ijms-logo

Journal Browser

Journal Browser

Plant Adaptation Mechanism to Stress

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (15 April 2024) | Viewed by 4239

Special Issue Editor


E-Mail Website
Guest Editor
College of Life Sciences, China Agricultural University, Beijing 100193, China
Interests: plant; stress

Special Issue Information

Dear Colleagues,

Stress, such as low-temperature chilling injury, high-temperature heat injury, drought, high salt, diseases and insect pests, seriously affects the growth and yield of crops. In recent years, great progress has been made in the molecular mechanisms of plant stress responses. Some genes regulating stress responses have been gradually cloned and reported, and their functions and regulatory mechanisms have also been elucidated. Some have shown great application potential in production. Therefore, systematically sorting the molecular mechanisms of plant responses to stress will provide important help for researchers to deeply understand and ultimately apply it to agricultural production. The Special Issue covers the following seven aspects:

  1. Drought and waterlogging tolerance and high yield;
  2. Salt and alkali tolerance and high yield;
  3. High- and low-temperature resistance and high yield;
  4. Nutrient (N, P, K) efficient and high yield;
  5. High yield and light efficiency;
  6. Disease resistance and high yield;
  7. Insect resistance and high yield.

Dr. Yongqing Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 23334 KiB  
Article
Genomic Insights into High-Altitude Adaptation: A Comparative Analysis of Roscoea alpina and R. purpurea in the Himalayas
by Ya-Li Wang, Li Li, Babu Ram Paudel and Jian-Li Zhao
Int. J. Mol. Sci. 2024, 25(4), 2265; https://doi.org/10.3390/ijms25042265 - 14 Feb 2024
Viewed by 824
Abstract
Environmental stress at high altitudes drives the development of distinct adaptive mechanisms in plants. However, studies exploring the genetic adaptive mechanisms of high-altitude plant species are scarce. In the present study, we explored the high-altitude adaptive mechanisms of plants in the Himalayas through [...] Read more.
Environmental stress at high altitudes drives the development of distinct adaptive mechanisms in plants. However, studies exploring the genetic adaptive mechanisms of high-altitude plant species are scarce. In the present study, we explored the high-altitude adaptive mechanisms of plants in the Himalayas through whole-genome resequencing. We studied two widespread members of the Himalayan endemic alpine genus Roscoea (Zingiberaceae): R. alpina (a selfing species) and R. purpurea (an outcrossing species). These species are distributed widely in the Himalayas with distinct non-overlapping altitude distributions; R. alpina is distributed at higher elevations, and R. purpurea occurs at lower elevations. Compared to R. purpurea, R. alpina exhibited higher levels of linkage disequilibrium, Tajima’s D, and inbreeding coefficient, as well as lower recombination rates and genetic diversity. Approximately 96.3% of the genes in the reference genome underwent significant genetic divergence (FST ≥ 0.25). We reported 58 completely divergent genes (FST = 1), of which only 17 genes were annotated with specific functions. The functions of these genes were primarily related to adapting to the specific characteristics of high-altitude environments. Our findings provide novel insights into how evolutionary innovations promote the adaptation of mountain alpine species to high altitudes and harsh habitats. Full article
(This article belongs to the Special Issue Plant Adaptation Mechanism to Stress)
Show Figures

Figure 1

17 pages, 2031 KiB  
Article
Light Intensity Modulates the Functional Composition of Leaf Metabolite Groups and Phyllosphere Prokaryotic Community in Garden Lettuce (Lactuca sativa L.) Plants at the Vegetative Stage
by Dedong Kong, Ziran Ye, Mengdi Dai, Bin Ma and Xiangfeng Tan
Int. J. Mol. Sci. 2024, 25(3), 1451; https://doi.org/10.3390/ijms25031451 - 25 Jan 2024
Viewed by 794
Abstract
Light intensity primarily drives plant growth and morphogenesis, whereas the ecological impact of light intensity on the phyllosphere (leaf surface and endosphere) microbiome is poorly understood. In this study, garden lettuce (Lactuca sativa L.) plants were grown under low, medium, and high [...] Read more.
Light intensity primarily drives plant growth and morphogenesis, whereas the ecological impact of light intensity on the phyllosphere (leaf surface and endosphere) microbiome is poorly understood. In this study, garden lettuce (Lactuca sativa L.) plants were grown under low, medium, and high light intensities. High light intensity remarkably induced the leaf contents of soluble proteins and chlorophylls, whereas it reduced the contents of leaf nitrate. In comparison, medium light intensity exhibited the highest contents of soluble sugar, cellulose, and free amino acids. Meanwhile, light intensity resulted in significant changes in the composition of functional genes but not in the taxonomic compositions of the prokaryotic community (bacteria and archaea) in the phyllosphere. Notably, garden lettuce plants under high light intensity treatment harbored more sulfur-cycling mdh and carbon-cycling glyA genes than under low light intensity, both of which were among the 20 most abundant prokaryotic genes in the leaf phyllosphere. Furthermore, the correlations between prokaryotic functional genes and lettuce leaf metabolite groups were examined to disclose their interactions under varying light intensities. The relative abundance of the mdh gene was positively correlated with leaf total chlorophyll content but negatively correlated with leaf nitrate content. In comparison, the relative abundance of the glyA gene was positively correlated with leaf total chlorophyll and carotenoids. Overall, this study revealed that the functional composition of the phyllosphere prokaryotic community and leaf metabolite groups were tightly linked in response to changing light intensities. These findings provided novel insights into the interactions between plants and prokaryotic microbes in indoor farming systems, which will help optimize environmental management in indoor farms and harness beneficial plant–microbe relationships for crop production. Full article
(This article belongs to the Special Issue Plant Adaptation Mechanism to Stress)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 4432 KiB  
Review
Identification and Regulation of Hypoxia-Tolerant and Germination-Related Genes in Rice
by Hongyan Yuan, Zhenzhen Zheng, Yaling Bao, Xueyu Zhao, Jiaqi Lv, Chenghang Tang, Nansheng Wang, Zhaojie Liang, Hua Li, Jun Xiang, Yingzhi Qian and Yingyao Shi
Int. J. Mol. Sci. 2024, 25(4), 2177; https://doi.org/10.3390/ijms25042177 - 11 Feb 2024
Viewed by 810
Abstract
In direct seeding, hypoxia is a major stress faced by rice plants. Therefore, dissecting the response mechanism of rice to hypoxia stress and the molecular regulatory network is critical to the development of hypoxia-tolerant rice varieties and direct seeding of rice. This review [...] Read more.
In direct seeding, hypoxia is a major stress faced by rice plants. Therefore, dissecting the response mechanism of rice to hypoxia stress and the molecular regulatory network is critical to the development of hypoxia-tolerant rice varieties and direct seeding of rice. This review summarizes the morphological, physiological, and ecological changes in rice under hypoxia stress, the discovery of hypoxia-tolerant and germination-related genes/QTLs, and the latest research on candidate genes, and explores the linkage of hypoxia tolerance genes and their distribution in indica and japonica rice through population variance analysis and haplotype network analysis. Among the candidate genes, OsMAP1 is a typical gene located on the MAPK cascade reaction for indica–japonica divergence; MHZ6 is involved in both the MAPK signaling and phytohormone transduction pathway. MHZ6 has three major haplotypes and one rare haplotype, with Hap3 being dominated by indica rice varieties, and promotes internode elongation in deep-water rice by activating the SD1 gene. OsAmy3D and Adh1 have similar indica–japonica varietal differentiation, and are mainly present in indica varieties. There are three high-frequency haplotypes of OsTPP7, namely Hap1 (n = 1109), Hap2 (n = 1349), and Hap3 (n = 217); Hap2 is more frequent in japonica, and the genetic background of OsTPP7 was derived from the japonica rice subpopulation. Further artificial selection, natural domestication, and other means to identify more resistance mechanisms of this gene may facilitate future research to breed superior rice cultivars. Finally, this study discusses the application of rice hypoxia-tolerant germplasm in future breeding research. Full article
(This article belongs to the Special Issue Plant Adaptation Mechanism to Stress)
Show Figures

Figure 1

16 pages, 865 KiB  
Review
Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response
by Yancong Jia, Debin Qin, Yulu Zheng and Yang Wang
Int. J. Mol. Sci. 2023, 24(19), 14406; https://doi.org/10.3390/ijms241914406 - 22 Sep 2023
Viewed by 1151
Abstract
To effectively adapt to changing environments, plants must maintain a delicate balance between growth and resistance or tolerance to various stresses. Nitrate, a significant inorganic nitrogen source in soils, not only acts as an essential nutrient but also functions as a critical signaling [...] Read more.
To effectively adapt to changing environments, plants must maintain a delicate balance between growth and resistance or tolerance to various stresses. Nitrate, a significant inorganic nitrogen source in soils, not only acts as an essential nutrient but also functions as a critical signaling molecule that regulates multiple aspects of plant growth and development. In recent years, substantial advancements have been made in understanding nitrate sensing, calcium-dependent nitrate signal transmission, and nitrate-induced transcriptional cascades. Mounting evidence suggests that the primary response to nitrate is influenced by environmental conditions, while nitrate availability plays a pivotal role in stress tolerance responses. Therefore, this review aims to provide an overview of the transcriptional and post-transcriptional regulation of key components in the nitrate signaling pathway, namely, NRT1.1, NLP7, and CIPK23, under abiotic stresses. Additionally, we discuss the specificity of nitrate sensing and signaling as well as the involvement of epigenetic regulators. A comprehensive understanding of the integration between nitrate signaling transduction and abiotic stress responses is crucial for developing future crops with enhanced nitrogen-use efficiency and heightened resilience. Full article
(This article belongs to the Special Issue Plant Adaptation Mechanism to Stress)
Show Figures

Figure 1

Back to TopTop