ijms-logo

Journal Browser

Journal Browser

Special Issue "Cancer Prevention with Molecular Target Therapies 4.0"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Oncology".

Deadline for manuscript submissions: closed (30 April 2023) | Viewed by 4101

Special Issue Editor

Special Issue Information

Dear Colleagues,

Personalized medicine is playing an important role in cancer prevention. To date, it is clear that many cancers are molecularly distinct subtypes, and different therapeutic approaches would be required for each. Indeed, the identification of cancer susceptibility genes permits identifying patients “at risk” of developing neoplasia and supports modifying individual risk behaviors or the choice of preventive therapy. Additionally, the efficacy of various targeted therapies in different cancer subtypes suggests that treatment choices in a near future will be more and more centered on molecular signatures. Data from preclinical, clinical, and observational studies have revealed the ability to prevent cancer development for compounds with different indications than cancer. The concept of drug repurposing permits combinations that can target several critical pathways of a specific disease, decreasing the risk of resistance observed when using single agent targeted therapy.

This open-access Special Issue will bring together original research and review articles on molecular oncology with attention to early detection and prevention of cancer. It highlights new findings, methods, and technical advances in molecular cancer research. The main feature of this Special Issue is to provide an open-source sharing of significant works in the field of molecular oncology that can increase our understanding of cancer development, which may lead to the discovery of new molecular diagnostic technologies and targeted therapeutics.

Topics include but are not limited to:

  1. Molecular methods to personalize cancer screening and detection;
  2. Molecular target therapies to prevent cancer development and metastases;
  3. Identification and new aspects of cellular signaling molecules and pathways for target discovery, drug design, and personalized and gender medicine;
  4. Drug repurposing for cancer prevention;
  5. Molecular modeling studies.

Dr. Laura Paleari
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cancer prevention
  • target therapy
  • personalized screening
  • drug repurposing
  • target discovery

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Adhesion to the Brain Endothelium Selects Breast Cancer Cells with Brain Metastasis Potential
Int. J. Mol. Sci. 2023, 24(8), 7087; https://doi.org/10.3390/ijms24087087 - 11 Apr 2023
Viewed by 453
Abstract
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the [...] Read more.
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the endothelium of a specific organ exhibit enhanced metastatic tropism to this target organ. This study tested this hypothesis and developed an in vitro model to mimic the adhesion between tumor cells and brain endothelium under fluid shear stress, which selected a subpopulation of tumor cells with enhanced adhesion strength. The selected cells up-regulated the genes related to brain metastasis and exhibited an enhanced ability to transmigrate through the blood–brain barrier. In the soft microenvironments that mimicked brain tissue, these cells had elevated adhesion and survival ability. Further, tumor cells selected by brain endothelium adhesion expressed higher levels of MUC1, VCAM1, and VLA-4, which were relevant to breast cancer brain metastasis. In summary, this study provides the first piece of evidence to support that the adhesion of circulating tumor cells to the brain endothelium selects the cells with enhanced brain metastasis potential. Full article
(This article belongs to the Special Issue Cancer Prevention with Molecular Target Therapies 4.0)
Show Figures

Figure 1

Article
Characterization and Clinical Relevance of Endometrial CAFs: Correlation between Post-Surgery Event and Resistance to Drugs
Int. J. Mol. Sci. 2023, 24(7), 6449; https://doi.org/10.3390/ijms24076449 - 29 Mar 2023
Cited by 1 | Viewed by 517
Abstract
Cancer-associated fibroblasts (CAFs) within a solid tumor can support the progression of cancer. We studied the identification and characterization of patient-derived endometrial CAFs in the context of their clinical relevance in endometrial cancers. We established patient-derived primary cultures of CAFs from surgically resected [...] Read more.
Cancer-associated fibroblasts (CAFs) within a solid tumor can support the progression of cancer. We studied the identification and characterization of patient-derived endometrial CAFs in the context of their clinical relevance in endometrial cancers. We established patient-derived primary cultures of CAFs from surgically resected tumors (TCAF) and tumor-adjacent normal (NCAF) tissues in 53 consented patients with success rates of 97.7% and 75%, respectively. A passage of CAF was qualified by the (1) absence of CK 8,18,19, EpCAM, CD45, and CD31, and (2) presence of SMAalpha, S100A4, CD90, FAP, TE-7, CD155, PD-L1, TGFB, PDGFRA (qRT-PCR, flow cytometry, Western blot, ICC). Out of the 44 established CAFs, 31 were aggressive (having an early, i.e., 4–7 week, establishment time and/or >3 passages) compared to 13 which were non-aggressive. A post-surgery-event (PSE) was observed in 7 out of 31 patients bearing aggressive CAFs, 2 of whom were also positive for CTCs, while none of the 13 patients bearing non-aggressive CAFs had events. A positive correlation was found between patients with grade 3 (p = 0.025) as well as stage 3/4 diseases (p = 0.0106) bearing aggressive CAFs and the PSE. Finally, aggressive TCAFs from patients with PSE resisted the effects of paclitaxel and lenvatinib on the growth of HUVEC and endometrial tumor cells. Our study is the first to report a correlation between the PSE and the aggressive nature of CAFs in endometrial cancers and provides an undeniable reason to study the in-depth mechanism of CAF function towards the development of treatment resistance in endometrial cancers. Full article
(This article belongs to the Special Issue Cancer Prevention with Molecular Target Therapies 4.0)
Show Figures

Figure 1

Article
Expression of RBMS3 in Breast Cancer Progression
Int. J. Mol. Sci. 2023, 24(3), 2866; https://doi.org/10.3390/ijms24032866 - 02 Feb 2023
Viewed by 856
Abstract
The aim of the study was to evaluate the localization and intensity of RNA-binding motif single-stranded-interacting protein 3 (RBMS3) expression in clinical material using immunohistochemical (IHC) reactions in cases of ductal breast cancer (in vivo), and to determine the level of RBMS3 expression [...] Read more.
The aim of the study was to evaluate the localization and intensity of RNA-binding motif single-stranded-interacting protein 3 (RBMS3) expression in clinical material using immunohistochemical (IHC) reactions in cases of ductal breast cancer (in vivo), and to determine the level of RBMS3 expression at both the protein and mRNA levels in breast cancer cell lines (in vitro). Moreover, the data obtained in the in vivo and in vitro studies were correlated with the clinicopathological profiles of the patients. Material for the IHC studies comprised 490 invasive ductal carcinoma (IDC) cases and 26 mastopathy tissues. Western blot and RT-qPCR were performed on four breast cancer cell lines (MCF-7, BT-474, SK-BR-3 and MDA-MB-231) and the HME1-hTERT (Me16C) normal immortalized breast epithelial cell line (control). The Kaplan–Meier plotter tool was employed to analyze the predictive value of overall survival of RBMS3 expression at the mRNA level. Cytoplasmatic RBMS3 IHC expression was observed in breast cancer cells and stromal cells. The statistical analysis revealed a significantly decreased RBMS3 expression in the cancer specimens when compared with the mastopathy tissues (p < 0.001). An increased expression of RBMS3 was corelated with HER2(+) cancer specimens (p < 0.05) and ER(−) cancer specimens (p < 0.05). In addition, a statistically significant higher expression of RBMS3 was observed in cancer stromal cells in comparison to the control and cancer cells (p < 0.0001). The statistical analysis demonstrated a significantly higher expression of RBMS3 mRNA in the SK-BR-3 cell line compared with all other cell lines (p < 0.05). A positive correlation was revealed between the expression of RBMS3, at both the mRNA and protein levels, and longer overall survival. The differences in the expression of RBMS3 in cancer cells (both in vivo and in vitro) and the stroma of breast cancer with regard to the molecular status of the tumor may indicate that RBMS3 could be a potential novel target for the development of personalized methods of treatment. RBMS3 can be an indicator of longer overall survival for potential use in breast cancer diagnostic process. Full article
(This article belongs to the Special Issue Cancer Prevention with Molecular Target Therapies 4.0)
Show Figures

Figure 1

Review

Jump to: Research

Review
KRAS-Dependency in Pancreatic Ductal Adenocarcinoma: Mechanisms of Escaping in Resistance to KRAS Inhibitors and Perspectives of Therapy
Int. J. Mol. Sci. 2023, 24(11), 9313; https://doi.org/10.3390/ijms24119313 - 26 May 2023
Viewed by 232
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still one of the deadliest cancers in oncology because of its increasing incidence and poor survival rate. More than 90% of PDAC patients are KRAS mutated (KRASmu), with KRASG12D and KRASG12V being the most common mutations. Despite this [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is still one of the deadliest cancers in oncology because of its increasing incidence and poor survival rate. More than 90% of PDAC patients are KRAS mutated (KRASmu), with KRASG12D and KRASG12V being the most common mutations. Despite this critical role, its characteristics have made direct targeting of the RAS protein extremely difficult. KRAS regulates development, cell growth, epigenetically dysregulated differentiation, and survival in PDAC through activation of key downstream pathways, such as MAPK-ERK and PI3K-AKT-mammalian target of rapamycin (mTOR) signaling, in a KRAS-dependent manner. KRASmu induces the occurrence of acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) and leads to an immunosuppressive tumor microenvironment (TME). In this context, the oncogenic mutation of KRAS induces an epigenetic program that leads to the initiation of PDAC. Several studies have identified multiple direct and indirect inhibitors of KRAS signaling. Therefore, KRAS dependency is so essential in KRASmu PDAC that cancer cells have secured several compensatory escape mechanisms to counteract the efficacy of KRAS inhibitors, such as activation of MEK/ERK signaling or YAP1 upregulation. This review will provide insights into KRAS dependency in PDAC and analyze recent data on inhibitors of KRAS signaling, focusing on how cancer cells establish compensatory escape mechanisms. Full article
(This article belongs to the Special Issue Cancer Prevention with Molecular Target Therapies 4.0)
Show Figures

Figure 1

Review
The Comprehensive Analysis of Specific Proteins as Novel Biomarkers Involved in the Diagnosis and Progression of Gastric Cancer
Int. J. Mol. Sci. 2023, 24(10), 8833; https://doi.org/10.3390/ijms24108833 - 16 May 2023
Viewed by 386
Abstract
Gastric cancer (GC) cases are predicted to rise by 2040 to approximately 1.8 million cases, while GC-caused deaths to 1.3 million yearly worldwide. To change this prognosis, there is a need to improve the diagnosis of GC patients because this deadly malignancy is [...] Read more.
Gastric cancer (GC) cases are predicted to rise by 2040 to approximately 1.8 million cases, while GC-caused deaths to 1.3 million yearly worldwide. To change this prognosis, there is a need to improve the diagnosis of GC patients because this deadly malignancy is usually detected at an advanced stage. Therefore, new biomarkers of early GC are sorely needed. In the present paper, we summarized and referred to a number of original pieces of research concerning the clinical significance of specific proteins as potential biomarkers for GC in comparison to well-established tumor markers for this malignancy. It has been proved that selected chemokines and their specific receptors, vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR), specific proteins such as interleukin 6 (IL-6) and C-reactive protein (CRP), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), as well as DNA- and RNA-based biomarkers, and c-MET (tyrosine-protein kinase Met) play a role in the pathogenesis of GC. Based on the recent scientific literature, our review indicates that presented specific proteins are potential biomarkers in the diagnosis and progression of GC as well as might be used as prognostic factors of GC patients’ survival. Full article
(This article belongs to the Special Issue Cancer Prevention with Molecular Target Therapies 4.0)
Show Figures

Figure 1

Review
Association between Hepatocellular Carcinoma Recurrence and Graft Size in Living Donor Liver Transplantation: A Systematic Review
Int. J. Mol. Sci. 2023, 24(7), 6224; https://doi.org/10.3390/ijms24076224 - 25 Mar 2023
Viewed by 500
Abstract
The aim of this work was to assess the association between graft-to-recipient weight ratio (GRWR) in adult-to-adult living donor liver transplantation (LDLT) and hepatocellular carcinoma (HCC) recurrence. A search of the MEDLINE and EMBASE databases was performed until December 2022 for studies comparing [...] Read more.
The aim of this work was to assess the association between graft-to-recipient weight ratio (GRWR) in adult-to-adult living donor liver transplantation (LDLT) and hepatocellular carcinoma (HCC) recurrence. A search of the MEDLINE and EMBASE databases was performed until December 2022 for studies comparing different GRWRs in the prognosis of HCC recipients in LDLT. Data were pooled to evaluate 1- and 3-year survival rates. We identified three studies, including a total of 782 patients (168 GRWR < 0.8 vs. 614 GRWR ≥ 0.8%). The pooled overall survival was 85% and 77% at one year and 90% and 83% at three years for GRWR < 0.8 and GRWR ≥ 0.8, respectively. The largest series found that, in patients within Milan criteria, the GRWR was not associated with lower oncological outcomes. However, patients with HCC outside the Milan criteria with a GRWR < 0.8% had lower survival and higher tumor recurrence rates. The GRWR < 0.8% appears to be associated with lower survival rates in HCC recipients, particularly for candidates with tumors outside established HCC criteria. Although the data are scarce, the results of this study suggest that considering the individual GRWR not only as risk factor for small-for-size-syndrome but also as contributor to HCC recurrence in patients undergoing LDLT would be beneficial. Novel perfusion technologies and pharmacological interventions may contribute to improving outcomes. Full article
(This article belongs to the Special Issue Cancer Prevention with Molecular Target Therapies 4.0)
Show Figures

Figure 1

Review
When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases
Int. J. Mol. Sci. 2023, 24(5), 4746; https://doi.org/10.3390/ijms24054746 - 01 Mar 2023
Viewed by 807
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular [...] Read more.
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells’ proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment. Full article
(This article belongs to the Special Issue Cancer Prevention with Molecular Target Therapies 4.0)
Show Figures

Figure 1

Back to TopTop