ijms-logo

Journal Browser

Journal Browser

Plant Genetics and Breeding Research Progress in Genomics to Post-genomics Era

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (31 January 2023) | Viewed by 29710

Special Issue Editor

Special Issue Information

Dear Colleagues,

Advances in next-generation sequencing technology have revolutionized plant genetics, genomics, and breeding research. The complete and partial genome sequences, as well as transcript sequences from different tissues of plants, have been generated and annotated for hundreds of diverse plant species. These huge genomic and transcriptomics data are freely available in the public domain; these resources can be used to enhance understanding and address the basic questions of genetics and plant breeding. Therefore, genomic and transcriptomics resource development and their efficient exploration is incessantly rising. High throughput sequencing-based approaches, such as whole-genome re-sequencing, genotyping-by-sequencing (GBS), methylome sequencing, QTL-seq, amplicon sequencing, and many more, are being used for genome-wide association (GWAS), genomic selection (GS), Mut-map, genetic diversity, and population structure studies. On the other hand, the transcriptome sequencing approach is widely used for identifying gene functions, decoding pathways, and elucidating complex genetic regulation. The aim of this Special Issue is to bring to light the recent progress in the research of plant genetics, genomics, transcriptomics, and bio-informatics. Original research articles and concepts for review articles to address major issues are welcome.

This Special Issue will focus include articles related to the following topics:

  • Next generation sequencing, assembly, annotation;
  • Genetic mapping , GWAS, multi-parental QTL mapping, and QTLseq;
  • Genomic selection for complex traits;
  • Map-based cloning of novel gene(s);
  • Whole-genome sequencing and resequencing efforts;
  •  Haplotype-based breeding;
  •  Population genomics, genetic diversity;
  • Plant molecular evolution, genome structure, and genome plasticity;
  • Genomics based precision breeding and novel trait introgression;
  • Transcriptomics, miRNA;
  • Molecular markers;
  • Comparative genomics; 
  • Epigenomics.

Dr. Manosh Kumar Biswas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Next-generation-sequencing,
  • Methylome sequencing,
  • Genotyping-by-sequencing (GBS),
  • Genome-wide association studies (GWAS),
  • eQTL,
  • Population structure,
  • Genomic selection (GS),
  • Genetic diversity,
  • Molecular markers,
  • Insitu Hybridizations,
  • Functional genomics
  • Gene expression
  • Bio-informatics
  • Molecular breeding

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

5 pages, 200 KiB  
Editorial
Emerging Horizons in Plant Genetics and Breeding
by Manosh Kumar Biswas
Int. J. Mol. Sci. 2023, 24(14), 11621; https://doi.org/10.3390/ijms241411621 - 19 Jul 2023
Viewed by 811
Abstract
Plant genetics and breeding have made significant progress in recent years, especially with the emergence of genomics [...] Full article

Research

Jump to: Editorial

21 pages, 5974 KiB  
Article
Genome-Wide Identification and Characterization of R2R3-MYB Provide Insight into Anthocyanin Biosynthesis Regulation Mechanism of Ananas comosus var. bracteatus
by Wei Yang, Lijun Feng, Jiaheng Luo, Huiling Zhang, Fuxing Jiang, Yehua He, Xi Li, Juan Du, Mark Owusu Adjei, Aiping Luan and Jun Ma
Int. J. Mol. Sci. 2023, 24(4), 3133; https://doi.org/10.3390/ijms24043133 - 5 Feb 2023
Cited by 5 | Viewed by 1616
Abstract
The R2R3-MYB proteins comprise the largest class of MYB transcription factors, which play an essential role in regulating anthocyanin synthesis in various plant species. Ananas comosus var. bracteatus is an important colorful anthocyanins-rich garden plant. The spatio-temporal accumulation of anthocyanins in chimeric leaves, [...] Read more.
The R2R3-MYB proteins comprise the largest class of MYB transcription factors, which play an essential role in regulating anthocyanin synthesis in various plant species. Ananas comosus var. bracteatus is an important colorful anthocyanins-rich garden plant. The spatio-temporal accumulation of anthocyanins in chimeric leaves, bracts, flowers, and peels makes it an important plant with a long ornamental period and highly improves its commercial value. We conducted a comprehensive bioinformatic analysis of the R2R3-MYB gene family based on genome data from A. comosus var. bracteatus. Phylogenetic analysis, gene structure and motif analysis, gene duplication, collinearity, and promoter analysis were used to analyze the characteristics of this gene family. In this work, a total of 99 R2R3-MYB genes were identified and classified into 33 subfamilies according to phylogenetic analysis, and most of them were localized in the nucleus. We found these genes were mapped to 25 chromosomes. Gene structure and protein motifs were conserved among AbR2R3-MYB genes, especially within the same subfamily. Collinearity analysis revealed four pairs of tandem duplicated genes and 32 segmental duplicates in AbR2R3-MYB genes, indicating that segmental duplication contributed to the amplification of the AbR2R3-MYB gene family. A total of 273 ABRE responsiveness, 66 TCA elements, 97 CGTCA motifs, and TGACG motifs were the main cis elements in the promoter region under response to ABA, SA, and MEJA. These results revealed the potential function of AbR2R3-MYB genes in response to hormone stress. Ten R2R3-MYBs were found to have high homology to MYB proteins reported to be involved in anthocyanin biosynthesis from other plants. RT-qPCR results revealed the 10 AbR2R3-MYB genes showed tissue-specific expression patterns, six of them expressed the highest in the flower, two genes in the bract, and two genes in the leaf. These results suggested that these genes may be the candidates that regulate anthocyanin biosynthesis of A. comosus var. bracteatus in the flower, leaf, and bract, respectively. In addition, the expressions of these 10 AbR2R3-MYB genes were differentially induced by ABA, MEJA, and SA, implying that these genes may play crucial roles in hormone-induced anthocyanin biosynthesis. Our study provided a comprehensive and systematic analysis of AbR2R3-MYB genes and identified the AbR2R3-MYB genes regulating the spatial-temporal anthocyanin biosynthesis in A. comosus var. bracteatus, which would be valuable for further study on the anthocyanin regulation mechanism of A. comosus var. bracteatus. Full article
Show Figures

Figure 1

21 pages, 4279 KiB  
Article
Identification of NPF Family Genes in Brassica rapa Reveal Their Potential Functions in Pollen Development and Response to Low Nitrate Stress
by Xiaoshuang Yang, Wenyu Han, Jiao Qi, Yueying Li, Xingbo Chen, Yiwen Zhang, Jingyu Wu, Genze Li, Jing Gao and Xiangshu Dong
Int. J. Mol. Sci. 2023, 24(1), 754; https://doi.org/10.3390/ijms24010754 - 1 Jan 2023
Cited by 3 | Viewed by 1908
Abstract
Nitrate Transporter 1/Peptide Transporter Family (NPF) genes encode membrane transporters involved in the transport of diverse substrates. However, little is known about the diversity and functions of NPFs in Brassica rapa. In this study, 85 NPFs were identified in B. [...] Read more.
Nitrate Transporter 1/Peptide Transporter Family (NPF) genes encode membrane transporters involved in the transport of diverse substrates. However, little is known about the diversity and functions of NPFs in Brassica rapa. In this study, 85 NPFs were identified in B. rapa (BrNPFs) which comprised eight subfamilies. Gene structure and conserved motif analysis suggested that BrNFPs were conserved throughout the genus. Stress and hormone-responsive cis-acting elements and transcription factor binding sites were identified in BrNPF promoters. Syntenic analysis suggested that tandem duplication contributed to the expansion of BrNPFs in B. rapa. Transcriptomic profiling analysis indicated that BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were expressed in fertile floral buds, suggesting important roles in pollen development. Thirty-nine BrNPFs were responsive to low nitrate availability in shoots or roots. BrNPF2.10, BrNPF2.19, BrNPF2.3, BrNPF5.12, BrNPF5.16, BrNPF5.8, and BrNPF6.3 were only up-regulated in roots under low nitrate conditions, indicating that they play positive roles in nitrate absorption. Furthermore, many genes were identified in contrasting genotypes that responded to vernalization and clubroot disease. Our results increase understanding of BrNPFs as candidate genes for genetic improvement studies of B. rapa to promote low nitrate availability tolerance and for generating sterile male lines based on gene editing methods. Full article
Show Figures

Figure 1

20 pages, 8775 KiB  
Article
CRISPR/Cas9 Mutant Rice Ospmei12 Involved in Growth, Cell Wall Development, and Response to Phytohormone and Heavy Metal Stress
by Zhaoyang Li, Muhammad Junaid Rao, Jiaying Li, Yanting Wang, Peng Chen, Hua Yu, Chongjian Ma and Lingqiang Wang
Int. J. Mol. Sci. 2022, 23(24), 16082; https://doi.org/10.3390/ijms232416082 - 16 Dec 2022
Cited by 5 | Viewed by 1824
Abstract
Pectin is one of the constituents of the cell wall, distributed in the primary cell wall and middle lamella, affecting the rheological properties and the cell wall stickiness. Pectin methylesterase (PME) and pectin methylesterase inhibitor (PMEI) are the most important factors for modifying [...] Read more.
Pectin is one of the constituents of the cell wall, distributed in the primary cell wall and middle lamella, affecting the rheological properties and the cell wall stickiness. Pectin methylesterase (PME) and pectin methylesterase inhibitor (PMEI) are the most important factors for modifying methyl esterification. In this study, 45 PMEI genes from rice (Oryza sativa L.) were screened by bioinformatics tools, and their structure, motifs, cis-acting elements in the promoter region, chromosomal distribution, gene duplication, and phylogenetic relationship were analyzed. Furthermore, CRISPR/Cas9 was used to edit the OsPMEI12 (LOC_Os03G01020) and two mutant pmei12 lines were obtained to explore the functions of OsPMEI in plant growth and development, and under cadmium (Cd) stress. Compared to wild type (WT) Nipponbare, the second inverted internodes of the mutant plants shortened significantly, resulting in the reduction in plant height at mature stage. The seed setting rate, and fresh and dry weights of the mutants were also decreased in mutant plants. In addition, the pectin methylation of pmei12 lines is decreased as expected, and the pectin content of the cell wall increased at both seedling and maturity stages; however, the cellulose and hemicellulose increased only at seedling stage. Interestingly, the growth of the pmei12 lines was better than the WT in both normal conditions and under two phytohormone (GA3 and NAA) treatments at seedling stage. Under Cd stress, the fresh and dry weights were increased in pmei12 lines. These results indicated that OsPMEI12 was involved in the regulation of methyl esterification during growth, affected cell wall composition and agronomic traits, and might play an important role in responses to phytohormones and stress. Full article
Show Figures

Figure 1

13 pages, 2966 KiB  
Article
Combined Metabolomic and Quantitative RT-PCR Analyses Revealed the Synthetic Differences of 2-Acetyl-1-pyrroline in Aromatic and Non-Aromatic Vegetable Soybeans
by Man Zhao, Linlin Qian, Zhuoyu Chi, Xiaoli Jia, Fengjie Qi, Fengjie Yuan, Zhiqiang Liu and Yuguo Zheng
Int. J. Mol. Sci. 2022, 23(23), 14529; https://doi.org/10.3390/ijms232314529 - 22 Nov 2022
Cited by 2 | Viewed by 1099
Abstract
Aroma is an important economic trait of vegetable soybeans, which greatly influences their market value. The 2-acetyl-1-pyrroline (2AP) is considered as an important substance affecting the aroma of plants. Although the 2AP synthesis pathway has been resolved, the differences of the 2AP synthesis [...] Read more.
Aroma is an important economic trait of vegetable soybeans, which greatly influences their market value. The 2-acetyl-1-pyrroline (2AP) is considered as an important substance affecting the aroma of plants. Although the 2AP synthesis pathway has been resolved, the differences of the 2AP synthesis in the aromatic and non-aromatic vegetable soybeans are unknown. In this study, a broad targeted metabolome analysis including measurement of metabolites levels and gene expression levels was performed to reveal pathways of aroma formation in the two developmental stages of vegetable soybean grains [35 (S5) and 40 (S6) days after anthesis] of the ‘Zhexian No. 8’ (ZX8, non-aromatic) and ZK1754 (aromatic). The results showed that the differentially accumulated metabolites (DAMs) of the two varieties can be classified into nine main categories including flavonoids, lipids, amino acids and derivatives, saccharides and alcohols, organic acids, nucleotides and derivatives, phenolic acids, alkaloids and vitamin, which mainly contributed to their phenotypic differences. Furthermore, in combination with the 2AP synthesis pathway, the differences of amino acids and derivatives were mainly involved in the 2AP synthesis. Furthermore, 2AP precursors’ analysis revealed that the accumulation of 2AP mainly occurred from 1-pyrroline-5-carboxylate (P5C), not 4-aminobutyraldehyde (GABald). The quantitative RT-PCR showed that the associated synthetic genes were 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), ∆1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PRODH) and pyrroline-5-carboxylate reductase (P5CR), which further verified the synthetic pathway of 2AP. Furthermore, the betaine aldehyde dehydrogenase 2 (GmBADH2) mutant was not only vital for the occurrence of 2AP, but also for the synthesis of 4-aminobutyric acid (GABA) in vegetable soybean. Therefore, the differences of 2AP accumulation in aromatic and non-aromatic vegetable soybeans have been revealed, and it also provides an important theoretical basis for aromatic vegetable soybean breeding. Full article
Show Figures

Figure 1

18 pages, 1867 KiB  
Article
Comparative Seeds Storage Transcriptome Analysis of Astronium fraxinifolium Schott, a Threatened Tree Species from Brazil
by Leonel Gonçalves Pereira Neto, Bruno Cesar Rossini, Celso Luis Marino, Peter E. Toorop and Edvaldo Aparecido Amaral Silva
Int. J. Mol. Sci. 2022, 23(22), 13852; https://doi.org/10.3390/ijms232213852 - 10 Nov 2022
Cited by 1 | Viewed by 1682
Abstract
Astronium fraxinifolium Schott (Anacardiaceae), also known as a ‘gonçalo-alves’, is a tree of the American tropics, with distribution in Mexico, part of Central America, Argentina, Bolivia, Brazil and Paraguay. In Brazil it is an endangered species that occurs in the Cerrado, Caatinga and [...] Read more.
Astronium fraxinifolium Schott (Anacardiaceae), also known as a ‘gonçalo-alves’, is a tree of the American tropics, with distribution in Mexico, part of Central America, Argentina, Bolivia, Brazil and Paraguay. In Brazil it is an endangered species that occurs in the Cerrado, Caatinga and in the Amazon biomes. In support of ex situ conservation, this work aimed to study two accessions with different longevity (p50) of A. fraxinifolium collected from two different geographic regions, and to evaluate the transcriptome during aging of the seeds in order to identify genes related to seed longevity. Artificial ageing was performed at a constant temperature of 45 °C and 60% relative humidity. RNA was extracted from 100 embryonic axes exposed to control and aging conditions for 21 days. The transcriptome analysis revealed differentially expressed genes such as Late Embryogenesis Abundant (LEA) genes, genes involved in the photosystem, glycine rich protein (GRP) genes, and several transcription factors associated with embryo development and ubiquitin-conjugating enzymes. Thus, these results contribute to understanding which genes play a role in seed ageing, and may serve as a basis for future functional characterization of the seed aging process in A. fraxinifolium. Full article
Show Figures

Figure 1

13 pages, 3283 KiB  
Article
Genome-Wide Association Mapping Identifies New Candidate Genes for Cold Stress and Chilling Acclimation at Seedling Stage in Rice (Oryza sativa L.)
by Jianguo Li, Ahmed Adel Khatab, Lihua Hu, Liyan Zhao, Jiangyi Yang, Lingqiang Wang and Guosheng Xie
Int. J. Mol. Sci. 2022, 23(21), 13208; https://doi.org/10.3390/ijms232113208 - 30 Oct 2022
Cited by 4 | Viewed by 1687
Abstract
Rice (Oryza sativa L.) is a chilling-sensitive staple food crop, and thus, low temperature significantly affects rice growth and yield. Many studies have focused on the cold shock of rice although chilling acclimation is more likely to happen in the field. In [...] Read more.
Rice (Oryza sativa L.) is a chilling-sensitive staple food crop, and thus, low temperature significantly affects rice growth and yield. Many studies have focused on the cold shock of rice although chilling acclimation is more likely to happen in the field. In this paper, a genome-wide association study (GWAS) was used to identify the genes that participated in cold stress and chilling accumulation. A total of 235 significantly associated single-nucleotide polymorphisms (SNPs) were identified. Among them, we detected 120 and 88 SNPs for the relative shoot fresh weight under cold stress and chilling acclimation, respectively. Furthermore, 11 and 12 quantitative trait loci (QTLs) were identified for cold stress and chilling acclimation, respectively, by integrating the co-localized SNPs. Interestingly, we identified 10 and 15 candidate genes in 11 and 12 QTLs involved in cold stress and chilling acclimation, respectively, and two new candidate genes (LOC_Os01g62410, LOC_Os12g24490) were obviously up-regulated under chilling acclimation. Furthermore, OsMYB3R-2 (LOC_Os01g62410) that encodes a R1R2R3 MYB gene was associated with cold tolerance, while a new C3HC4-type zinc finger protein-encoding gene LOC_Os12g24490 was found to function as a putative E3 ubiquitin-protein ligase in rice. Moreover, haplotype, distribution, and Wright’s fixation index (FST) of both genes showed that haplotype 3 of LOC_Os12g24490 is more stable in chilling acclimation, and the SNP (A > T) showed a difference in latitudinal distribution. FST analysis of SNPs in OsMYB3R-2 (LOC_Os01g62410) and LOC_Os12g24490 indicated that several SNPs were under selection in rice indica and japonica subspecies. This study provided new candidate genes in genetic improvement of chilling acclimation response in rice. Full article
Show Figures

Figure 1

17 pages, 3966 KiB  
Article
BaZFP1, a C2H2 Subfamily Gene in Desiccation-Tolerant Moss Bryum argenteum, Positively Regulates Growth and Development in Arabidopsis and Mosses
by Ping Zhou, Xiujin Liu, Xiaoshuang Li and Daoyuan Zhang
Int. J. Mol. Sci. 2022, 23(21), 12894; https://doi.org/10.3390/ijms232112894 - 25 Oct 2022
Cited by 2 | Viewed by 1402
Abstract
C2H2 zinc finger protein (C2H2-ZFP) plays an important role in regulating plant growth, development, and response to abiotic stress. To date, there have been no analyses of the C2H2-ZFP family in desiccation-tolerant moss. In this study, we identified 57 BaZFP transcripts across the [...] Read more.
C2H2 zinc finger protein (C2H2-ZFP) plays an important role in regulating plant growth, development, and response to abiotic stress. To date, there have been no analyses of the C2H2-ZFP family in desiccation-tolerant moss. In this study, we identified 57 BaZFP transcripts across the Bryum argenteum (B. argenteum) transcriptome. The BaZFP proteins were phylogenetically divided into four groups (I–IV). Additionally, we studied the BaZFP1 gene, which is a nuclear C2H2-ZFP and acts as a positive regulator of growth and development in both moss and Arabidopsis thaliana. The complete coding sequence of the BaZFP1 gene was isolated from B. argenteum cDNA, which showed a high expression level in a dehydration–rehydration treatment process. The overexpression of the BaZFP1 gene in the Physcomitrium patens and B. argenteum promoted differentiation and growth of gametophytes. Heterologous expression in Arabidopsis regulated the whole growth and development cycle. In addition, we quantitatively analyzed the genes related to growth and development in transgenic moss and Arabidopsis, including HLS1, HY5, ANT, LFY, FT, EIN3, MUS, APB4, SEC6, and STM1, and found that their expression levels changed significantly. This study may pave the way for substantial insights into the role of C2H2-ZFPs in plants as well as suggest appropriate candidate genes for crop breeding. Full article
Show Figures

Figure 1

17 pages, 3521 KiB  
Article
Identification of KFB Family in Moso Bamboo Reveals the Potential Function of PeKFB9 Involved in Stress Response and Lignin Polymerization
by Kebin Yang, Ziyang Li, Chenglei Zhu, Yan Liu, Huayu Sun, Xueping Li and Zhimin Gao
Int. J. Mol. Sci. 2022, 23(20), 12568; https://doi.org/10.3390/ijms232012568 - 19 Oct 2022
Cited by 2 | Viewed by 1504
Abstract
The Kelch repeat F-box (KFB) protein is an important E3 ubiquitin ligase that has been demonstrated to perform an important post-translational regulatory role in plants by mediating multiple biological processes. Despite their importance, KFBs have not yet been identified and characterized in bamboo. [...] Read more.
The Kelch repeat F-box (KFB) protein is an important E3 ubiquitin ligase that has been demonstrated to perform an important post-translational regulatory role in plants by mediating multiple biological processes. Despite their importance, KFBs have not yet been identified and characterized in bamboo. In this study, 19 PeKFBs were identified with F-box and Kelch domains; genes encoding these PeKFBs were unevenly distributed across 12 chromosomes of moso bamboo. Phylogenetic analysis indicated that the PeKFBs were divided into eight subclades based on similar gene structures and highly conserved motifs. A tissue-specific gene expression analysis showed that the PeKFBs were differentially expressed in various tissues of moso bamboo. All the promoters of the PeKFBs contained stress-related cis-elements, which was supported by the differentially expression of PeKFBs of moso bamboo under drought and cold stresses. Sixteen proteins were screened from the moso bamboo shoots’ cDNA library using PeKFB9 as a bait through a yeast two-hybrid (Y2H) assay. Moreover, PeKFB9 physically interacted with PeSKP1-like-1 and PePRX72-1, which mediated the activity of peroxidase in proteolytic turnover. Taken together, these findings improved our understanding of PeKFBs, especially in response to stresses, and laid a foundation for revealing the molecular mechanism of PeKFB9 in regulating lignin polymerization by degrading peroxidase. Full article
Show Figures

Figure 1

19 pages, 6209 KiB  
Article
A Comprehensive Gene Co-Expression Network Analysis Reveals a Role of GhWRKY46 in Responding to Drought and Salt Stresses
by Pengyun Chen, Fei Wei, Hongliang Jian, Tingli Hu, Baoquan Wang, Xiaoyan Lv, Hantao Wang, Xiaokang Fu, Shuxun Yu, Hengling Wei and Liang Ma
Int. J. Mol. Sci. 2022, 23(20), 12181; https://doi.org/10.3390/ijms232012181 - 12 Oct 2022
Cited by 3 | Viewed by 1746
Abstract
Abiotic stress, such as drought and salinity stress, seriously inhibit the growth and development of plants. Therefore, it is vital to understand the drought and salinity resistance mechanisms to enable cotton to provide more production under drought and salt conditions. In this study, [...] Read more.
Abiotic stress, such as drought and salinity stress, seriously inhibit the growth and development of plants. Therefore, it is vital to understand the drought and salinity resistance mechanisms to enable cotton to provide more production under drought and salt conditions. In this study, we identified 8806 and 9108 differentially expressed genes (DEGs) through a comprehensive analysis of transcriptomic data related to the PEG-induced osmotic and salt stress in cotton. By performing weighted gene co-expression network analysis (WGCNA), we identified four co-expression modules in PEG treatment and five co-expression modules in salinity stress, which included 346 and 324 predicted transcription factors (TFs) in these modules, respectively. Correspondingly, whole genome duplication (WGD) events mainly contribute to the expansion of those TFs. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analyses revealed those different modules were associated with stress resistance, including regulating macromolecule metabolic process, peptidase activity, transporter activity, lipid metabolic process, and responses to stimulus. Quantitative RT-PCR analysis was used to confirm the expression levels of 15 hub TFs in PEG6000 and salinity treatments. We found that the hub gene GhWRKY46 could alter salt and PEG-induced drought resistance in cotton through the virus-induced gene silencing (VIGS) method. Our results provide a preliminary framework for further investigation of the cotton response to salt and drought stress, which is significant to breeding salt- and drought-tolerant cotton varieties. Full article
Show Figures

Figure 1

15 pages, 2577 KiB  
Article
De Novo Assembly of a Sarcocarp Transcriptome Set Identifies AaMYB1 as a Regulator of Anthocyanin Biosynthesis in Actinidia arguta var. purpurea
by Bei Niu, Qiaohong Li, Lijuan Fan, Xiaodong Shi, Yuan Liu, Qiguo Zhuang and Xiaobo Qin
Int. J. Mol. Sci. 2022, 23(20), 12120; https://doi.org/10.3390/ijms232012120 - 11 Oct 2022
Viewed by 1624
Abstract
The kiwifruit (Actinidia arguta var. purpurea) produces oval shaped fruits containing a slightly green or mauve outer exocarp and a purple-flesh endocarp with rows of tiny black seeds. The flesh color of the fruit results from a range of anthocyanin compounds, and [...] Read more.
The kiwifruit (Actinidia arguta var. purpurea) produces oval shaped fruits containing a slightly green or mauve outer exocarp and a purple-flesh endocarp with rows of tiny black seeds. The flesh color of the fruit results from a range of anthocyanin compounds, and is an important trait for kiwifruit consumers. To elucidate the molecular mechanisms involved in anthocyanin biosynthesis of the sarcocarp during A. arguta fruit development, de novo assembly and transcriptomic profile analyses were performed. Based on significant Gene Ontology (GO) biological terms, differentially expressed genes were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and amino acid metabolic processes. The genes closely related to anthocyanin biosynthesis, such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and anthocyanidin synthase (ANS), displayed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed by qRT-PCR. Meanwhile, a series of transcription factor genes were identified among the DEGs. Through a correlation analysis. AaMYB1 was found to be significantly correlated with key genes of anthocyanin biosynthesis, especially with CHS. Through a transient expression assay, AaMYB1 induced anthocyanin accumulation in tobacco leaves. These data provide an important basis for exploring the related mechanisms of sarcocarp anthocyanin biosynthesis in A. arguta. This study will provide a strong foundation for functional studies on A. arguta and will facilitate improved breeding of A. arguta fruit. Full article
Show Figures

Figure 1

16 pages, 4031 KiB  
Article
Identification of the 14-3-3 Gene Family in Bamboo and Characterization of Pe14-3-3b Reveals Its Potential Role in Promoting Growth
by Dong Guo, Chenglei Zhu, Kebin Yang, Yan Liu, Xiaoyan Xiao, Ziyang Li and Zhimin Gao
Int. J. Mol. Sci. 2022, 23(19), 11221; https://doi.org/10.3390/ijms231911221 - 23 Sep 2022
Cited by 4 | Viewed by 1546
Abstract
The 14-3-3 protein family plays an important role in regulating plant growth and development. The genes of the 14-3-3 family have been reported in multiple species. However, little is known about the 14-3-3 gene family in bamboo. In this study, a total of [...] Read more.
The 14-3-3 protein family plays an important role in regulating plant growth and development. The genes of the 14-3-3 family have been reported in multiple species. However, little is known about the 14-3-3 gene family in bamboo. In this study, a total of 58 genes belonging to the 14-3-3 family were identified in three representative bamboo species, i.e., Olyra latifolia, Phyllostachys edulis, and Bonia amplexicaulis, whose encoding proteins were grouped into ε and non-ε groups by phylogeny analysis with 14-3-3 proteins from Arabidopsis thaliana and Oryza sativa. The 14-3-3s had diverse gene structures and motif characteristics among the three bamboo species. Collinearity analysis suggested that the genes of the 14-3-3 family in bamboo had undergone a strong purification selection during evolution. Tissue-specific expression analysis showed the expression of Pe14-3-3s varied in different tissues of P. edulis, suggesting that they had functional diversity during growth and development. Co-expression analysis showed that four Pe14-3-3s co-expressed positively with eight ribosomal genes. Yeast two-hybrid (Y2H) assays showed that Pe14-3-3b/d could interact with Pe_ribosome-1/5/6, and qPCR results demonstrated that Pe14-3-3b/d and Pe_ribosome-1/5/6 had similar expression trends with the increase in shoot height, which further confirmed that they would work together to participate in the shoot growth and development of bamboo. Additionally, the transgenic Arabidopsis plants overexpressing Pe14-3-3b had longer roots, a larger stem diameter, an earlier bolting time and a faster growth rate than wild-type Arabidopsis, indicating that Pe14-3-3b acted as a growth promoter. Our results provide comprehensive information on 14-3-3 genes in bamboo and highlight Pe14-3-3b as a potential target for bamboo improvement. Full article
Show Figures

Figure 1

23 pages, 4638 KiB  
Article
Genome-Wide Association Study in Bread Wheat Identifies Genomic Regions Associated with Grain Yield and Quality under Contrasting Water Availability
by Nikolai Govta, Iris Polda, Hanan Sela, Yafit Cohen, Diane M. Beckles, Abraham B. Korol, Tzion Fahima, Yehoshua Saranga and Tamar Krugman
Int. J. Mol. Sci. 2022, 23(18), 10575; https://doi.org/10.3390/ijms231810575 - 12 Sep 2022
Cited by 9 | Viewed by 2613
Abstract
The objectives of this study were to identify genetic loci in the bread wheat genome that would influence yield stability and quality under water stress, and to identify accessions that can be recommended for cultivation in dry and hot regions. We performed a [...] Read more.
The objectives of this study were to identify genetic loci in the bread wheat genome that would influence yield stability and quality under water stress, and to identify accessions that can be recommended for cultivation in dry and hot regions. We performed a genome-wide association study (GWAS) using a panel of 232 wheat accessions spanning diverse ecogeographic regions. Plants were evaluated in the Israeli Northern Negev, under two environments: water-limited (D; 250 mm) and well-watered (W; 450 mm) conditions; they were genotyped with ~71,500 SNPs derived from exome capture sequencing. Of the 14 phenotypic traits evaluated, 12 had significantly lower values under D compared to W conditions, while the values for two traits were higher under D. High heritability (H2 = 0.5–0.9) was observed for grain yield, spike weight, number of grains per spike, peduncle length, and plant height. Days to heading and grain yield could be partitioned based on accession origins. GWAS identified 154 marker-trait associations (MTAs) for yield and quality-related traits, 82 under D and 72 under W, and identified potential candidate genes. We identified 24 accessions showing high and/or stable yields under D conditions that can be recommended for cultivation in regions under the threat of global climate change. Full article
Show Figures

Figure 1

17 pages, 4220 KiB  
Article
Transcriptome Analysis and Gene Expression Profiling of the Peanut Small Seed Mutant Identified Genes Involved in Seed Size Control
by Fengdan Guo, Xiujin Zhu, Chuanzhi Zhao, Shuzhen Zhao, Jiaowen Pan, Yanxiu Zhao, Xingjun Wang and Lei Hou
Int. J. Mol. Sci. 2022, 23(17), 9726; https://doi.org/10.3390/ijms23179726 - 27 Aug 2022
Cited by 3 | Viewed by 1773
Abstract
Seed size is a key factor affecting crop yield and a major agronomic trait concerned in peanut (Arachis hypogaea L.) breeding. However, little is known about the regulation mechanism of peanut seed size. In the present study, a peanut small seed mutant [...] Read more.
Seed size is a key factor affecting crop yield and a major agronomic trait concerned in peanut (Arachis hypogaea L.) breeding. However, little is known about the regulation mechanism of peanut seed size. In the present study, a peanut small seed mutant1 (ssm1) was identified through irradiating peanut cultivar Luhua11 (LH11) using 60Coγ ray. Since the globular embryo stage, the embryo size of ssm1 was significantly smaller than that of LH11. The dry seed weight of ssm1 was only 39.69% of the wild type LH14. The seeds were wrinkled with darker seed coat. The oil content of ssm1 seeds were also decreased significantly. Seeds of ssm1 and LH11 were sampled 10, 20, and 40 days after pegging (DAP) and were used for RNA-seq. The results revealed that genes involved in plant hormones and several transcription factors related to seed development were differentially expressed at all three stages, especially at DAP10 and DAP20. Genes of fatty acid biosynthesis and late embryogenesis abundant protein were significantly decreased to compare with LH11. Interestingly, the gene profiling data suggested that PKp2 and/or LEC1 could be the key candidate genes leading to the small seed phenotype of the mutant. Our results provide valuable clues for further understanding the mechanisms underlying seed size control in peanut. Full article
Show Figures

Figure 1

16 pages, 5169 KiB  
Article
Transcriptional Analysis on Resistant and Susceptible Kiwifruit Genotypes Activating Different Plant-Immunity Processes against Pseudomonas syringae pv. actinidiae
by Xiaobo Qin, Min Zhang, Qiaohong Li, Dalei Chen, Leiming Sun, Xiujuan Qi, Ke Cao and Jinbao Fang
Int. J. Mol. Sci. 2022, 23(14), 7643; https://doi.org/10.3390/ijms23147643 - 11 Jul 2022
Cited by 4 | Viewed by 2047
Abstract
Pseudomonas syringae pv. actinidiae (Psa), a bacterial pathogen, is a severe threat to kiwifruit production. To elucidate the species-specific interaction between Psa and kiwifruit, transcriptomic-profiles analyses were conducted, under Psa-infected treatment and mock-inoculated control, on shoots of resistant Maohua (MH) and susceptible Hongyang [...] Read more.
Pseudomonas syringae pv. actinidiae (Psa), a bacterial pathogen, is a severe threat to kiwifruit production. To elucidate the species-specific interaction between Psa and kiwifruit, transcriptomic-profiles analyses were conducted, under Psa-infected treatment and mock-inoculated control, on shoots of resistant Maohua (MH) and susceptible Hongyang (HY) kiwifruit varieties. The plant hormone-signal transduction and plant–pathogen interaction were significantly enriched in HY compared with MH. However, the starch and sucrose metabolism, antigen processing and presentation, phagosome, and galactose metabolism were significantly enriched in MH compared with HY. Interestingly, the MAP2 in the pathogen/microbe-associated molecular patterns (PAMPs)-triggered immunity (PTI) was significantly up-regulated in MH. The genes RAR1, SUGT1, and HSP90A in the effector-triggered immunity (ETI), and the NPR1 and TGA genes involved in the salicylic acid signaling pathway as regulatory roles of ETI, were significantly up-regulated in HY. Other important genes, such as the CCRs involved in phenylpropanoid biosynthesis, were highly expressed in MH, but some genes in the Ca2+ internal flow or involved in the reactive oxygen metabolism were obviously expressed in HY. These results suggested that the PTI and cell walls involved in defense mechanisms were significant in MH against Psa infection, while the ETI was notable in HY against Psa infection. This study will help to understand kiwifruit bacterial canker disease and provide important theoretical support in kiwifruit breeding. Full article
Show Figures

Figure 1

11 pages, 1712 KiB  
Article
First Report on Genome Editing via Ribonucleoprotein (RNP) in Castanea sativa Mill.
by Vera Pavese, Andrea Moglia, Silvia Abbà, Anna Maria Milani, Daniela Torello Marinoni, Elena Corredoira, Maria Teresa Martínez and Roberto Botta
Int. J. Mol. Sci. 2022, 23(10), 5762; https://doi.org/10.3390/ijms23105762 - 20 May 2022
Cited by 12 | Viewed by 2781
Abstract
Castanea sativa is an important tree nut species worldwide, highly appreciated for its multifunctional role, in particular for timber and nut production. Nowadays, new strategies are needed to achieve plant resilience to diseases, climate change, higher yields, and nutritional quality. Among the new [...] Read more.
Castanea sativa is an important tree nut species worldwide, highly appreciated for its multifunctional role, in particular for timber and nut production. Nowadays, new strategies are needed to achieve plant resilience to diseases, climate change, higher yields, and nutritional quality. Among the new plant breeding techniques (NPBTs), the CRISPR/Cas9 system represents a powerful tool to improve plant breeding in a short time and inexpensive way. In addition, the CRISPR/Cas9 construct can be delivered into the cells in the form of ribonucleoproteins (RNPs), avoiding the integration of exogenous DNA (GMO-free) through protoplast technology that represents an interesting material for gene editing thanks to the highly permeable membrane to DNA. In the present study, we developed the first protoplast isolation protocol starting from European chestnut somatic embryos. The enzyme solution optimized for cell wall digestion contained 1% cellulase Onozuka R-10 and 0.5% macerozyme R-10. After incubation for 4 h at 25 °C in dark conditions, a yield of 4,500,000 protoplasts/mL was obtained (91% viable). The transfection capacity was evaluated using the GFP marker gene, and the percentage of transfected protoplasts was 51%, 72 h after the transfection event. The direct delivery of the purified RNP was then performed targeting the phytoene desaturase gene. Results revealed the expected target modification by the CRISPR/Cas9 RNP and the efficient protoplast editing. Full article
Show Figures

Figure 1

Back to TopTop