The Role of Inflammatory Cytokines in Cancer Progression

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Cancer Biology and Oncology".

Deadline for manuscript submissions: closed (30 September 2022) | Viewed by 27437

Special Issue Editor


E-Mail Website
Guest Editor
Department of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
Interests: tumor microenvironment; brain metastases; cancer treatment; biomarkers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cancer’s inflammatory microenvironment is a complex network formed by diverse types of cells, most notably responsible for the release of cytokines, supporting cancer development. Besides stimulating cell proliferation, cytokines are responsible for cancer progression through the use of tumor immune escape, the recruitment of tumor-supportive stromal cells and immunosuppressive cells, angiogenesis and metastasis induction, contributing to the alteration of therapeutic agents’ responses.

This Special Issue comprehensively explores the implication of inflammatory cytokines during the different steps of cancer progression, including cell proliferation, tumor immune escape, angiogenesis and metastasis. Moreover, the aim of this Special Issue is also to understand the involvement of inflammatory cytokines in cancer therapy resistance and, on the other hand, to investigate new potential therapy targeting cytokines. Reviews and original papers discussing these points are welcome.

Dr. Nadège Kindt
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cytokine storm
  • cancer cell proliferation
  • immune cells
  • stromal cells
  • angiogenesis
  • tumor immune escape
  • metastasis
  • anticancer treatment
  • resistance to treatment
  • biomarkers

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

12 pages, 542 KiB  
Review
Inflammatory Cytokines and Radiotherapy in Pancreatic Ductal Adenocarcinoma
by Sylvia S. W. Ng and Laura A. Dawson
Biomedicines 2022, 10(12), 3215; https://doi.org/10.3390/biomedicines10123215 - 12 Dec 2022
Cited by 2 | Viewed by 1550
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a therapeutic challenge in clinical oncology. Surgery is the only potentially curative treatment. However, the majority of PDAC patients present with locally advanced/unresectable or metastatic disease, where palliative multiagent chemotherapy is the first-line treatment with the therapeutic intent [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) remains a therapeutic challenge in clinical oncology. Surgery is the only potentially curative treatment. However, the majority of PDAC patients present with locally advanced/unresectable or metastatic disease, where palliative multiagent chemotherapy is the first-line treatment with the therapeutic intent to delay progression and prolong survival. For locally advanced/unresectable pancreatic cancer patients who are treated with chemotherapy, consolidative radiotherapy in the form concurrent chemoradiation or stereotactic ablative radiotherapy improves locoregional control and pain/symptom control. To improve clinical outcomes of PDAC patients, there is a dire need for discoveries that will shed more light on the pathophysiology of the disease and lead to the development of more efficacious treatment strategies. Inflammatory cytokines are known to play a role in mediating tumor progression, chemoresistance, and radioresistance in PDAC. A PubMed search on published articles related to radiotherapy, inflammatory cytokines, and pancreatic cancer patients in the English language was performed. This article primarily focuses on reviewing the clinical literature that examines the association of inflammatory cytokines with clinical outcomes and the effects of radiotherapy on inflammatory cytokines in PDAC patients. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

20 pages, 813 KiB  
Review
How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes
by Imke Atreya and Markus F. Neurath
Biomedicines 2022, 10(11), 2940; https://doi.org/10.3390/biomedicines10112940 - 15 Nov 2022
Cited by 4 | Viewed by 2724
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, [...] Read more.
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

13 pages, 1659 KiB  
Review
Inflammasome-Mediated Cytokines: A Key Connection between Obesity-Associated NASH and Liver Cancer Progression
by Nathalia Soares da Cruz, Gabriel Pasquarelli-do-Nascimento, Augusto Cézar Polveiro e Oliveira and Kelly Grace Magalhães
Biomedicines 2022, 10(10), 2344; https://doi.org/10.3390/biomedicines10102344 - 21 Sep 2022
Cited by 4 | Viewed by 2331
Abstract
Liver cancer is one of the most lethal malignancies and is commonly diagnosed as hepatocellular carcinoma (HCC), a tumor type that affects about 90% of patients. Non-alcoholic steatohepatitis (NASH) and obesity are both risk factors for this disease. HCC initiation and progression are [...] Read more.
Liver cancer is one of the most lethal malignancies and is commonly diagnosed as hepatocellular carcinoma (HCC), a tumor type that affects about 90% of patients. Non-alcoholic steatohepatitis (NASH) and obesity are both risk factors for this disease. HCC initiation and progression are deeply linked with changes in the hepatic microenvironment, with cytokines playing key roles. The understanding of the pathogenic pathways that connect these disorders to liver cancer remains poor. However, the inflammasome-mediated cytokines associated with both diseases are central actors in liver cancer progression. The release of the pro-inflammatory cytokines IL-1β and IL-18 during inflammasome activation leads to several detrimental effects on the liver microenvironment. Considering the critical crosstalk between obesity, NASH, and HCC, this review will present the connections of IL-1β and IL-18 from obesity-associated NASH with HCC and will discuss approaches to using these cytokines as therapeutic targets against HCC. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

15 pages, 631 KiB  
Review
Inflammatory Cytokine: An Attractive Target for Cancer Treatment
by Hyang-Mi Lee, Hye-Jin Lee and Ji-Eun Chang
Biomedicines 2022, 10(9), 2116; https://doi.org/10.3390/biomedicines10092116 - 29 Aug 2022
Cited by 20 | Viewed by 2953
Abstract
The relationship between inflammation and cancer has attracted attention for a long time. The inflammatory tumor microenvironment consists of inflammatory cells, chemokines, cytokines, and signaling pathways. Among them, inflammatory cytokines play an especially pivotal role in cancer development, prognosis, and treatment. Interleukins, tumor [...] Read more.
The relationship between inflammation and cancer has attracted attention for a long time. The inflammatory tumor microenvironment consists of inflammatory cells, chemokines, cytokines, and signaling pathways. Among them, inflammatory cytokines play an especially pivotal role in cancer development, prognosis, and treatment. Interleukins, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interferons, and vascular endothelial growth factor (VEGF) are the representative inflammatory cytokines in various cancers, which may promote or inhibit cancer progression. The pro-inflammatory cytokines are associated with advanced cancer stages, resistance to immunotherapy, and poor prognoses, such as in objective response and disease control rates, and progression-free and overall survival. In this review, we selected colorectal, pancreatic, breast, gastric, lung, and prostate cancers, which are well-reported for an association between cancer and inflammatory cytokines. The related cytokines and their effects on each cancer’s development and prognosis were summarized. In addition, the treatment strategies targeting inflammatory cytokines in each carcinoma were also described here. By understanding the biological roles of cancer-related inflammatory cytokines, we may modulate the inflammatory tumor microenvironment for potential cancer treatment. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

27 pages, 1335 KiB  
Review
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review
by Jędrzej Borowczak, Krzysztof Szczerbowski, Mateusz Maniewski, Adam Kowalewski, Marlena Janiczek-Polewska, Anna Szylberg, Andrzej Marszałek and Łukasz Szylberg
Biomedicines 2022, 10(7), 1670; https://doi.org/10.3390/biomedicines10071670 - 11 Jul 2022
Cited by 21 | Viewed by 3500
Abstract
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater [...] Read more.
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their potential role in CRC pathogenesis and promising results of clinical trials. Malignant transformation is associated with the pro-tumorigenic and anti-tumorigenic cytokines. The harmony between proinflammatory and anti-inflammatory factors is crucial to maintaining homeostasis. Immune cells in the tumor microenvironment modulate immune sensitivity and facilitate cancer escape from immune surveillance. Therefore, clarifying the role of underlying cytokine pathways and the effects of their modulation may be an important step to improve the effectiveness of cancer immunotherapy. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

13 pages, 509 KiB  
Review
Role of Interleukins and New Perspectives in Mechanisms of Resistance to Chemotherapy in Gastric Cancer
by Marlena Janiczek-Polewska, Łukasz Szylberg, Julian Malicki and Andrzej Marszałek
Biomedicines 2022, 10(7), 1600; https://doi.org/10.3390/biomedicines10071600 - 05 Jul 2022
Cited by 4 | Viewed by 1941
Abstract
Gastric cancer (GC) is the fourth most common cancer in the world in terms of incidence and second in terms of mortality. Chemotherapy is the main treatment for GC. The greatest challenge and major cause of GC treatment failure is resistance to chemotherapy. [...] Read more.
Gastric cancer (GC) is the fourth most common cancer in the world in terms of incidence and second in terms of mortality. Chemotherapy is the main treatment for GC. The greatest challenge and major cause of GC treatment failure is resistance to chemotherapy. As such, research is ongoing into molecular evaluation, investigating mechanisms, and screening therapeutic targets. Several mechanisms related to both the tumor cells and the tumor microenvironment (TME) are involved in resistance to chemotherapy. TME promotes the secretion of various inflammatory cytokines. Recent studies have revealed that inflammatory cytokines affect not only tumor growth, but also chemoresistance. Cytokines in TME can be detected in blood circulation and TME cells. Inflammatory cytokines could serve as potential biomarkers in the assessment of chemoresistance and influence the management of therapeutics in GC. This review presents recent data concerning research on inflammatory cytokines involved in the mechanisms of chemoresistance and provides new clues in GC treatment. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

19 pages, 1017 KiB  
Review
Innate and Adaptive Responses of Intratumoral Immunotherapy with Endosomal Toll-Like Receptor Agonists
by Fernando Torres Andón, Sergio Leon, Aldo Ummarino, Esther Redin, Paola Allavena, Diego Serrano, Clément Anfray and Alfonso Calvo
Biomedicines 2022, 10(7), 1590; https://doi.org/10.3390/biomedicines10071590 - 04 Jul 2022
Cited by 10 | Viewed by 3002
Abstract
Toll-like receptors (TLRs) are natural initial triggers of innate and adaptive immune responses. With the advent of cancer immunotherapy, nucleic acids engineered as ligands of endosomal TLRs have been investigated for the treatment of solid tumors. Despite promising results, their systemic administration, similarly [...] Read more.
Toll-like receptors (TLRs) are natural initial triggers of innate and adaptive immune responses. With the advent of cancer immunotherapy, nucleic acids engineered as ligands of endosomal TLRs have been investigated for the treatment of solid tumors. Despite promising results, their systemic administration, similarly to other immunotherapies, raises safety issues. To overcome these problems, recent studies have applied the direct injection of endosomal TLR agonists in the tumor and/or draining lymph nodes, achieving high local drug exposure and strong antitumor response. Importantly, intratumoral delivery of TLR agonists showed powerful effects not only against the injected tumors but also often against uninjected lesions (abscopal effects), resulting in some cases in cure and antitumoral immunological memory. Herein, we describe the structure and function of TLRs and their role in the tumor microenvironment. Then, we provide our vision on the potential of intratumor versus systemic delivery or vaccination approaches using TLR agonists, also considering the use of nanoparticles to improve their targeting properties. Finally, we collect the preclinical and clinical studies applying intratumoral injection of TLR agonists as monotherapies or in combination with: (a) other TLR or STING agonists; (b) other immunotherapies; (c) radiotherapy or chemotherapy; (d) targeted therapies. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

16 pages, 872 KiB  
Review
Cytokine Landscape in Central Nervous System Metastases
by Julie Marin, Fabrice Journe, Ghanem E. Ghanem, Ahmad Awada and Nadège Kindt
Biomedicines 2022, 10(7), 1537; https://doi.org/10.3390/biomedicines10071537 - 28 Jun 2022
Cited by 3 | Viewed by 2507
Abstract
The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective [...] Read more.
The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective treatments. In this review, we explore the involvement of cytokines, including interleukins and chemokines, during the development of brain and leptomeningeal metastases from the epithelial-to-mesenchymal cell transition and blood–brain barrier extravasation to the interaction between cancer cells and cells from the brain microenvironment, including astrocytes and microglia. Furthermore, the role of the gut–brain axis on cytokine release during this process will also be addressed. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

19 pages, 3104 KiB  
Review
Rac1 as a Target to Treat Dysfunctions and Cancer of the Bladder
by Vincent Sauzeau, Julien Beignet and Christian Bailly
Biomedicines 2022, 10(6), 1357; https://doi.org/10.3390/biomedicines10061357 - 08 Jun 2022
Cited by 4 | Viewed by 2859
Abstract
Bladder pathologies, very common in the aged population, have a considerable negative impact on quality of life. Novel targets are needed to design drugs and combinations to treat diseases such as overactive bladder and bladder cancers. A promising new target is the ubiquitous [...] Read more.
Bladder pathologies, very common in the aged population, have a considerable negative impact on quality of life. Novel targets are needed to design drugs and combinations to treat diseases such as overactive bladder and bladder cancers. A promising new target is the ubiquitous Rho GTPase Rac1, frequently dysregulated and overexpressed in bladder pathologies. We have analyzed the roles of Rac1 in different bladder pathologies, including bacterial infections, diabetes-induced bladder dysfunctions and bladder cancers. The contribution of the Rac1 protein to tumorigenesis, tumor progression, epithelial-mesenchymal transition of bladder cancer cells and their metastasis has been analyzed. Small molecules selectively targeting Rac1 have been discovered or designed, and two of them—NSC23766 and EHT 1864—have revealed activities against bladder cancer. Their mode of interaction with Rac1, at the GTP binding site or the guanine nucleotide exchange factors (GEF) interaction site, is discussed. Our analysis underlines the possibility of targeting Rac1 with small molecules with the objective to combat bladder dysfunctions and to reduce lower urinary tract symptoms. Finally, the interest of a Rac1 inhibitor to treat advanced chemoresistance prostate cancer, while reducing the risk of associated bladder dysfunction, is discussed. There is hope for a better management of bladder pathologies via Rac1-targeted approaches. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

14 pages, 727 KiB  
Review
The Role of the Adipokine Resistin in the Pathogenesis and Progression of Epithelial Ovarian Cancer
by Klaudia Parafiniuk, Wiktoria Skiba, Anna Pawłowska, Dorota Suszczyk, Aleksandra Maciejczyk and Iwona Wertel
Biomedicines 2022, 10(4), 920; https://doi.org/10.3390/biomedicines10040920 - 16 Apr 2022
Cited by 8 | Viewed by 2668
Abstract
Obesity is a civilization disease associated with an increased risk of developing cardiovascular diseases, diabetes, and some malignancies. The results concerning the relationship between obesity and epithelial ovarian cancer (EOC) are inconclusive. The higher incidence of neoplasms in obese subjects has led to [...] Read more.
Obesity is a civilization disease associated with an increased risk of developing cardiovascular diseases, diabetes, and some malignancies. The results concerning the relationship between obesity and epithelial ovarian cancer (EOC) are inconclusive. The higher incidence of neoplasms in obese subjects has led to the development of the adipokine hypothesis. Omental adipocyte cells interact with cancer cells, promoting their migration and metastasis via the secretion of adipokines, growth factors, and hormones. One of the adipokines is resistin. It was shown in vitro that resistin stimulates the growth and differentiation of ovarian cancer cells. Moreover, it increases the level of angiogenesis factors, e.g., matrix metalloproteinase 2 (MMP-2) and vascular epithelial growth factor (VEGF). Additionally, resistin induces epithelial–mesenchymal transition (EMT) and stemness in EOC cell lines. A positive correlation has been shown between a higher level of resistin expression and the stage of histological differentiation of EOC or the occurrence of lymph node metastases. In addition, the overexpression of resistin has been found to act as an independent factor determining disease-free survival as well as overall survival in EOC patients. Growing evidence supports the finding that resistin plays an important role in some mechanisms leading to the progression of EOC, though this issue still requires further research. Full article
(This article belongs to the Special Issue The Role of Inflammatory Cytokines in Cancer Progression)
Show Figures

Figure 1

Back to TopTop