Special Issue "Cultivation Physiology, Molecular Biology and Molecular Breeding of Solanaceae"

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Horticultural and Floricultural Crops".

Deadline for manuscript submissions: 31 July 2023 | Viewed by 3927

Special Issue Editor

Prof. Dr. Fangling Jiang
E-Mail Website
Guest Editor
College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China
Interests: efficient cultivation and molecular breeding of tomato

Special Issue Information

Dear Colleagues,

The Solanaceae family includes crops such as tomato, pepper, eggplant, potato, wolfberry, alkekengi, etc. Several crops in the Solanaceae family are very important foods or horticultural crops, widely consumed worldwide, as they are important sources of dietary compounds and several nutrients, including lycopene, capsaicinoids, anthocyanidin, vitamins A and C, minerals and essential oils. Solanaceae crops, especially tomatoes and potatoes, are in a leading position in horticultural research. Great progress has been achieved in genomics, gene editing technology and haploidy breeding (potato). However, there are still a lot of unknown aspects that require investigating. Therefore, we aim to clarify the cultivation physiology, molecular biology and molecular breeding of Solanaceae crops. Cultivation physiology includes photosynthesis, respiration, chlorophyll fluorescence, reactive oxygen species (ROS), enzyme activity, etc., of Solanaceae plants under open-field or protected cultivation conditions. Molecular biology includes the regulation of key genes, noncoding RNAs (miRNAs, circRNAs and lncRNAs), DNA methylation, protein phosphorylation, etc., for growth and development, yield, quality, or biotic and abiotic stresses. Molecular breeding includes molecular marker-assisted breeding and genetic modification breeding. All of the abovementioned topics are within the scope of this Special Issue.

Prof. Dr. Fangling Jiang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solanaceae
  • cultivation physiology
  • molecular biology
  • molecular breeding

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Study on the Mechanism of Grafting to Improve the Tolerance of Pepper to Low Temperature
Agronomy 2023, 13(5), 1347; https://doi.org/10.3390/agronomy13051347 - 11 May 2023
Viewed by 478
Abstract
Pepper is a horticultural crop that does not tolerate low temperatures. To investigate how the grafted pepper responds to low temperature stress in the short term, transcriptome analysis was performed on grafted seedlings treated with low temperature for 1 h, 4 h, 12 [...] Read more.
Pepper is a horticultural crop that does not tolerate low temperatures. To investigate how the grafted pepper responds to low temperature stress in the short term, transcriptome analysis was performed on grafted seedlings treated with low temperature for 1 h, 4 h, 12 h and 24 h compared with those treated for 0 h. The results showed that genes related to CAM4, MPK8, RbohD and OXI1 might be related to the response of grafted seedlings to low temperature stress in the short term. To investigate how low temperature tolerant rootstocks can improve the low temperature tolerance of grafted peppers, morphological and physiological indices of self-rooted and grafted seedlings were analyzed under low temperature conditions for different days. The results showed that the degree of wilting, REL and MDA content of grafted seedlings were significantly lower than those of self-rooted seedlings, and the antioxidant enzyme activities were significantly higher than those of self-rooted seedlings under low temperature stress. The results indicated that grafted pepper would activate ROS-related genes in a short period of time after low temperature stress and produce a large amount of ROS in response to the low temperature stress. When ROS accumulated to a certain level, the grafted pepper could increase the enzyme activity of antioxidant system to remove the ROS produced in the body, and help the pepper seedlings adapt to low temperature stress through osmoregulation mechanism, so as to resist the damage caused by low temperature. The results of the study provide ideas for growing pepper in low temperature environment. Full article
Show Figures

Figure 1

Article
Transpiration Efficiency of Some Potato Genotypes under Drought
Agronomy 2023, 13(4), 996; https://doi.org/10.3390/agronomy13040996 - 28 Mar 2023
Viewed by 590
Abstract
Potato (Solanum tuberosum L.) is the third most consumed food crop after rice and wheat in the world. It is a short-duration crop, suitable for growing in a wide range of environments, but abiotic factors can limit potato production, and drought is [...] Read more.
Potato (Solanum tuberosum L.) is the third most consumed food crop after rice and wheat in the world. It is a short-duration crop, suitable for growing in a wide range of environments, but abiotic factors can limit potato production, and drought is the main one. Therefore, managing drought stress is of utmost importance under climate change conditions. Potato as a drought-sensitive crop needs choice of suitable genotypes for dry environments. In this study, transpiration efficiency (TE), soil water conservation and drought tolerance were analysed for potato genotypes from different origins. Three glasshouse experiments under different Vapor Pressure Deficit (VPD) conditions with water-stressed (WS) and well-watered (WW) plants resulted in significantly different total amounts of transpiration among the genotypes and water supply levels. Transpiration in WS plants was the same as with WW plants up to a specific threshold “Fraction of Transpirable Soil Water” (FTSW) and then sharply decreased in response to soil drying. Genotypes showed a substantial variation in FTSW thresholds (0.19 to 0.36 FTSW) under low VPD condition, which narrowed down (0.19 to 0.29) when air humidity was lower. Furthermore, we observed hardly any relationships between TE and FTSW threshold (r = 0.125) or TE and water saving (r = 0.031). Our results provide insights into genotypic interactions with VPD on FTSW threshold and TE under dry-down conditions in potato. Full article
Show Figures

Figure 1

Article
Yield Components and Development in Indeterminate Tomato Landraces: An Agromorphological Approach to Promoting Their Utilization
Agronomy 2023, 13(2), 434; https://doi.org/10.3390/agronomy13020434 - 31 Jan 2023
Cited by 2 | Viewed by 670
Abstract
Nowadays, increments in tomato yield seem to have reached a plateau. Tomato genebank collections have been recognized as a novel source for yield increments. The use of the diversity in Latin America for novel improved varieties is limited by the knowledge gap regarding [...] Read more.
Nowadays, increments in tomato yield seem to have reached a plateau. Tomato genebank collections have been recognized as a novel source for yield increments. The use of the diversity in Latin America for novel improved varieties is limited by the knowledge gap regarding field-grown tomatoes. As yield has complex, unresolved trade-offs, agromorphological traits become useful for further improvement. In this study, the development of successive clusters was studied in twenty-four Chilean tomato landraces to elucidate the relationships among agromorphological traits of flowers, inflorescences, and fruits. Plants yielded an average of 3297 g m−2, with a variation coefficient of 0.44. Correlation analyses were performed to evaluate the relationships between yield components and plant phenology. Findings suggested a two-level compensation between average fresh fruit weight and the number of fruits, one on a plant basis and the second on a cluster basis. All traits evaluated had significant phenotypic correlations with yield traits. Growing degree days for a cluster to develop had a low negative phenotypic correlation with yield (−0.33***) and a high genetic correlation with the number of clusters (−0.90***). The number of set flowers, as opposed to the number of flowers, was significantly correlated with average fresh fruit weight (−0.17***), supporting the initiation of the trade-off after the fruit set. This study provides new insight into the plant agromorphology of indeterminate plants. In a global climate change context, further study of trade-off relationships is important for identifying genotypes able to sustain their productivity. Full article
Show Figures

Figure 1

Article
Genome-Wide Transcriptome Analysis Reveals That Upregulated Expression of Aux/IAA Genes Is Associated with Defective Leaf Growth of the slf Mutant in Eggplant
Agronomy 2022, 12(11), 2647; https://doi.org/10.3390/agronomy12112647 - 27 Oct 2022
Cited by 1 | Viewed by 844
Abstract
Leaf size is a crucial trait in eggplant breeding, as it influences photosynthesis, plant biomass and management. However, little is known about the molecular mechanism regulating leaf size in eggplant. This study reports a small leaf mutant (slf) generated with the [...] Read more.
Leaf size is a crucial trait in eggplant breeding, as it influences photosynthesis, plant biomass and management. However, little is known about the molecular mechanism regulating leaf size in eggplant. This study reports a small leaf mutant (slf) generated with the mutagen ethyl methane sulfonate (EMS). The slf mutant showed restricted cell proliferation and an increased content of auxin. Transcriptome analysis revealed that several genes involved in auxin signaling are upregulated in slf. Exogenous application of auxinole, an auxin antagonist of TIR1/AFB receptors, repressed the expression of these genes and restored leaf growth of slf, suggesting that the small leaf size of slf is likely associated with auxin signaling. This study provides essential clues to unveil the molecular mechanism of leaf size regulation in eggplant. Full article
Show Figures

Figure 1

Article
The Solanum torvum Transcription Factor StoWRKY6 Mediates Resistance against Verticillium Wilt
Agronomy 2022, 12(8), 1977; https://doi.org/10.3390/agronomy12081977 - 22 Aug 2022
Viewed by 848
Abstract
WRKY is a transcription factor family that has attracted much attention in recent studies of plant disease resistance, but there are few reports in the study of eggplant resistance to Verticillium wilt. Here, we retrieved an up-regulated WRKY transcription factor, StoWRKY6, from [...] Read more.
WRKY is a transcription factor family that has attracted much attention in recent studies of plant disease resistance, but there are few reports in the study of eggplant resistance to Verticillium wilt. Here, we retrieved an up-regulated WRKY transcription factor, StoWRKY6, from the transcriptome sequencing data of Solanum torvum response to Verticillium dahliae infection. Phylogenetic analyses revealed the highest homology species of StoWRKY6 in the WRKY family is Solanum melongena. Based on the quantitative real-time PCR analysis, StoWRKY6 was highly expressed in the roots but barely expressed in the leaves. Transient expressions of StoWRKY6 in Nicotiana benthamiana showed a nuclear localization. A virus-mediated gene silencing experiment indicated that the silencing of StoWRKY6 reduced the resistance to Verticillium wilt in Solanum torvum. To further verify the immune response function, we introduced StoWRKY6 into Nicotiana benthamiana using transient transformation technology and found obvious spots under UV light. In summary, these results showed that StoWRKY6 played an important role in the resistance to Verticillium wilt of Solanum torvum, which may function mainly by inducing an immune response. Our study provided strong evidence for the mechanism of eggplant resistance to Verticillium wilt and laid a foundation for the potential molecular breeding of eggplant disease resistance. Full article
Show Figures

Figure 1

Back to TopTop