ijms-logo

Journal Browser

Journal Browser

State-of-the-Art Materials Science in Spain

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Materials Science".

Deadline for manuscript submissions: closed (15 October 2023) | Viewed by 8635

Special Issue Editors


E-Mail Website
Guest Editor
Integrative Biomedical Materials and Nanomedicine Lab, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
Interests: translational nanomedicine; controled release; biocompatible materials; targeting; optical ion sensing; hyperthermia
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, C/Kelsen 5, 28049 Madrid, Spain
Interests: functional ceramic materials; synthesis and characterization, applications: photoluminescence; photocatalysis; energy production and storage
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of the International Journal of Molecular Sciences (IJMS) aims to rapidly publish contributions on the synthesis, properties’ characterization and application of all aspects of materials with a focus on biological or molecular research. Topics include, without being limited to:

  • Biomaterials
  • Nanomaterials
  • Structural Materials
  • Functional/Sensor Materials
  • Advanced/Nuclear Materials
  • Polymers/Composites
  • Self-Assembly/Macromolecular Materials
  • Optoelectronic/Magnetic Materials
  • Soft Materials
  • Biological Materials
  • Non-covalent Interactions

Dr. Marta Fernández-García
Prof. Dr. Pilar Rivera-Gil
Dr. María Teresa Colomer
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • nanomaterials
  • structural materials
  • functional/sensor materials
  • advanced/nuclear materials
  • polymers/composites
  • self-assembly/macromolecular materials
  • optoelectronic/magnetic materials
  • soft materials
  • biological materials
  • non-covalent interactions

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 5389 KiB  
Article
A Novel Photopharmacological Tool: Dual-Step Luminescence for Biological Tissue Penetration of Light and the Selective Activation of Photodrugs
by Amador Menéndez-Velázquez and Ana Belén García-Delgado
Int. J. Mol. Sci. 2023, 24(11), 9404; https://doi.org/10.3390/ijms24119404 - 28 May 2023
Cited by 1 | Viewed by 1642
Abstract
Conventional pharmacology lacks spatial and temporal selectivity in terms of drug action. This leads to unwanted side effects, such as damage to healthy cells, as well as other less obvious effects, such as environmental toxicity and the acquisition of resistance to drugs, especially [...] Read more.
Conventional pharmacology lacks spatial and temporal selectivity in terms of drug action. This leads to unwanted side effects, such as damage to healthy cells, as well as other less obvious effects, such as environmental toxicity and the acquisition of resistance to drugs, especially antibiotics, by pathogenic microorganisms. Photopharmacology, based on the selective activation of drugs by light, can contribute to alleviating this serious problem. However, many of these photodrugs are activated by light in the UV–visible spectral range, which does not propagate through biological tissues. In this article, to overcome this problem, we propose a dual-spectral conversion technique, which simultaneously makes use of up-conversion (using rare earth elements) and down-shifting (using organic materials) techniques in order to modify the spectrum of light. Near-infrared light (980 nm), which penetrates tissue fairly well, can provide a “remote control” for drug activation. Once near-IR light is inside the body, it is up-converted to the UV–visible spectral range. Subsequently, this radiation is down-shifted in order to accurately adjust to the excitation wavelengths of light which can selectively activate hypothetical and specific photodrugs. In summary, this article presents, for the first time, a “dual tunable light source” which can penetrate into the human body and deliver light of specific wavelengths; thus, it can overcome one of the main limitations of photopharmacology. It opens up promising possibilities for the moving of photodrugs from the laboratory to the clinic. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Spain)
Show Figures

Figure 1

13 pages, 4072 KiB  
Article
Human-Centric Lighting: Rare-Earth-Free Photoluminescent Materials for Correlated Color Temperature Tunable White LEDs
by Amador Menéndez-Velázquez, Ana Belén García-Delgado and Dolores Morales
Int. J. Mol. Sci. 2023, 24(4), 3602; https://doi.org/10.3390/ijms24043602 - 10 Feb 2023
Cited by 5 | Viewed by 1687
Abstract
Artificial lighting is ubiquitous in modern society, with detrimental effects on sleep and health. The reason for this is that light is responsible not only for vision but also for non-visual functions, such as the regulation of the circadian system. To avoid circadian [...] Read more.
Artificial lighting is ubiquitous in modern society, with detrimental effects on sleep and health. The reason for this is that light is responsible not only for vision but also for non-visual functions, such as the regulation of the circadian system. To avoid circadian disruption, artificial lighting should be dynamic, changing throughout the day in a manner comparable to natural light in terms of both light intensity and associated color temperature. This is one of the main goals of human-centric lighting. Regarding the type of materials, the majority of white light-emitting diodes (WLEDs) make use of rare-earth photoluminescent materials; therefore, WLED development is at serious risk due to the explosive growth in demand for these materials and a monopoly on sources of supply. Photoluminescent organic compounds are a considerable and promising alternative. In this article, we present several WLEDs that were manufactured using a blue LED chip as the excitation source and two photoluminescent organic dyes (Coumarin 6 and Nile Red) embedded in flexible layers, which function as spectral converters in a multilayer remote phosphor arrangement. The correlated color temperature (CCT) values range from 2975 K to 6261 K, while light quality is preserved with chromatic reproduction index (CRI) values superior to 80. Our findings illustrate for the first time the enormous potential of organic materials for supporting human-centric lighting. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Spain)
Show Figures

Figure 1

15 pages, 2371 KiB  
Article
Adsorption Analysis of Exopolymeric Substances as a Tool for the Materials Selection of Photobioreactors Manufacture
by Lucía García-Abad, Yolanda Soriano-Jerez, María del Carmen Cerón-García, Alexandra Muñoz-Bonilla, Marta Fernández-García, Francisco García-Camacho and Emilio Molina-Grima
Int. J. Mol. Sci. 2022, 23(22), 13924; https://doi.org/10.3390/ijms232213924 - 11 Nov 2022
Cited by 1 | Viewed by 986
Abstract
An improved method that allows the robust characterization of surfaces is necessary to accurately predict the biofouling formation on construction materials of photobioreactors (PBR). Exopolymeric substances (EPS), such as proteins and polysaccharides, have been demonstrated to present a similar behavior to cells in [...] Read more.
An improved method that allows the robust characterization of surfaces is necessary to accurately predict the biofouling formation on construction materials of photobioreactors (PBR). Exopolymeric substances (EPS), such as proteins and polysaccharides, have been demonstrated to present a similar behavior to cells in terms of surface adhesion. In this work, these EPS were used to optimize parameters, such as EPS concentration or adsorption time, to evaluate accurately the adsorption capacity of surfaces and, with it, predict the biofouling formation in contact with microalgae cultures. Once the method was optimized, the characterization of seven commercial polymeric surfaces was submitted to different abrasive particles sizes, which modified the roughness of the samples, as well as protein and polysaccharide lawns, which were prepared and carried out in order to evaluate the characteristics of these substances. The characterization consisted of the determination of surface free energy, water adhesion tension, and critical tension determined from the measurement of the contact angle, roughness, surface zeta potential, and the EPS adhesion capacity of each material. This will be useful to understand the behavior of the surface in the function of its characteristics and the interaction with the solutions of EPS, concluding that the hydrophobic and smooth surfaces present good anti-biofouling characteristics. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Spain)
Show Figures

Figure 1

18 pages, 5895 KiB  
Article
Monitoring the Simultaneous Implantation of Ti and Tb Cations to a Sacrificial Template and the Sol-Gel Synthesis of Tb-Doped TiO2 (Anatase) Hollow Spheres and Their Transition to Rutile Phase
by María Teresa Colomer and Florencia Vattier
Int. J. Mol. Sci. 2022, 23(21), 13162; https://doi.org/10.3390/ijms232113162 - 29 Oct 2022
Viewed by 1101
Abstract
Tb-doped TiO2 (anatase) micro-hollow spheres (HSs) with nano-shells, in the range 0.00–3.00 at.% Tb, were successfully synthesized by a simultaneous chemical implantation route of both Ti and Tb cations from chlorides to a poly-styrene (PST)-co-poly-divinyl benzene (PDVB) sacrificial template, followed by controlled [...] Read more.
Tb-doped TiO2 (anatase) micro-hollow spheres (HSs) with nano-shells, in the range 0.00–3.00 at.% Tb, were successfully synthesized by a simultaneous chemical implantation route of both Ti and Tb cations from chlorides to a poly-styrene (PST)-co-poly-divinyl benzene (PDVB) sacrificial template, followed by controlled hydrolysis and polycondensation reactions. After water addition to the mixture of the precursors with the template, a decrease in the intensity and a shift to lower wavenumbers of the C=O absorption band in the IR spectra can indicate not only the anchoring of Ti and Tb ions to the carbonyl group of the template but also the hydrolysis of the implanted precursors. This latter process can involve a proton attack on the Ti–Cl, Tb–Cl and C=O bonds, the occupation of a vacant site by a water molecule, and then the dissociation of the dangling Ti–Cl, Tb–Cl ligands and C=O bonds. It gives rise to Ti1−xTbx[(OH)4−uClv]@PST–PDVB and Ti1−xTbx[(OH)4−y]@PST–PDVB complexes (x = 0.00, 0.0012, 0.0170 and 0.030). Finally, polycondensation of these species leads to Ti1−xTbxO2−w′@PST–PDVB compounds. After subsequent thermal removal at 550 °C of the template, the IR bands of the core (template) totally vanished and new bands were observed in the 400–900 cm−1 region which can be attributed to the metalloxane bondings (M–O, M’–O, M–O–M, M–O–M’ and/or M’–O–M’, being M and M’ = Ti and Tb, respectively, i.e., mainly vibration modes of anatase). Then, micron-sized HSs of TiO2 and Tb-doped-TiO2 (anatase) were obtained with nano-shells according to field emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM) observations. Furthermore, X-ray photoelectron spectroscopy (XPS) measurements confirmed the presence of Tb4+ (38.5 and 41.2% for 1.70 and 3.00 at.% Tb, respectively) in addition to Tb3+ in the resulting HSs, with increasing Tb4+ content with both Tb doping and higher calcination temperatures. Then, these HSs can be considered as rare earth (RE) co-doped systems, at least for 1.70 and 3.00 at.% Tb contents being the transition to rutile phase favored by Tb doping for those compositions. Finally, diffusion of Tb from the inner parts to the surface of the HSs with the calcination treatments was also observed by XPS. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Spain)
Show Figures

Figure 1

15 pages, 3311 KiB  
Article
Structure–Function Insights into the Fungal Endo-Chitinase Chit33 Depict its Mechanism on Chitinous Material
by Elena Jiménez-Ortega, Peter Elias Kidibule, María Fernández-Lobato and Julia Sanz-Aparicio
Int. J. Mol. Sci. 2022, 23(14), 7599; https://doi.org/10.3390/ijms23147599 - 09 Jul 2022
Cited by 6 | Viewed by 1982
Abstract
Chitin is the most widespread amino renewable carbohydrate polymer in nature and the second most abundant polysaccharide. Therefore, chitin and chitinolytic enzymes are becoming more importance for biotechnological applications in food, health and agricultural fields, the design of effective enzymes being a paramount [...] Read more.
Chitin is the most widespread amino renewable carbohydrate polymer in nature and the second most abundant polysaccharide. Therefore, chitin and chitinolytic enzymes are becoming more importance for biotechnological applications in food, health and agricultural fields, the design of effective enzymes being a paramount issue. We report the crystal structure of the plant-type endo-chitinase Chit33 from Trichoderma harzianum and its D165A/E167A-Chit33-(NAG)4 complex, which showed an extended catalytic cleft with six binding subsites lined with many polar interactions. The major trait of Chit33 is the location of the non-conserved Asp117 and Arg274 acting as a clamp, fixing the distorted conformation of the sugar at subsite –1 and the bent shape of the substrate, which occupies the full catalytic groove. Relevant residues were selected for mutagenesis experiments, the variants being biochemically characterized through their hydrolytic activity against colloidal chitin and other polymeric substrates with different molecular weights and deacetylation percentages. The mutant S118Y stands out, showing a superior performance in all the substrates tested, as well as detectable transglycosylation capacity, with this variant providing a promising platform for generation of novel Chit33 variants with adjusted performance by further design of rational mutants’. The putative role of Tyr in binding was extrapolated from molecular dynamics simulation. Full article
(This article belongs to the Special Issue State-of-the-Art Materials Science in Spain)
Show Figures

Graphical abstract

Back to TopTop