Climate Change and Its Impact on Crops

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Climatology".

Deadline for manuscript submissions: closed (31 January 2021) | Viewed by 13213

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
Interests: agro-ecosystem modelling; climate change Impact assessment; crop yield forecasting
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Climate change will increase the likelihood of systemic failures across the globe caused by extreme climate events, affecting multiple sectors including the agricultural sector according to the Intergovernmental Panel on Climate Change Special Report on Global warming of 1.5 °C. Climate change is also projected to negatively impact the pillars of food security—availability, access, utilization, and stability—and their interactions. One aspect that requires specific analysis is related to extreme events which may lead to crop failure, even in the context of possibly improved weather patterns and what adaptation measures are required to address the climate change issues in farm systems. We call for contributions to this Special Issue that highlight innovative approaches, systems modelling, and crop yield forecasting in the context of changing climate.

Dr. Amit Kumar Srivastava
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • climate change
  • crops
  • extreme events
  • forecasting
  • mitigation
  • adaptation
  • models

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3115 KiB  
Article
Effect of Temperature on Sowing Dates of Wheat under Arid and Semi-Arid Climatic Regions and Impact Quantification of Climate Change through Mechanistic Modeling with Evidence from Field
by Jamshad Hussain, Tasneem Khaliq, Muhammad Habib ur Rahman, Asmat Ullah, Ishfaq Ahmed, Amit Kumar Srivastava, Thomas Gaiser and Ashfaq Ahmad
Atmosphere 2021, 12(7), 927; https://doi.org/10.3390/atmos12070927 - 19 Jul 2021
Cited by 10 | Viewed by 3835
Abstract
Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were [...] Read more.
Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were conducted during seasons 2013–2014 and 2014–2015 in the semi-arid (Faisalabad) and arid (Layyah) regions of Punjab-Pakistan. Three spring wheat genotypes were evaluated under eleven sowing dates from 16 October to 16 March, with an interval of 14–16 days in the two regions. Data for the model calibration and evaluation were collected from field experiments following the standard procedures and protocols. The grain yield under future climate scenarios was simulated by using a well-calibrated CERES-wheat model included in DSSAT v4.7. Future (2051–2100) and baseline (1980–2015) climatic data were simulated using 29 global circulation models (GCMs) under representative concentration pathway (RCP) 8.5. These GCMs were distributed among five quadrants of climatic conditions (Hot/Wet, Hot/Dry, Cool/Dry, Cool/Wet, and Middle) by a stretched distribution approach based on temperature and rainfall change. A maximum of ten GCMs predicted the chances of Middle climatic conditions during the second half of the century (2051–2100). The average temperature during the wheat season in a semi-arid region and arid region would increase by 3.52 °C and 3.84 °C, respectively, under Middle climatic conditions using the RCP 8.5 scenario during the second half-century. The simulated grain yield was reduced by 23.5% in the semi-arid region and 35.45% in the arid region under Middle climatic conditions (scenario). Mean seasonal temperature (MST) of sowing dates ranged from 16 to 27.3 °C, while the mean temperature from the heading to maturity (MTHM) stage was varying between 12.9 to 30.4 °C. Coefficients of determination (R2) between wheat morphology parameters and temperature were highly significant, with a range of 0.84–0.96. Impacts of temperature on wheat sown on 15 March were found to be as severe as to exterminate the crop before heading. The spikes and spikelets were not formed under a mean seasonal temperature higher than 25.5 °C. In a nutshell, elevated temperature (3–4 °C) till the end-century can reduce grain yield by about 30% in semi-arid and arid regions of Pakistan. These findings are crucial for growers and especially for policymakers to decide on sustainable wheat production for food security in the region. Full article
(This article belongs to the Special Issue Climate Change and Its Impact on Crops)
Show Figures

Figure 1

12 pages, 845 KiB  
Article
Effect of High-Temperature Events When Heading into the Maturity Period on Summer Maize (Zea mays L.) Yield in the Huang-Huai-Hai Region, China
by Shengbao Wei, Jing Liu, Tiantian Li, Xiaoying Wang, Anchun Peng and Changqing Chen
Atmosphere 2020, 11(12), 1291; https://doi.org/10.3390/atmos11121291 - 29 Nov 2020
Cited by 9 | Viewed by 2074
Abstract
The predicted increase in the frequency of extreme climatic events in the future may have a negative effect on cereal production, but our understanding of the historical trends of high-temperature events associated with climate change and their long-term impact on summer maize yield [...] Read more.
The predicted increase in the frequency of extreme climatic events in the future may have a negative effect on cereal production, but our understanding of the historical trends of high-temperature events associated with climate change and their long-term impact on summer maize yield is limited. Based on an analysis of historical climate and summer maize yield data from 1980 to 2016 in the Huang-Huai-Hai (3H) region of China, we calculated two high-temperature event indices, namely, high-temperature hours (HTH) and high-temperature degrees (HTD, the sum of the differences between 35 °C and above), and then investigated the temporal trend of high-temperature events from maize heading to maturity and their impact on the yield of summer maize. Our results indicated that the air temperature showed a significant upward trend when heading into the maturity period of summer maize in the 3H region from 1980–2016 and that the increase was greater in the northern Huang-Huai-Hai (N3H) region than in the southern Huang-Huai-Hai (S3H) region. The intensity of high-temperature events when heading into the maturity period increased considerably from 1980 to 2016 in the 3H region, especially in the S3H region. The HTH and HTD increased by 1.30 h and 0.80 °C per decade in the S3H region, respectively. Moreover, a sensitivity analysis of panel data showed that the increases in HTH and HTD when heading into the maturity period had a consistent negative effect on yield in S3H and N3H regions; this effect was more obvious in the S3H region. In the S3H region, a 1 h increase in HTH was found to be associated with a 0.45–1.13% decrease in yield and a 1 °C increase in HTD could result in a yield loss of 1.34–4.29%. High-temperature events were detrimental to summer maize production, and the severity of this effect was projected to increase in the 3H region. In this study, we used two indices (HTH and HTD) to quantify the impact of high-temperature events on summer maize yield during the critical growth phase (heading to maturity) at a small timescale (hours and days). The results of this study can provide a reference for policymakers to use in the formulation of corresponding climate change adaptation strategies. Full article
(This article belongs to the Special Issue Climate Change and Its Impact on Crops)
Show Figures

Figure 1

20 pages, 2654 KiB  
Article
Cost-Benefit Analysis for Single and Double Rice Cropping Systems under the Background of Global Warming
by Qing Ye, Xiaoguang Yang, Yong Li, Wanghua Huang, Wenjuan Xie, Tianying Wang and Yan Wang
Atmosphere 2020, 11(10), 1048; https://doi.org/10.3390/atmos11101048 - 30 Sep 2020
Cited by 1 | Viewed by 1934
Abstract
Global warming might expand crop growth areas for the prevailing single and double rice cropping systems in Southern China. Based on historical weather and crop data from 1981 to 2015, we evaluated the economic benefit and environmental cost for single and double rice [...] Read more.
Global warming might expand crop growth areas for the prevailing single and double rice cropping systems in Southern China. Based on historical weather and crop data from 1981 to 2015, we evaluated the economic benefit and environmental cost for single and double rice cropping systems (SRCS and DRCS) in areas that are sensitive to climate variability in the middle and lower reaches of the Yangtze River. The five chosen indices were: net profit, agronomic nitrogen use efficiency (ANUE), water use efficiency (WUE), total amount, and global warming potential (GWP) of greenhouse gas (GHG). The goal of this study is to provide scientific evidence for local policymakers to use in selecting the most suitable rice cropping systems to maximize economic profits while adapting to climate change. The results showed that net profit was $171.4 per hectare higher for DRCS than for SRCS in the study region. In addition, output per unit nitrogen usage was $0.25 per kg N higher for DRCS than for SRCS. Net profit would increase if DRCS replaced SRCS, and the maximum amplitude of increase in net profit for this replacement occurred under the settings of 150 kg ha−1 nitrogen fertilizer level and continuous irrigation when the paddy water layer started to fade. On the other hand, annual variation in net profit for SRCS was consistently smaller than DRCS, regardless of changes in nitrogen fertilizer level and irrigation regime settings. SRCS showed better WUE than DRCS in both rainfed and irrigated situations, as well as lower seasonal CH4 and N2O emissions during the study period. Therefore, we conclude that SRCS is superior to DRCS for the sake of maximizing economic profit while maintaining sustainable agriculture in areas that are sensitive to climate variability in the middle and lower reaches of the Yangtze River. Full article
(This article belongs to the Special Issue Climate Change and Its Impact on Crops)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 9275 KiB  
Review
Evaluating Land Suitability and Potential Climate Change Impacts on Alfalfa (Medicago sativa) Production in Ethiopia
by Sintayehu Alemayehu, Essayas K. Ayana, Yihun T. Dile, Teferi Demissie, Yohannes Yimam, Evan Girvetz, Ermias Aynekulu, Dawit Solomon and Abeyou W. Worqlul
Atmosphere 2020, 11(10), 1124; https://doi.org/10.3390/atmos11101124 - 19 Oct 2020
Cited by 12 | Viewed by 4728
Abstract
Ethiopia has the largest livestock population in Africa with 35 million tropical livestock units. The livestock system relies on natural open grazing which is affected by frequent droughts. However, little research exists that studies the suitability of the biophysical environment for fodder production [...] Read more.
Ethiopia has the largest livestock population in Africa with 35 million tropical livestock units. The livestock system relies on natural open grazing which is affected by frequent droughts. However, little research exists that studies the suitability of the biophysical environment for fodder production and the risks due to climate change. The main objectives of the study are to evaluate the potential effects of climate change on land suitability for alfalfa production in Ethiopia and to assess the extent of irrigation requirements for alfalfa growing under the adverse climate change projections. The impact of climate change on land suitability for alfalfa was evaluated using projected changes in rainfall and temperature based on three global circulation models (CCSM4, HadGEM2-AO, and MIROC5). A multi-criteria evaluation in GIS that uses biophysical, climatic and topography factors was applied to identify the suitable land. The highly suitable area under current climate scenarios covered ~472,000 km2, while moderately suitable and marginally suitable covered ~397,000 km2 and ~16,200 km2, respectively. The projected climate alters the suitable land for fodder production across Ethiopia. Expansion of suitable land occurred in the highlands where climate scenarios predict an increase in temperature and precipitation. Dryland regions showed a rainfall deficit for the three model projections. The research provides guidelines for growing alfalfa in Ethiopia considering ecological and climatic variability. Full article
(This article belongs to the Special Issue Climate Change and Its Impact on Crops)
Show Figures

Figure 1

Back to TopTop