ijms-logo

Journal Browser

Journal Browser

Fatty Acids and Metabolic Syndrome

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (30 September 2023) | Viewed by 5813

Special Issue Editors


E-Mail
Guest Editor

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

One of the important scientific subjects that requires a serious reconsideration is in regard to the roles fatty acids play in the physiology and pathology of humans. New data have shown that sex-dependent differences between men and women in physical performances, rates of aging, and longevity are associated with the differences in fatty acids catabolism. The highest rates of ROS production were found to occur during mitochondrial β-oxidation of fatty acids in the heart and skeletal muscles. In the brain, astrocytes utilize fatty acids for supplying neurons with lactate and neuromediators, and recently it was found that neuronal mitochondria perfectly well oxidize fatty acids in the presence of glutamate and metabolites of the TCA cycle. Of particular importance for understanding the mechanisms of human aging and senile diseases is the study of the metabolic syndrome, which is associated with the transition of men and women to the post-reproductive stage of human ontogenesis. The proposed Special Issue will publish experimental data and reviews of researchers working in the related fields.

Dr. Gabriella Calviello
Dr. Simona Serini
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aging

  • fatty acids
  • metabolic syndrome
  • mitochondria
  • ontogenesis
  • oxidative stress
  • ROS
  • sex diversity

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 3749 KiB  
Article
The Effects of a Low Linoleic Acid/α-Linolenic Acid Ratio on Lipid Metabolism and Endogenous Fatty Acid Distribution in Obese Mice
by Qiong Wang and Xingguo Wang
Int. J. Mol. Sci. 2023, 24(15), 12117; https://doi.org/10.3390/ijms241512117 - 28 Jul 2023
Cited by 4 | Viewed by 1857
Abstract
A reduced risk of obesity and metabolic syndrome has been observed in individuals with a low intake ratio of linoleic acid/α-linolenic acid (LA/ALA). However, the influence of a low ratio of LA/ALA intake on lipid metabolism and endogenous fatty acid distribution in obese [...] Read more.
A reduced risk of obesity and metabolic syndrome has been observed in individuals with a low intake ratio of linoleic acid/α-linolenic acid (LA/ALA). However, the influence of a low ratio of LA/ALA intake on lipid metabolism and endogenous fatty acid distribution in obese patients remains elusive. In this investigation, 8-week-old C57BL/6J mice were randomly assigned to four groups: low-fat diet (LFD) as a control, high-fat diet (HFD), high-fat diet with a low LA/ALA ratio (HFD+H3L6), and high-fat diet with a high LA/ALA ratio (HFD+L3H6) for 16 weeks. Our results show that the HFD+H3L6 diet significantly decreased the liver index of HFD mice by 3.51%, as well as the levels of triacylglycerols (TGs) and low-density lipoprotein cholesterol (LDL-C) by 15.67% and 10.02%, respectively. Moreover, the HFD+H3L6 diet reduced the pro-inflammatory cytokines interleukin-6 (IL-6) level and aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio and elevated the level of superoxide dismutase (SOD) in the liver. The HFD+H3L6 diet also resulted in the downregulation of fatty acid synthetase (FAS) and sterol regulatory element binding proteins-1c (SREBP-1c) expression and the upregulation of peroxisome proliferator-activated receptor-α (PPAR-α) and acyl-CoA oxidase 1 (ACOX1) gene expression in the liver. The low LA/ALA ratio diet led to a notable increase in the levels of ALA and its downstream derivative docosahexaenoic acid (DHA) in the erythrocyte, liver, perienteric fat, epididymal fat, perirenal fat, spleen, brain, heart, and gastrocnemius, with a strong positive correlation. Conversely, the accumulation of LA in abdominal fat was more prominent, and a high LA/ALA ratio diet exacerbated the deposition effect of LA. In conclusion, the low LA/ALA ratio not only regulated endogenous fatty acid levels but also upregulated PPAR-α and ACOX1 and downregulated SREBP-1c and FAS gene expression levels, thus maintaining lipid homeostasis. Optimizing dietary fat intake is important in studying lipid nutrition. These research findings emphasize the significance of understanding and optimizing dietary fat intake. Full article
(This article belongs to the Special Issue Fatty Acids and Metabolic Syndrome)
Show Figures

Figure 1

15 pages, 961 KiB  
Article
Serum Levels of Myonectin Are Lower in Adults with Metabolic Syndrome and Are Negatively Correlated with Android Fat Mass
by Jorge L. Petro, María Carolina Fragozo-Ramos, Andrés F. Milán, Juan C. Aristizabal, Jaime A. Gallo-Villegas and Juan C. Calderón
Int. J. Mol. Sci. 2023, 24(8), 6874; https://doi.org/10.3390/ijms24086874 - 07 Apr 2023
Cited by 3 | Viewed by 2215
Abstract
Myonectin has shown beneficial effects on lipid regulation in murine models; therefore, it may have implications in the pathophysiology of metabolic syndrome (MS). We evaluated the relationship between serum myonectin and serum lipids, global and regional fat mass, intramuscular lipid content, and insulin [...] Read more.
Myonectin has shown beneficial effects on lipid regulation in murine models; therefore, it may have implications in the pathophysiology of metabolic syndrome (MS). We evaluated the relationship between serum myonectin and serum lipids, global and regional fat mass, intramuscular lipid content, and insulin resistance (IR) in adults with metabolic risk factors. This was a cross-sectional study in sedentary adults who were diagnosed with MS or without MS (NMS). Serum myonectin was quantified by enzyme-linked immunosorbent assay, lipid profile by conventional techniques, and free fatty acids (FFA) by gas chromatography. Body composition was assessed by dual-energy X-ray absorptiometry and intramuscular lipid content through proton nuclear magnetic resonance spectroscopy in the right vastus lateralis muscle. IR was estimated with the homeostatic model assessment (HOMA-IR). The MS (n = 61) and NMS (n = 29) groups were comparable in age (median (interquartile range): 51.0 (46.0–56.0) vs. 53.0 (45.5–57.5) years, p > 0.05) and sex (70.5% men vs. 72.4% women). MS subjects had lower serum levels of myonectin than NMS subjects (1.08 (0.87–1.35) vs. 1.09 (0.93–4.05) ng·mL−1, p < 0.05). Multiple linear regression models adjusted for age, sex, fat mass index and lean mass index showed that serum myonectin was negatively correlated with the android/gynoid fat mass ratio (R2 = 0.48, p < 0.01), but not with the lipid profile, FFA, intramuscular lipid content or HOMA-IR. In conclusion, serum myonectin is lower in subjects with MS. Myonectin negatively correlates with a component relevant to the pathophysiology of MS, such as the android/gynoid fat mass ratio, but not with other components such as FFA, intramuscular fat or IR. Full article
(This article belongs to the Special Issue Fatty Acids and Metabolic Syndrome)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 3325 KiB  
Review
The Effect of Plant-Derived Low-Ratio Linoleic Acid/α-Linolenic Acid on Markers of Glucose Controls: A Systematic Review and Meta-Analysis
by Qiong Wang and Xingguo Wang
Int. J. Mol. Sci. 2023, 24(18), 14383; https://doi.org/10.3390/ijms241814383 - 21 Sep 2023
Cited by 1 | Viewed by 1301
Abstract
The objective of this meta-analysis was to examine the impact of a low-ratio linoleic acid/α-linolenic acid (LA/ALA) diet on the glycemic profile of adults. A comprehensive search was performed across four databases (Web of Science, Scopus, Embase, and PubMed) to evaluate the influence [...] Read more.
The objective of this meta-analysis was to examine the impact of a low-ratio linoleic acid/α-linolenic acid (LA/ALA) diet on the glycemic profile of adults. A comprehensive search was performed across four databases (Web of Science, Scopus, Embase, and PubMed) to evaluate the influence of the low-ratio LA/ALA. Relevant references were screened up until February 2023. Intervention effects were analyzed by calculating change values as weighted mean differences (WMD) and 95% confidence intervals (CI) using fixed-effects models. Additionally, subgroup analysis and meta-regression were employed to investigate potential sources of heterogeneity. Twenty-one randomized controlled trials (RCTs) were included, and the low-ratio LA/ALA diet had no significant effect on fasting blood sugar (FBS, WMD: 0.00 mmol/L, 95% CI: −0.06, 0.06, p = 0.989, I2 = 0.0%), insulin levels (WMD: 0.20 μIU/mL, 95% CI: −0.23, 0.63, p = 0.360, I2 = 3.2%), homeostatic model assessment insulin resistance (HOMA-IR, WMD: 0.09, 95% CI: −0.06, 0.23, p = 0.243, I2 = 0.0%), and hemoglobin A1c (HbA1c, WMD: −0.01%, 95% CI: −0.07, 0.06, p = 0.836, I2 = 0.0%). Based on subgroup analyses, it was observed that the impact of a low-ratio LA/ALA diet on elevated plasma insulin (WMD: 1.31 μIU/mL, 95% CI: 0.08, 2.54, p = 0.037, I2 = 32.0%) and HOMA-IR (WMD: 0.47, 95% CI: 0.10, 0.84, p = 0.012, I2 = 0.0%) levels exhibited greater prominence in North America compared to Asian and European countries. Publication bias was not detected for FBS, insulin, HOMA-IR, and HbA1c levels according to the Begg and Egger tests. Furthermore, the conducted sensitivity analyses indicated stability, as the effects of the low-ratio LA/ALA diet on various glycemic and related metrics remained unchanged even after removing individual studies. Overall, based on the available studies, it can be concluded that the low-ratio LA/ALA diet has limited impact on blood glucose-related biomarker levels. Full article
(This article belongs to the Special Issue Fatty Acids and Metabolic Syndrome)
Show Figures

Figure 1

Back to TopTop