Electrochemical (Bio-) Sensors in Biological Applications—2nd Edition

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensors and Healthcare".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 8349

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physical Chemistry, Plovdiv University, 4000 Plovdiv, Bulgaria
Interests: sensor design; sensor architecture; immobilization; bioreceptor; biomimics; advanced materials; disease diagnosis; pharmaceutical analysis; forensic sciences; pathogens
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
Interests: electrochemical and optical sensors; graphene; nanomaterials based electrodes; bioanalysis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
Interests: bioelectrochemistry; bioelectronics; biomedical technology

Special Issue Information

Dear Colleagues,

After the successful accomplishment of the first Volume of the Special Issue entitled “Electrochemical (Bio-) Sensors in Biological Applications”, the Journal’s Editorial Board, in collaboration with the Guest Editors Dr. Nina Dimcheva (assoc. prof.), Prof. Dr. Cecilia Cristea and Prof. Dr. Sergey Shleev, is launching Volume II under the same title.  This Special Issue is dedicated to the electrochemical sensors and biosensors applicable in diseases diagnosis; clinical, pharmaceutical, agricultural, food and forensic analyses; and any other area of biological interest.

In addition to those already announced in the Volume I, the following topics may be addressed:

  • Sensor design: the application of nanomaterials and bio-nanomaterials, hybrid materials, composites, biomimics or bio-inspired materials in sensor architecture, and the immobilization of bio receptors (proteins, nucleic acids, tissues, microorganisms, etc.) as a tool for its stabilization.
  • Area of application: sensors/biosensors for disease diagnosis; clinical analysis, drug discovery and pharmacy; forensic science and food analyses; and any of other field of biological
  • Sensor’s analytical performance: the selectivity of analysis in complex matrices, low detection limits, etc.

Volume II will focus also on cutting-edge sensing technologies, including the following:

- electronic noses and tongues;

- wearables and point-of-care (POC) devices;

- ingestible sensors for disease monitoring;

- molecularly imprinted polymers (MIPs) and nano-MIP-based sensors.

Both critical reviews and original research articles that address analytical aspects (selectivity, validation, etc.), the design of sensing devices and/or platforms (bioreceptor immobilization, use of bio-mimics, bio-inspired catalysts) or sensing principles will be considered for publication.

Dr. Nina Dimcheva
Prof. Dr. Cecilia Cristea
Prof. Dr. Sergey Shleev
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sensor design
  • sensor architecture
  • immobilization
  • bio-receptor
  • bio-mimics
  • advanced materials
  • disease diagnosis
  • pharmaceutical analysis
  • forensic sciences
  • pathogens

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 2105 KiB  
Article
Effect of Protection Polymer Coatings on the Performance of an Amperometric Galactose Biosensor in Human Plasma
by Carina Figueiredo, Carolin Psotta, Kavita Jayakumar, Anna Lielpetere, Tanushree Mandal, Wolfgang Schuhmann, Dónal Leech, Magnus Falk, Marcos Pita, Sergey Shleev and Antonio L. De Lacey
Biosensors 2024, 14(4), 167; https://doi.org/10.3390/bios14040167 - 30 Mar 2024
Viewed by 574
Abstract
Galactose monitoring in individuals allows the prevention of harsh health conditions related to hereditary metabolic diseases like galactosemia. Current methods of galactose detection need development to obtain cheaper, more reliable, and more specific sensors. Enzyme-containing amperometric sensors based on galactose oxidase activity are [...] Read more.
Galactose monitoring in individuals allows the prevention of harsh health conditions related to hereditary metabolic diseases like galactosemia. Current methods of galactose detection need development to obtain cheaper, more reliable, and more specific sensors. Enzyme-containing amperometric sensors based on galactose oxidase activity are a promising approach, which can be enhanced by means of their inclusion in a redox polymer coating. This strategy simultaneously allows the immobilization of the biocatalyst to the electroactive surface and hosts the electron shuttling units. An additional deposition of capping polymers prevents external interferences like ascorbic or uric acid as well as biofouling when measuring in physiological fuels. This work studies the protection effect of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate (MPC) and polyvinylimidazole-polysulfostyrene (P(VI-SS)) when incorporated in the biosensor design for the detection of galactose in human plasma. Full article
Show Figures

Figure 1

13 pages, 4760 KiB  
Article
A Portable and Disposable Electrochemical Sensor Utilizing Laser-Scribed Graphene for Rapid SARS-CoV-2 Detection
by Runzhong Wang, Bicheng Zhu, Paul Young, Yu Luo, John Taylor, Alan J. Cameron, Christopher J. Squire and Jadranka Travas-Sejdic
Biosensors 2024, 14(1), 10; https://doi.org/10.3390/bios14010010 - 23 Dec 2023
Viewed by 1405
Abstract
The COVID-19 pandemic caused by the virus SARS-CoV-2 was the greatest global threat to human health in the last three years. The most widely used methodologies for the diagnosis of COVID-19 are quantitative reverse transcription polymerase chain reaction (RT-qPCR) and rapid antigen tests [...] Read more.
The COVID-19 pandemic caused by the virus SARS-CoV-2 was the greatest global threat to human health in the last three years. The most widely used methodologies for the diagnosis of COVID-19 are quantitative reverse transcription polymerase chain reaction (RT-qPCR) and rapid antigen tests (RATs). PCR is time-consuming and requires specialized instrumentation operated by skilled personnel. In contrast, RATs can be used in-home or at point-of-care but are less sensitive, leading to a higher rate of false negative results. In this work, we describe the development of a disposable, electrochemical, and laser-scribed graphene-based biosensor strips for COVID-19 detection that exploits a split-ester bond ligase system (termed ‘EsterLigase’) for immobilization of a virus-specific nanobody to maintain the out-of-plane orientation of the probe to ensure the efficacy of the probe-target recognition process. An anti-spike VHH E nanobody, genetically fused with the EsterLigase domain, was used as the specific probe for the spike receptor-binding domain (SP-RBD) protein as the target. The recognition between the two was measured by the change in the charge transfer resistance determined by fitting the electrochemical impedance spectroscopy (EIS) spectra. The developed LSG-based biosensor achieved a linear detection range for the SP-RBD from 150 pM to 15 nM with a sensitivity of 0.0866 [log(M)]−1 and a limit of detection (LOD) of 7.68 pM. Full article
Show Figures

Graphical abstract

13 pages, 2205 KiB  
Article
Highly Conductive Peroxidase-like Ce-MoS2 Nanoflowers for the Simultaneous Electrochemical Detection of Dopamine and Epinephrine
by Annadurai Thamilselvan, Thinh Viet Dang and Moon Il Kim
Biosensors 2023, 13(12), 1015; https://doi.org/10.3390/bios13121015 - 06 Dec 2023
Viewed by 1300
Abstract
The accurate and simultaneous detection of neurotransmitters, such as dopamine (DA) and epinephrine (EP), is of paramount importance in clinical diagnostic fields. Herein, we developed cerium–molybdenum disulfide nanoflowers (Ce-MoS2 NFs) using a simple one-pot hydrothermal method and demonstrated that they are highly [...] Read more.
The accurate and simultaneous detection of neurotransmitters, such as dopamine (DA) and epinephrine (EP), is of paramount importance in clinical diagnostic fields. Herein, we developed cerium–molybdenum disulfide nanoflowers (Ce-MoS2 NFs) using a simple one-pot hydrothermal method and demonstrated that they are highly conductive and exhibit significant peroxidase-mimicking activity, which was applied for the simultaneous electrochemical detection of DA and EP. Ce-MoS2 NFs showed a unique structure, comprising MoS2 NFs with divalent Ce ions. This structural design imparted a significantly enlarged surface area of 220.5 m2 g−1 with abundant active sites as well as enhanced redox properties, facilitating electron transfer and peroxidase-like catalytic action compared with bare MoS2 NFs without Ce incorporation. Based on these beneficial features, Ce-MoS2 NFs were incorporated onto a screen-printed electrode (Ce-MoS2 NFs/SPE), enabling the electrochemical detection of H2O2 based on their peroxidase-like activity. Ce-MoS2 NFs/SPE biosensors also showed distinct electrocatalytic oxidation characteristics for DA and EP, consequently yielding the highly selective, sensitive, and simultaneous detection of target DA and EP. Dynamic linear ranges for both DA and EP were determined to be 0.05~100 μM, with detection limits (S/N = 3) of 28 nM and 44 nM, respectively. This study shows the potential of hierarchically structured Ce-incorporated MoS2 NFs to enhance the detection performances of electrochemical biosensors, thus enabling extensive applications in healthcare, diagnostics, and environmental monitoring. Full article
Show Figures

Graphical abstract

13 pages, 2647 KiB  
Article
Functionalized GD2 Electrochemical Immunosensor to Diagnose Minimum Residual Disease of Bone Marrow in Neuroblastoma Effectively
by Chong Chen, Chang Hu, Baixun He, Yongchang Bai, Feng He, Shuang Li and Cherie S. Tan
Biosensors 2023, 13(10), 920; https://doi.org/10.3390/bios13100920 - 10 Oct 2023
Viewed by 1215
Abstract
Neuroblastoma (NB) is known as the “king of childhood tumors” due to its highly metastatic, recurrence-prone, and difficult-to-treat characteristics. International Neuroblastoma Risk Grading Group (INRG) has recommended GD2, a disialoganglioside expressed on neuroectodermal tumor cells, as the target for detecting minimal residual disease [...] Read more.
Neuroblastoma (NB) is known as the “king of childhood tumors” due to its highly metastatic, recurrence-prone, and difficult-to-treat characteristics. International Neuroblastoma Risk Grading Group (INRG) has recommended GD2, a disialoganglioside expressed on neuroectodermal tumor cells, as the target for detecting minimal residual disease in bone marrow metastases of high-risk neuroblastoma in children. Therefore, accurately identifying GD2-positive cells is crucial for diagnosing children with high-risk NB. Here, we designed a graphene/AuNP/GD2 Ab-functionalized electrochemical biosensor for GD2 detection. A three-electrode system was processed using a screen-printed technique with a working electrode of indium tin oxide, a counter electrode of carbon, and a reference electrode of silver/silver chloride. Graphene/AuNPs were modified on the indium tin oxide electrode using chronoamperometric scans, and then, the GD2 antibody was modified on the biosensor by electrostatic adsorption to achieve sensitive and specific detection of GD2-positive cells in bone marrow fluid. The results showed that a graphene/AuNP/GD2 Ab-functionalized electrochemical biosensor achieved GD2-positive cell detection in the range of 102 cells/mL~105 cells/mL by differential pulse voltammetry. Bone marrow fluid samples from 12 children with high-risk NB were retained for testing on our biosensor and showed 100% compliance with the clinical application of the gold-standard immunocytochemical staining technique for detecting GD2-positive cells qualitatively. The GD2-based electrochemical assay can accurately detect children with high-risk NB, providing a rapidly quantitative basis for clinical diagnosis and treatment. Full article
Show Figures

Figure 1

13 pages, 5441 KiB  
Article
A Floating Capsule Electrochemical System for In Situ and Multichannel Ion-Selective Sensing
by Jie Yang, Ao Ding, Jia-Le Zhou, Bing-Yong Yan, Zhen Gu and Hui-Feng Wang
Biosensors 2023, 13(10), 914; https://doi.org/10.3390/bios13100914 - 05 Oct 2023
Viewed by 1368
Abstract
Free-floating electrochemical sensors are promising for in situ bioprocess monitoring with the advantages of movability, a lowered risk of contamination, and a simplified structure of the bioreactor. Although floating sensors were developed for the measurement of physical and chemical indicators such as temperature, [...] Read more.
Free-floating electrochemical sensors are promising for in situ bioprocess monitoring with the advantages of movability, a lowered risk of contamination, and a simplified structure of the bioreactor. Although floating sensors were developed for the measurement of physical and chemical indicators such as temperature, velocity of flow, pH, and dissolved oxygen, it is the lack of available electrochemical sensors for the determination of the inorganic ions in bioreactors that has a significant influence on cell culture. In this study, a capsule-shaped electrochemical system (iCapsuleEC) is developed to monitor ions including K+, NH4+, Na+, Ca2+, and Mg2+ based on solid-contact ion-selective electrodes (SC-ISEs). It consists of a disposable electrochemical sensor and signal-processing device with features including multichannel measurement, self-calibration, and wireless data transmission. The capacities of the iCapsuleEC were demonstrated not only for in situ measurement of ion concentrations but also for the optimization of the sensing electrodes. We also explored the possibility of the system for use in detection in simulated cell culture media. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 1370 KiB  
Review
Electronic Tongues and Noses: A General Overview
by Diego Tibaduiza, Maribel Anaya, Johan Gómez, Juan Sarmiento, Maria Perez, Cristhian Lara, Johan Ruiz, Nicolas Osorio, Katerin Rodriguez, Isaac Hernandez and Carlos Sanchez
Biosensors 2024, 14(4), 190; https://doi.org/10.3390/bios14040190 - 13 Apr 2024
Viewed by 456
Abstract
As technology advances, electronic tongues and noses are becoming increasingly important in various industries. These devices can accurately detect and identify different substances and gases based on their chemical composition. This can be incredibly useful in fields such as environmental monitoring and industrial [...] Read more.
As technology advances, electronic tongues and noses are becoming increasingly important in various industries. These devices can accurately detect and identify different substances and gases based on their chemical composition. This can be incredibly useful in fields such as environmental monitoring and industrial food applications, where the quality and safety of products or ecosystems should be ensured through a precise analysis. Traditionally, this task is performed by an expert panel or by using laboratory tests but sometimes becomes a bottleneck because of time and other human factors that can be solved with technologies such as the provided by electronic tongue and nose devices. Additionally, these devices can be used in medical diagnosis, quality monitoring, and even in the automotive industry to detect gas leaks. The possibilities are endless, and as these technologies continue to improve, they will undoubtedly play an increasingly important role in improving our lives and ensuring our safety. Because of the multiple applications and developments in this field in the last years, this work will present an overview of the electronic tongues and noses from the point of view of the approaches developed and the methodologies used in the data analysis and steps to this aim. In the same manner, this work shows some of the applications that can be found in the use of these devices and ends with some conclusions about the current state of these technologies. Full article
Show Figures

Figure 1

27 pages, 8123 KiB  
Review
Electrochemically Synthesized MIP Sensors: Applications in Healthcare Diagnostics
by Akinrinade George Ayankojo, Jekaterina Reut and Vitali Syritski
Biosensors 2024, 14(2), 71; https://doi.org/10.3390/bios14020071 - 30 Jan 2024
Cited by 1 | Viewed by 1397
Abstract
Early-stage detection and diagnosis of diseases is essential to the prompt commencement of treatment regimens, curbing the spread of the disease, and improving human health. Thus, the accurate detection of disease biomarkers through the development of robust, sensitive, and selective diagnostic tools has [...] Read more.
Early-stage detection and diagnosis of diseases is essential to the prompt commencement of treatment regimens, curbing the spread of the disease, and improving human health. Thus, the accurate detection of disease biomarkers through the development of robust, sensitive, and selective diagnostic tools has remained cutting-edge scientific research for decades. Due to their merits of being selective, stable, simple, and having a low preparation cost, molecularly imprinted polymers (MIPs) are increasingly becoming artificial substitutes for natural receptors in the design of state-of-the-art sensing devices. While there are different MIP preparation approaches, electrochemical synthesis presents a unique and outstanding method for chemical sensing applications, allowing the direct formation of the polymer on the transducer as well as simplicity in tuning the film properties, thus accelerating the trend in the design of commercial MIP-based sensors. This review evaluates recent achievements in the applications of electrosynthesized MIP sensors for clinical analysis of disease biomarkers, identifying major trends and highlighting interesting perspectives on the realization of commercial MIP-endowed testing devices for rapid determination of prevailing diseases. Full article
Show Figures

Figure 1

Back to TopTop