ijms-logo

Journal Browser

Journal Browser

Special Issue "Microbial Enzymes for Biotechnological Applications"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: 25 November 2023 | Viewed by 7888

Special Issue Editors

Department of Biotechnology, University of Verona, 37134 Verona, Italy
Interests: industrial enzymology; extremozymes; biocatalysis; biorefinery; biomass valorisation; enzymatic recycling of plastics; protein engineering; CRISPR-based applications; virus biotechnology
Special Issues, Collections and Topics in MDPI journals
Associate Professor, Department of Biology, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
Interests: microbial enzymes

Special Issue Information

Dear Colleagues,

Microbial biocatalysts account for about 90% of the enzyme market shares. This mainly depends on the rapid multiplication, easy manipulation, and handling of the microbial cell factories if compared to other biocatalysts sources (i.e., animal, and vegetal tissues). Unlike chemical catalysts, enzymes show wider application potentials that are revolutionizing the agricultural, chemical, energy, and pharmaceutical industries.

This Special Issue is led by Dr. Salvatore Fusco and Prof. Patrizia Contursi, assisted by our Topical Advisory Panel Member Dr. Martina Aulitto (University of Naples Federico II). The aim is to collect original research articles, review articles, and short communications dealing with the study of microbial biocatalysts (both isolated enzymes and whole-cell biocatalysts). We welcome fundamental studies about design and optimization of microbial enzymes as well as those addressed to the exploitation of microbial enzymes for biotechnological applications (industrial, diagnostic, environmental, etc.).

Topics of interest include, but are not limited to, the following:

  • Discovery and/or characterization of new microbial enzymes (including commodity, specialty, extremophilic and polyextremophilic enzymes)
  • Functional and/or structural characterization of microbial enzymes
  • Microbial enzymes for circular economy applications
  • Design, optimization, and/or exploitation of whole-cell microbial biocatalysts
  • Bioprospecting of microbial enzymes

Dr. Salvatore Fusco
Dr. Patrizia Contursi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Optimisation of β-Glucosidase Production in a Crude Aspergillus japonicus VIT-SB1 Cellulase Cocktail Using One Variable at a Time and Statistical Methods and its Application in Cellulose Hydrolysis
Int. J. Mol. Sci. 2023, 24(12), 9928; https://doi.org/10.3390/ijms24129928 - 09 Jun 2023
Viewed by 666
Abstract
Pulp and paper mill sludge (PPMS) is currently disposed of into landfills which are reaching their maximum capacity. Valorisation of PPMS by enzymatic hydrolysis using cellulases is an alternative strategy. Existing commercial cellulases are expensive and contain low titres of β-glucosidases. In [...] Read more.
Pulp and paper mill sludge (PPMS) is currently disposed of into landfills which are reaching their maximum capacity. Valorisation of PPMS by enzymatic hydrolysis using cellulases is an alternative strategy. Existing commercial cellulases are expensive and contain low titres of β-glucosidases. In this study, β-glucosidase production was optimised by Aspergillus japonicus VIT-SB1 to obtain higher β-glucosidase titres using the One Variable at a Time (OVAT), Plackett Burman (PBD), and Box Behnken design (BBD)of experiments and the efficiency of the optimised cellulase cocktail to hydrolyse cellulose was tested. β-Glucosidase production was enhanced from 0.4 to 10.13 U/mL, representing a 25.3-fold increase in production levels after optimisation. The optimal BBD production conditions were 6 days of fermentation at 20 °C, 125 rpm, 1.75% soy peptone, and 1.25% wheat bran in (pH 6.0) buffer. The optimal pH for β-glucosidase activity in the crude cellulase cocktail was (pH 5.0) at 50 °C. Optimal cellulose hydrolysis using the crude cellulase cocktail occurred at longer incubation times, and higher substrate loads and enzyme doses. Cellulose hydrolysis with the A. japonicus VIT-SB1 cellulase cocktail and commercial cellulase cocktails resulted in glucose yields of 15.12 and 12.33 µmol/mL glucose, respectively. Supplementation of the commercial cellulase cocktail with 0.25 U/mg of β-glucosidase resulted in a 19.8% increase in glucose yield. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications)
Show Figures

Figure 1

Communication
Acuminosylation of Tyrosol by a Commercial Diglycosidase
Int. J. Mol. Sci. 2023, 24(6), 5943; https://doi.org/10.3390/ijms24065943 - 21 Mar 2023
Cited by 1 | Viewed by 888
Abstract
A commercial glycosidase mixture obtained from Penicillium multicolor (Aromase H2) was found to comprise a specific diglycosidase activity, β-acuminosidase, alongside undetectable levels of β-apiosidase. The enzyme was tested in the transglycosylation of tyrosol using 4-nitrophenyl β-acuminoside as the diglycosyl donor. The reaction was [...] Read more.
A commercial glycosidase mixture obtained from Penicillium multicolor (Aromase H2) was found to comprise a specific diglycosidase activity, β-acuminosidase, alongside undetectable levels of β-apiosidase. The enzyme was tested in the transglycosylation of tyrosol using 4-nitrophenyl β-acuminoside as the diglycosyl donor. The reaction was not chemoselective, providing a mixture of Osmanthuside H and its counterpart regioisomer 4-(2-hydroxyethyl)phenyl β-acuminoside in 58% yield. Aromase H2 is therefore the first commercial β-acuminosidase which is also able to glycosylate phenolic acceptors. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications)
Show Figures

Graphical abstract

Article
An Insight into the Essential Role of Carbohydrate-Binding Modules in Enzymolysis of Xanthan
Int. J. Mol. Sci. 2023, 24(6), 5480; https://doi.org/10.3390/ijms24065480 - 13 Mar 2023
Viewed by 720
Abstract
To date, due to the low accessibility of enzymes to xanthan substrates, the enzymolysis of xanthan remains deficient, which hinders the industrial production of functional oligoxanthan. To enhance the enzymatic affinity against xanthan, the essential role of two carbohydrate binding modules—MiCBMx [...] Read more.
To date, due to the low accessibility of enzymes to xanthan substrates, the enzymolysis of xanthan remains deficient, which hinders the industrial production of functional oligoxanthan. To enhance the enzymatic affinity against xanthan, the essential role of two carbohydrate binding modules—MiCBMx and PspCBM84, respectively, derived from Microbacterium sp. XT11 and Paenibacillus sp. 62047—in catalytic properties of endotype xanthanase MiXen were investigated for the first time. Basic characterizations and kinetic parameters of different recombinants revealed that, compared with MiCBMx, PspCBM84 dramatically increased the thermostability of endotype xanthanase, and endowed the enzyme with higher substrate affinity and catalytic efficiency. Notably, the activity of endotype xanthanase was increased by 16 times after being fused with PspCBM84. In addition, the presence of both CBMs obviously enabled endotype xanthanase to produce more oligoxanthan, and xanthan digests prepared by MiXen-CBM84 showed better antioxidant activity due to the higher content of active oligosaccharides. The results of this work lay a foundation for the rational design of endotype xanthanase and the industrial production of oligoxanthan in the future. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications)
Show Figures

Graphical abstract

Review

Jump to: Research

Review
The Engineering, Expression, and Immobilization of Epimerases for D-allulose Production
Int. J. Mol. Sci. 2023, 24(16), 12703; https://doi.org/10.3390/ijms241612703 - 11 Aug 2023
Viewed by 514
Abstract
The rare sugar D-allulose is a potential replacement for sucrose with a wide range of health benefits. Conventional production involves the employment of the Izumoring strategy, which utilises D-allulose 3-epimerase (DAEase) or D-psicose 3-epimerase (DPEase) to convert D-fructose into [...] Read more.
The rare sugar D-allulose is a potential replacement for sucrose with a wide range of health benefits. Conventional production involves the employment of the Izumoring strategy, which utilises D-allulose 3-epimerase (DAEase) or D-psicose 3-epimerase (DPEase) to convert D-fructose into D-allulose. Additionally, the process can also utilise D-tagatose 3-epimerase (DTEase). However, the process is not efficient due to the poor thermotolerance of the enzymes and low conversion rates between the sugars. This review describes three newly identified DAEases that possess desirable properties for the industrial-scale manufacturing of D-allulose. Other methods used to enhance process efficiency include the engineering of DAEases for improved thermotolerance or acid resistance, the utilization of Bacillus subtilis for the biosynthesis of D-allulose, and the immobilization of DAEases to enhance its activity, half-life, and stability. All these research advancements improve the yield of D-allulose, hence closing the gap between the small-scale production and industrial-scale manufacturing of D-allulose. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications)
Show Figures

Figure 1

Review
Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives
Int. J. Mol. Sci. 2023, 24(4), 3877; https://doi.org/10.3390/ijms24043877 - 15 Feb 2023
Cited by 6 | Viewed by 4457
Abstract
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within [...] Read more.
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications)
Show Figures

Figure 1

Back to TopTop