1 | Viewed by 1784
Abstract
Lymphoma is the third most common paediatric cancer. Early detection of high-risk patients is necessary to anticipate those who require intensive therapy and follow-up. Current literature shows that residual tumor avidity on PET (Positron Emission Tomography) following chemotherapy corresponds with decreased survival. However, [...] Read more.
Lymphoma is the third most common paediatric cancer. Early detection of high-risk patients is necessary to anticipate those who require intensive therapy and follow-up. Current literature shows that residual tumor avidity on PET (Positron Emission Tomography) following chemotherapy corresponds with decreased survival. However, the value of metabolic parameters has not been adequately investigated. In this retrospective study, we aimed to evaluate the prognostic value of metabolic and other parameters in paediatric and adolescent Hodgkin lymphoma. We recorded tMTV (total Metabolic Tumor Volume), TLG (Total Lesion Glycolysis), and SUVmax (maximum Standard Uptake Value) on baseline PET, as well the presence of bone marrow or visceral involvement. HIV (human immunodeficiency virus) status and baseline biochemistry from clinical records were noted. All patients received stage-specific standard of care therapy. Response assessment on end-of-treatment PET was evaluated according to the Deauville criteria. We found that bone marrow involvement (p = 0.028), effusion (p < 0.001), and treatment response (p < 0.001) on baseline PET, as well as HIV status (p = 0.036) and baseline haemoglobin (p = 0.039), were significantly related to progression-free survival (PFS), whereas only effusion (p = 0.017) and treatment response (p = 0.050) were predictive of overall survival (OS). Only baseline tMTV predicted treatment response (p = 0.017). This confirms the value of F-18 FDG PET/CT (Fluoro-deoxy-glucose Positron Emission Tomography/Computed Tomography) in prognostication in paediatric and adolescent Hodgkin lymphoma; however, further studies are required to define the significance of metabolic parameters. Full article
Show Figures

Figure 1

12 pages, 1250 KiB  
Article
CT Texture Analysis of Pulmonary Neuroendocrine Tumors—Associations with Tumor Grading and Proliferation
by Hans-Jonas Meyer, Jakob Leonhardi, Anne Kathrin Höhn, Johanna Pappisch, Hubert Wirtz, Timm Denecke and Armin Frille
J. Clin. Med. 2021, 10(23), 5571; https://doi.org/10.3390/jcm10235571 - 26 Nov 2021
Cited by 3 | Viewed by 1429
Abstract
Texture analysis derived from computed tomography (CT) might be able to provide clinically relevant imaging biomarkers and might be associated with histopathological features in tumors. The present study sought to elucidate the possible associations between texture features derived from CT images with proliferation [...] Read more.
Texture analysis derived from computed tomography (CT) might be able to provide clinically relevant imaging biomarkers and might be associated with histopathological features in tumors. The present study sought to elucidate the possible associations between texture features derived from CT images with proliferation index Ki-67 and grading in pulmonary neuroendocrine tumors. Overall, 38 patients (n = 22 females, 58%) with a mean age of 60.8 ± 15.2 years were included into this retrospective study. The texture analysis was performed using the free available Mazda software. All tumors were histopathologically confirmed. In discrimination analysis, “S(1,1)SumEntrp” was significantly different between typical and atypical carcinoids (mean 1.74 ± 0.11 versus 1.79 ± 0.14, p = 0.007). The correlation analysis revealed a moderate positive association between Ki-67 index with the first order parameter kurtosis (r = 0.66, p = 0.001). Several other texture features were associated with the Ki-67 index, the highest correlation coefficient showed “S(4,4)InvDfMom” (r = 0.59, p = 0.004). Several texture features derived from CT were associated with the proliferation index Ki-67 and might therefore be a valuable novel biomarker in pulmonary neuroendocrine tumors. “Sumentrp” might be a promising parameter to aid in the discrimination between typical and atypical carcinoids. Full article
Show Figures

Figure 1

12 pages, 1227 KiB  
Article
Diagnostic Benefit of High b-Value Computed Diffusion-Weighted Imaging in Patients with Hepatic Metastasis
by Maxime Ablefoni, Hans Surup, Constantin Ehrengut, Aaron Schindler, Daniel Seehofer, Timm Denecke and Hans-Jonas Meyer
J. Clin. Med. 2021, 10(22), 5289; https://doi.org/10.3390/jcm10225289 - 14 Nov 2021
Cited by 7 | Viewed by 1861
Abstract
Diffusion-weighted imaging (DWI) has rapidly become an essential tool for the detection of malignant liver lesions. The aim of this study was to investigate the usefulness of high b-value computed DWI (c-DWI) in comparison to standard DWI in patients with hepatic metastases. In [...] Read more.
Diffusion-weighted imaging (DWI) has rapidly become an essential tool for the detection of malignant liver lesions. The aim of this study was to investigate the usefulness of high b-value computed DWI (c-DWI) in comparison to standard DWI in patients with hepatic metastases. In total, 92 patients with histopathologic confirmed primary tumors with hepatic metastasis were retrospectively analyzed by two readers. DWI was obtained with b-values of 50, 400 and 800 or 1000 s/mm2 on a 1.5 T magnetic resonance imaging (MRI) scanner. C-DWI was calculated with a monoexponential model with high b-values of 1000, 2000, 3000, 4000 and 5000 s/mm2. All c-DWI images with high b-values were compared to the acquired DWI sequence at a b-value of 800 or 1000 s/mm2 in terms of volume, lesion detectability and image quality. In the group of a b-value of 800 from a b-value of 2000 s/mm2, hepatic lesion sizes were significantly smaller than on acquired DWI (metastases lesion sizes b = 800 vs. b 2000 s/mm2: mean 25 cm3 (range 10–60 cm3) vs. mean 17.5 cm3 (range 5–35 cm3), p < 0.01). In the second group at a high b-value of 1500 s/mm2, liver metastases were larger than on c-DWI at higher b-values (b = 1500 vs. b 2000 s/mm2, mean 10 cm3 (range 4–24 cm3) vs. mean 9 cm3 (range 5–19 cm3), p < 0.01). In both groups, there was a clear reduction in lesion detectability at b = 2000 s/mm2, with hepatic metastases being less visible compared to c-DWI images at b = 1500 s/mm2 in at least 80% of all patients. Image quality dropped significantly starting from c-DWI at b = 3000 s/mm2. In both groups, almost all high b-values images at b = 4000 s/mm2 and 5000 s/mm2 were not diagnostic due to poor image quality. High c-DWI b-values up to b = 1500 s/mm2 offer comparable detectability for hepatic metastases compared to standard DWI. Higher b-value images over 2000 s/mm2 lead to a noticeable reduction in imaging quality, which could hamper diagnosis. Full article
Show Figures

Figure 1

10 pages, 661 KiB  
Article
Comparison of the Uptake of Hepatocellular Carcinoma on Pre-Therapeutic MDCT, CACT, and SPECT/CT, and the Correlation with Post-Therapeutic PET/CT in Patients Undergoing Selective Internal Radiation Therapy
by Timo C. Meine, Thomas Brunkhorst, Thomas Werncke, Christian Schütze, Arndt Vogel, Martha M. Kirstein, Cornelia L. A. Dewald, Lena S. Becker, Sabine K. Maschke, Nils Kretschmann, Frank K. Wacker, Jan B. Hinrichs and Bernhard C. Meyer
J. Clin. Med. 2021, 10(17), 3837; https://doi.org/10.3390/jcm10173837 - 26 Aug 2021
Cited by 1 | Viewed by 1968
Abstract
(1) Background: To comparatively analyze the uptake of hepatocellular carcinoma (HCC) on pre-therapeutic imaging modalities, the arterial phase multi-detector computed tomography (MDCT), the parenchymal phase C-arm computed tomography (CACT), the Technetium99m-macroaggregates of human serum albumin single-photon emission computed tomography/computed tomography (SPECT/CT), [...] Read more.
(1) Background: To comparatively analyze the uptake of hepatocellular carcinoma (HCC) on pre-therapeutic imaging modalities, the arterial phase multi-detector computed tomography (MDCT), the parenchymal phase C-arm computed tomography (CACT), the Technetium99m-macroaggregates of human serum albumin single-photon emission computed tomography/computed tomography (SPECT/CT), and the correlation to the post-therapeutic Yttrium90 positron emission tomography/computed tomography (PET/CT) in patients with selective internal radiation therapy (SIRT). (2) Methods: Between September 2013 and December 2016, 104 SIRT procedures were performed at our institution in 74 patients with HCC not suitable for curative surgery or ablation. Twenty-two patients underwent an identical sequence of pre-therapeutic MDCT, CACT, SPECT/CT, and post-therapeutic PET/CT with a standardized diagnostic and therapeutic protocol. In these 22 patients, 25 SIRT procedures were evaluated. The uptake of the HCC was assessed using tumor-background ratio (TBR). Therefore, regions of interest were placed on the tumor and the adjacent liver tissue on MDCT (TBRMDCT), CACT (TBRCACT), SPECT/CT (TBRSPECT/CT), and PET/CT (TBRPET/CT). Comparisons were made with the Friedman test and the Nemenyi post-hoc test. Correlations were analyzed using Spearman’s Rho and the Benjamini–Hochberg method. The level of significance was p < 0.05. (3) Results: TBR on MDCT (1.4 ± 0.3) was significantly smaller than on CACT (1.9 ± 0.6) and both were significantly smaller compared to SPECT/CT (4.6 ± 2.0) (pFriedman-Test < 0.001; pTBRMDCT/TBRCACT = 0.012, pTBRMDCT/TBRSPECT/CT < 0.001, pTBRCACT/TBRSPECT/CT < 0.001). There was no significant correlation of TBR on MDCT with PET/CT (rTBRMDCT/TBRPET/CT = 0.116; p = 0.534). In contrast, TBR on CACT correlated to TBR on SPECT/CT (rTBRCACT/TBRSPECT/CT = 0.489; p = 0.004) and tended to correlate to TBR on PET/CT (rTBRCACT/TBRPET/CT =0.365; p = 0.043). TBR on SPECT/CT correlated to TBR on PET/CT (rTBRSPECT/CT/TBRPET/CT = 0.706; p < 0.001) (4) Conclusion: The uptake assessment on CACT was in agreement with SPECT/CT and might be consistent with PET/CT. In contrast, MDCT was not comparable to CACT and SPECT/CT, and had no correlation with PET/CT due to the different application techniques. This emphasizes the value of the CACT, which has the potential to improve the dosimetric assessment of the tumor and liver uptake for SIRT. Full article
Show Figures

Figure 1

13 pages, 1595 KiB  
Article
Relationship between Prognostic Stage in Breast Cancer and Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography
by Mio Mori, Tomoyuki Fujioka, Kazunori Kubota, Leona Katsuta, Yuka Yashima, Kyoko Nomura, Emi Yamaga, Junichi Tsuchiya, Tokuko Hosoya, Goshi Oda, Tsuyoshi Nakagawa, Iichiroh Onishi and Ukihide Tateishi
J. Clin. Med. 2021, 10(14), 3173; https://doi.org/10.3390/jcm10143173 - 19 Jul 2021
Cited by 7 | Viewed by 1664
Abstract
This retrospective study examined the relationship between the standardized uptake value max (SUVmax) of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and the prognostic stage of breast cancer. We examined 358 breast cancers in 334 patients who underwent 18F-FDG [...] Read more.
This retrospective study examined the relationship between the standardized uptake value max (SUVmax) of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and the prognostic stage of breast cancer. We examined 358 breast cancers in 334 patients who underwent 18F-FDG PET/CT for initial staging between January 2016 and December 2019. We extracted data including SUVmax of 18F-FDG PET and pathological biomarkers, including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and nuclear grade. Anatomical and prognostic stages were determined per the American Joint Committee on Cancer (eighth edition). We examined whether there were statistical differences in SUVmax between each prognostic stage. The mean SUVmax values for clinical prognostic stages were as follow: stage 0, 2.2 ± 1.4; stage IA, 2.6 ± 2.1; stage IB, 4.2 ± 3.5; stage IIA, 5.2 ± 2.8; stage IIB, 7.7 ± 6.7; and stage III + IV, 7.0 ± 4.5. The SUVmax values for pathological prognostic stages were as follows: stage 0, 2.2 ± 1.4; stage IA, 2.8 ± 2.2; stage IB, 5.4 ± 3.6; stage IIA, 6.3 ± 3.1; stage IIB, 9.2 ± 7.5, and stage III + IV, 6.2 ± 5.2. There were significant differences in mean SUVmax between clinical prognostic stage 0 and ≥II (p < 0.001) and I and ≥II (p < 0.001). There were also significant differences in mean SUVmax between pathological prognostic stage 0 and ≥II (p < 0.001) and I and ≥II (p < 0.001). In conclusion, mean SUVmax increased with all stages up to prognostic stage IIB, and there were significant differences between several stages. The SUVmax of 18F-FDG PET/CT may contribute to prognostic stage stratification, particularly in early cases of breast cancers. Full article
Show Figures

Figure 1

12 pages, 2908 KiB  
Article
A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning
by Fang-Ying Chiu, Nguyen Quoc Khanh Le and Cheng-Yu Chen
J. Clin. Med. 2021, 10(9), 2030; https://doi.org/10.3390/jcm10092030 - 10 May 2021
Cited by 15 | Viewed by 4263
Abstract
Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension is essential for [...] Read more.
Glioblastoma multiforme (GBM) carries a poor prognosis and usually presents with heterogenous regions of a necrotic core, solid part, peritumoral tissue, and peritumoral edema. Accurate demarcation on magnetic resonance imaging (MRI) between the active tumor region and perifocal edematous extension is essential for planning stereotactic biopsy, GBM resection, and radiotherapy. We established a set of radiomics features to efficiently classify patients with GBM and retrieved cerebral multiparametric MRI, including contrast-enhanced T1-weighted (T1-CE), T2-weighted, T2-weighted fluid-attenuated inversion recovery, and apparent diffusion coefficient images from local patients with GBM. A total of 1316 features on the raw MR images were selected for each annotated area. A leave-one-out cross-validation was performed on the whole dataset, the different machine learning and deep learning techniques tested; random forest achieved the best performance (average accuracy: 93.6% necrosis, 90.4% solid part, 95.8% peritumoral tissue, and 90.4% peritumoral edema). The features from the enhancing tumor and the tumor shape elongation of peritumoral edema region for high-risk groups from T1-CE. The multiparametric MRI-based radiomics model showed the efficient classification of tumor subregions of GBM and suggests that prognostic radiomic features from a routine MRI exam may also be significantly associated with key biological processes that affect the response to chemotherapy in GBM. Full article
Show Figures

Figure 1

13 pages, 2304 KiB  
Article
Usefulness of Cone-Beam CT-Based Liver Perfusion Mapping for Evaluating the Response of Hepatocellular Carcinoma to Conventional Transarterial Chemoembolization
by Sun Young Choi, Kyung Ah Kim, Woosun Choi, Yohan Kwon and Soo Buem Cho
J. Clin. Med. 2021, 10(4), 713; https://doi.org/10.3390/jcm10040713 - 11 Feb 2021
Cited by 3 | Viewed by 1753
Abstract
We investigated the cone beam computed tomography (CBCT)-based-liver-perfusion-mapping usefulness during transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC) to access treatment response and predict outcomes. From October 2016 to September 2018, 42 patients with HCCs scheduled for conventional TACE were prospectively enrolled. Three reviewers [...] Read more.
We investigated the cone beam computed tomography (CBCT)-based-liver-perfusion-mapping usefulness during transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC) to access treatment response and predict outcomes. From October 2016 to September 2018, 42 patients with HCCs scheduled for conventional TACE were prospectively enrolled. Three reviewers evaluated the unenhanced and contrast-enhanced CBCT and CBCT-based-liver-perfusion-mapping of each tumor. Parenchymal blood volume (PBV) was measured. The operator’s judgment on the technical results was recorded. Response outcome was determined on follow-up CT or magnetic resonance imaging, according to the modified Response Evaluation Criteria in Solid Tumors. Diagnostic performance for detection of a viable tumor was evaluated using multiple logistic regression with C-statistics. CBCT-based-liver-perfusion-mapping and the maximum PBV of the tumor were significant in multiple logistic regression analysis of response (p < 0.0001, p = 0.0448, respectively), with C-statistics of 0.9540 and 0.7484, respectively. Diagnostic accuracy of operator’s judgment was 79.66% (95%CI 69.39%–89.93%). Diagnostic performance of CBCT-based-liver-perfusion-mapping showed a high concordance in three reviewers. The mean PBV of tumor, maximum PBV of tumor, and mean PBV of liver significantly decreased after TACE (each p < 0.001). In ROC curve analysis, the AUC for prediction of residual tumor by the maximum PBV of tumor after TACE was 0.7523, with 80.8% sensitivity and 60.6% specificity. Full article
Show Figures

Figure 1

12 pages, 2301 KiB  
Article
Does Hepatic Steatosis Influence the Detection Rate of Metastases in the Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI?
by Ingo G. Steffen, Thomas Weissmann, Jan Holger Rothe, Dominik Geisel, Sascha S. Chopra, Johannes Kahn, Bernd Hamm and Timm Denecke
J. Clin. Med. 2021, 10(1), 98; https://doi.org/10.3390/jcm10010098 - 30 Dec 2020
Cited by 2 | Viewed by 3023
Abstract
The aim of this exploratory study was to evaluate the influence of hepatic steatosis on the detection rate of metastases in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). A total of 50 patients who underwent gadoxetic acid-enhanced MRI (unenhanced T1w in- and opposed-phase, [...] Read more.
The aim of this exploratory study was to evaluate the influence of hepatic steatosis on the detection rate of metastases in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). A total of 50 patients who underwent gadoxetic acid-enhanced MRI (unenhanced T1w in- and opposed-phase, T2w fat sat, unenhanced 3D-T1w fat sat and 3-phase dynamic contrast-enhanced (uDP), 3D-T1w fat sat hepatobiliary phase (HP)) were retrospectively included. Two blinded observers (O1/O2) independently assessed the images to determine the detection rate in uDP and HP. The hepatic signal fat fraction (HSFF) was determined as the relative signal intensity reduction in liver parenchyma from in- to opposed-phase images. A total of 451 liver metastases were detected (O1/O2, n = 447/411). O1/O2 detected 10.9%/9.3% of lesions exclusively in uDP and 20.2%/15.5% exclusively in HP. Lesions detected exclusively in uDP were significantly associated with a larger HSFF (area under curve (AUC) of receiver operating characteristic (ROC) analysis, 0.93; p < 0.001; cutoff, 41.5%). The exclusively HP-positive lesions were significantly associated with a smaller diameter (ROC-AUC, 0.82; p < 0.001; cutoff, 5 mm) and a smaller HSFF (ROC-AUC, 0.61; p < 0.001; cutoff, 13.3%). Gadoxetic acid imaging has the advantage of detecting small occult metastatic liver lesions in the HP. However, using non-optimized standard fat-saturated 3D-T1w protocols, severe steatosis (HSFF > 30%) is a potential pitfall for the detection of metastases in HP. Full article
Show Figures

Figure 1

Other

Jump to: Research

10 pages, 2054 KiB  
Perspective
Comprehensive Perspective for Lung Cancer Characterisation Based on AI Solutions Using CT Images
by Tania Pereira, Cláudia Freitas, José Luis Costa, Joana Morgado, Francisco Silva, Eduardo Negrão, Beatriz Flor de Lima, Miguel Correia da Silva, António J. Madureira, Isabel Ramos, Venceslau Hespanhol, António Cunha and Hélder P. Oliveira
J. Clin. Med. 2021, 10(1), 118; https://doi.org/10.3390/jcm10010118 - 31 Dec 2020
Cited by 15 | Viewed by 2909
Abstract
Lung cancer is still the leading cause of cancer death in the world. For this reason, novel approaches for early and more accurate diagnosis are needed. Computer-aided decision (CAD) can be an interesting option for a noninvasive tumour characterisation based on thoracic computed [...] Read more.
Lung cancer is still the leading cause of cancer death in the world. For this reason, novel approaches for early and more accurate diagnosis are needed. Computer-aided decision (CAD) can be an interesting option for a noninvasive tumour characterisation based on thoracic computed tomography (CT) image analysis. Until now, radiomics have been focused on tumour features analysis, and have not considered the information on other lung structures that can have relevant features for tumour genotype classification, especially for epidermal growth factor receptor (EGFR), which is the mutation with the most successful targeted therapies. With this perspective paper, we aim to explore a comprehensive analysis of the need to combine the information from tumours with other lung structures for the next generation of CADs, which could create a high impact on targeted therapies and personalised medicine. The forthcoming artificial intelligence (AI)-based approaches for lung cancer assessment should be able to make a holistic analysis, capturing information from pathological processes involved in cancer development. The powerful and interpretable AI models allow us to identify novel biomarkers of cancer development, contributing to new insights about the pathological processes, and making a more accurate diagnosis to help in the treatment plan selection. Full article
Show Figures

Figure 1

Back to TopTop