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Abstract: Potato (Solanum tuberosum L.) is the third most consumed food crop after rice and wheat
in the world. It is a short-duration crop, suitable for growing in a wide range of environments, but
abiotic factors can limit potato production, and drought is the main one. Therefore, managing drought
stress is of utmost importance under climate change conditions. Potato as a drought-sensitive crop
needs choice of suitable genotypes for dry environments. In this study, transpiration efficiency (TE),
soil water conservation and drought tolerance were analysed for potato genotypes from different
origins. Three glasshouse experiments under different Vapor Pressure Deficit (VPD) conditions with
water-stressed (WS) and well-watered (WW) plants resulted in significantly different total amounts
of transpiration among the genotypes and water supply levels. Transpiration in WS plants was the
same as with WW plants up to a specific threshold “Fraction of Transpirable Soil Water” (FTSW) and
then sharply decreased in response to soil drying. Genotypes showed a substantial variation in FTSW
thresholds (0.19 to 0.36 FTSW) under low VPD condition, which narrowed down (0.19 to 0.29) when
air humidity was lower. Furthermore, we observed hardly any relationships between TE and FTSW
threshold (r = 0.125) or TE and water saving (r = 0.031). Our results provide insights into genotypic
interactions with VPD on FTSW threshold and TE under dry-down conditions in potato.

Keywords: drought; transpiration efficiency; water saving; vapour pressure deficit; fraction of
transpirable soil water

1. Introduction

Potato (Solanum tuberosum L.) is one of the most important crops worldwide due to
its versatile use. The edible share of the biomass of a potato plant (~85%) is much higher
than with cereals (~50%) [1]. As a short-duration and popular crop, potato has strong
environmental adaptability [2–4]. Potato can be grown in different soils ranging in pH from
5–7.5 and can attain yields of 40–70 t ha−1 depending on environmental conditions and the
variety [3–5] Nevertheless, several biotic and abiotic factors may limit potato productivity,
including temperature, solar radiation, daylength, and drought [3,6–8]. Prolonged drought
periods are among the most threatening natural conditions for potato production impairing
economy and food supply [3,9].

Drought stress affects crop phenology, morphology, physiology, and yield
formation [3,10–12]. Most potato cultivars have a shallow root system [3,13,14], which
impairs water uptake from deeper soil layers. Root length of potato cultivars may however
be different, and it shows a positive correlation with yield under drought [3,15–17]. Besides
vegetative growth, drought may affect the tuber formation by shortening the growth pe-
riod [3,18], resulting in reduced size [3,19] and number of tubers [3,20]. In several studies,
reduction in net photosynthesis under drought stress has been identified as the main reason
for reduction in tuber yield [3,21–23] which can be modified by the severity of stress and
by cultivars.
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Crop yield (Y) can be defined as a function of crop harvest index (HI, i.e., the ratio
of harvestable dry mass to total plant dry mass), the amount of water transpired (T)
and crop transpiration efficiency (TE; i.e., the plant mass produced per amount of water
transpired) [24].

Y = HI × T × TE.

Under water-deficit conditions, genotypes with increased transpiration efficiency are
likely to produce more biomass and yield. Transpiration efficiency (TE), however, depends
on both physiological traits, such as leaf photosynthetic capacity, biochemical composition
of plant biomass, stomatal conductance, and environmental conditions, particularly atmo-
spheric vapour pressure deficit (VPD), which is the additional moisture that air can hold
until it is saturated, expressed as a pressure [25]. Therefore, while TE itself is not a simple
candidate trait for breeding drought-tolerant varieties, traits that contribute to conserving
soil water as the crop enters a drought period are likely to also increase the TE. This was
shown by the authors of [26], who reported that the marginal water-use efficiency of extra
soil water that becomes available late in the season is nearly three times higher than that
calculated over the whole growing season.

There are two water-conserving traits for increasing TE, the restricted maximum
transpiration trait and the sensitiveness to soil drying [25]. The restricted maximum tran-
spiration trait reduces transpiration under high VPD conditions, which can develop around
noon, by decreasing stomatal conductance [27,28]. Plants generally initiate limitation on
transpiration rate when the fraction of transpirable soil water (FTSW) decreases to roughly
30% [29]. Genotypic variability for this trait has been detected for soybean, sorghum, pearl
millet, maize, and peanut ranging from 0.22 to 0.71 [25,28,30]. Genotypes with a high
FTSW threshold exhibit early stomatal closure with soil drying resulting in conserving
soil water and, hence, delayed wilting under drought conditions [30–32]. A recent study
supports the suitability of FTSW threshold for the comparison of genotypes, although the
measurement of soil water potential seems to be the best parameter to characterize the
plant water status [33]. It must also be mentioned that FTSW threshold is not independent
from environmental conditions, especially soil texture [34].

Atmospheric vapour pressure deficit (VPD) is another factor which affects transpira-
tion rate depending on climate, photosynthesis system and plant type [35]. VPD has been
identified as a major contributor to drought-induced plant mortality, independent of other
drivers related to climate change [36]. However, previous studies focused mainly on soil
water deficits or high VPD or physiological and growth reactions to soil drying [32], while
the interaction between soil drying and high VPD was neglected. Therefore, the present
study aimed to explore the genotypic responses of potato plants to soil drying and different
VPD conditions. Since biomass production is closely related to transpiration, breeding
for maximized soil water uptake under drought is the most important target for yield
improvement [3]. Genotypes with better performance under water deficit conditions will
likely achieve high transpiration efficiency (TE), as reported in studies on peanut [30,37].
In this study, we focused on genotypic variations in potato transpiration under different
VPD conditions and progressive soil drying. The present paper is based on the PhD thesis
by one of the first authors [38].

2. Materials and Methods
2.1. Glasshouse Experiments, Climatic Conditions, and Genotypes

The glasshouse experiments were conducted at the BOKU University and Research
Centre Tulln (UFT) in Lower Austria at 48◦18′ N and 16◦4′ E. The temperature and hu-
midity were controlled automatically and recorded in 12 min intervals. With 11 potato
genotypes from different sources, three experiments were performed in three different
seasons and similar environmental conditions were set in the glasshouse during the ex-
periments (Table 1). Plastic pots of 7 l size were filled with field soil, sand, and compost
at a ratio of 1.0:1.0:0.8 by volume. The soil for the mixture was obtained from an adjacent
arable field, dried, ground and passed through a 2 mm sieve. Washed sand (0.6–0.9 mm
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size), compost (for garden use without turf grass material), and a 15-6-12% (N-P2O5-K2O)
commercial fertilizer were bought from a garden shop. Fertilizer dressing required for
adequate nutrient supply was added equivalent to 130 kg ha−1 N, 45 kg ha−1 P2O5 and
105 kg ha−1 K2O. Well-watered plants (WW) received enough water and soil moisture
level was always kept about 4% below field capacity. Water deficit in water stress plants
(WS) was imposed after a defined period by ending water supply; thus, afterwards, plants
relied on available soil moisture in the pots. The experiments were set up in randomized
complete blocks (RCBD) with 5 replications considering water supply and genotype as
fixed factors (Table 1).

Table 1. Conditions, genotypes, and details on execution of three experiments.

Genotypes Exp 1
7 Genotypes

Exp 2
7 Genotypes

Exp 3
4 Genotypes

Granola
Agria
Tosca
Diego

Cardinal
Diamant

Desiree

Planting date: 15 December 2014
Harvest date: 12 February 2015

Plant age (d) at onset of drought
stress: 25

Plant age (d) at the end: 59
Dry down days: 34

Avg. Temp (◦C) at onset of drought
stress: 16.9

Avg. Temp (◦C) at the end: 16.8
Avg. RH (%) at onset of drought

stress: 42.0
Avg. RH (%) at the end: 42.2

Avg. VPD (KPa) at onset of drought
stress: 1.19

Avg. VPD (KPa) at the end: 1.16
Thermal time (GDD) at onset of

drought stress: 253.4
Thermal time (GDD) at the end:

597.6
Caesar
Spunta

Farida

Planting date: 14 April 2016
Harvest date: 14 June 2016

Plant age (d) at onset of drought
stress: 33

Plant age (d) at the end: 61
Dry down days: 28

Avg. Temp (◦C) at onset of drought
stress: 18.1

Avg. Temp (◦C) at the end: 20.4
Avg. RH (%) at onset of drought

stress: 37.4
Avg. RH (%) at the end: 51.3

Avg. VPD (KPa) at onset of drought
stress: 1.52

Avg. VPD (KPa) at the end: 1.59
Thermal time (GDD) at onset of

drought stress: 406.4
Thermal time (GDD) at the end:

878.1

Mondial

Planting date: 14 February 2015
Harvest date: 10 April 2015

Plant age (d) at onset of drought
stress: 23

Plant age (d) at the end: 55
Dry down days: 32

Avg. Temp (◦C) at onset of drought
stress: 18.4

Avg. Temp (◦C) at the end: 17.5
Avg. RH (%) at onset of drought

stress: 49.9
Avg. RH (%) at the end: 43.8

Avg. VPD (KPa) at onset of drought
stress: 1.35

Avg. VPD (KPa) at the end: 1.30
Thermal time (GDD) at onset of

drought stress: 251.7
Thermal time (GDD) at the end:

585.6

2.2. Initial Biomass Harvest and Preparation for Dry-Down Treatment

Before starting the dry-down cycle, 23–33 days after planting, all pots were in a well-
watered condition for normal crop growth [30,39–41]. Similar plants with 9–12 leaves
were selected [41], watered to saturation, attaining field capacity after one day. Then, all
stems were cut off except one healthy and vigorous in each pot. The selected homogenous
single-stem plants from each genotype were randomly divided into three groups: WW
treatment, WS treatment, and initial biomass group. For the initial biomass, five plants
of each genotype were harvested. Plants were cut at the base and put in a paper bag
for drying at 65 ◦C (Memmert Universalschrank UFE 600, Linder Labortechnik, Overath,
Germany) for 48 h (Table 1). All other pots were covered with 2 layers of polyethylene
bag (60 cm × 40 cm) just above the base of the stem. Sealing of the bags was accomplished
using a piece of soft sponge to not impair stem growth but avoid gas flow at the closure
(Figure 1).
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2.3. Transpiration Measurement and Plant Watering

Gravimetric daily transpiration (T) measurement started the day after pot sealing [42]
by weighing pots every day with a laboratory platform balance (Sartorius CPA 16001S,
Sartorius AG, Germany) at a precision of 0.1 g. For WW pots, potential growth was assured
by adding measured water loss daily. In [43], peanut plants were watered at 80% of field
capacity (which corresponded to 5% of the total pot weight). As we used 6 kg of substrate
instead of 2 kg for peanuts by [30], we applied a threshold of 240 g (about 4% w/w) water
less than the field capacity at pot sealing to avoid anaerobic soil condition. Water loss above
240 g from the first day was added to all WW pots daily. For WS pots, in principle, no water
was supplied after the sealing, unless the daily transpiration exceeded one third (80 g) of
our threshold. The excess amount of >80 g was replenished to avoid rapid wilting (Table 2).

Table 2. Calculated parameters and formula used in our study.

Parameters Formula Explanation

Daily transpiration Ti = Wi −Wi−1

i = measurement day (i = 1, 2, 3, . . . , n),
Ti = daily transpiration
Wi = daily pot weight

Water requirements for WW
plants Wati = [(W0 − 240) −Wi]

W0 = initial day pot weight
Wati = daily water requirement

if Wi ≤W0 − 240; otherwise, Wati = 0

Water requirements for WS plants Wati = Ti − 80 if Ti ≥ 80; otherwise, Wati = 0

Transpiration normalization
(first step)

TRi = [Ti/Tw of (Rep1 + Rep2, . . . , +
Rep5)/5]

TRi = daily transpiration ratio
Ti = daily transpiration of WS plants

Tw = daily transpiration of WW plants
Rep1, . . . , Rep5 = replications

Transpiration normalization
(second step)

NTRn = [TRn/(TR2 + TR3 + TR4 +
TR5)/4]

NTRn = normalized transpiration rates of WS
plants on day n

TRn = transpiration rate of WS plants on day n

Transpiration efficiency TE = M
T

M = accumulated biomass (g),
T = accumulated water transpired (l)

VPD
VPD = e*(T) × (1 − RH

100 )

e*(T) = 0.611 × exp
(

17.27T
T + 237.3

) e*(T) = saturated vapour pressure in kPa at a
given temperature

T = temperature (◦C)
RH = relative humidity (%)

FTSW FTSW = (Wi −Wend)/W0 −Wend)
Wi = daily pot weight

Wend = final day pot weight
W0 = initial day pot weight
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Table 2. Cont.

Parameters Formula Explanation

FTSW threshold

Region 1 (t) = y1 (T1 − t) + y2 (t − T1)
T1 − t1 ,

t1 ≤ t ≤ T1
Region 2 (t) = y2 (t2 − t) + y3 (t − T1)

t2 − T1 ,
T1 ≤ t ≤ t2

y = 2
[1 − exp(−14x)]−1

Region 1 = regression line starting from the
maximum FTSW to the breakpoint

Region 2 = regression line starting from the break
point to minimum FTSW

y = transpiration of Phase I to Phase II
x = FTSW

T1 = transition or the breakpoint
t1 = min(t), the minimum FTSW = 0

t2 = max(t), the maximum FTSW = 1.0

2.4. Normalizing Transpiration

The observed daily transpiration rate of the drought-stressed plants was normalized
on two levels to account for variations (i) in environmental conditions [44] as well as
(ii) among plants [39]. In the first normalization step, the ratio of daily transpiration from
the WS plants to that of the WW plants was calculated. This is called daily transpiration
ratio (TR) as shown in Table 2. Therefore, the individual transpiration (T) value in a WS pot
was divided by the average transpiration of the WW pots of the same genotype [30,41]. For
the second step of normalization (NTR), the transpiration rate was recalculated from the
second until the fifth day (4 days) for better consistency as suggested by [39]. The reasons
for omitting the initial day up to threshold transpiration were to avoid pot saturation effects
of the first day [45] and treatment differences in time for individual pots during setup of
the experiment.

2.5. Transpiration Efficiency

According to [40], response of the plants to soil drying occurs at three stages. In stage
I, TR remains constant and transpiration of WS plants does not differ from that of WW
plants (TR ≈ 1.0). Stage II begins when the rate of soil water consumption by the plant
becomes lower than potential transpiration and stomata close for keeping plant water
balance (0.1 ≤ TR < 1.0). Stage III starts at very low TR (TR < 0.1), when stomata have
a minimum conductance. We conducted our experiment until the WS plants reached a
NTR < 0.1, i.e., 10% of the reference transpiration [40,41,45]. The biomass accumulated
during this dry down period can be considered as a function of water transpired [24]. The
amount of water transpired was measured daily while the final biomass was obtained at
harvest and transpiration efficiency (TE) was calculated as shown in Table 2.

2.6. VPD, FTSW and FTSW Threshold

In our experiments, VPD appeared as a combined effect of temperature and humidity
in the glasshouse cabin (Table 2). We recorded daily averages of the environmental data to
calculate VPD [46]. FTSW was subsequently calculated as it shown in Table 2. Refs. [39,47]
observed that transpiration began to decline at FTSW = 0.31 in maize and soybean, which
is regarded as the FTSW threshold. In our experiments, we used a two-segment linear
regression function and determined FTSW threshold with the help of software Sigmaplot
12.5 (Systat Software GmbH, Germany) as shown in Table 2.

2.7. Dry Biomass Recording

Our experiments continued until the water-stressed plants reached the minimum of
transpirable water (FTSW = 0). At this stage, plants were no more able to transpire, NTR
value was <0.1, and we regarded plants at this stage as physiologically dead. Then, we
removed all the pots from the polyethylene bags and recorded fresh weight and then dry
matter of leaves, stems, stolons, and tubers (roots and mother tubers were excluded).
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3. Results
3.1. Transpiration under Different VPD Condition

The total transpiration in the WS treatment showed no significant variation among
genotypes in all experiments, but a significant interaction between water treatment and
genotype was detected (Figure 2). Under WW conditions, Diamant, Cardinal, and Ceasar
showed low transpiration figures, while Desiree was always among the genotypes with
high transpiration.
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3.2. Transpiration during Soil Drying Cycles

To delineate genotypic responses in transpiration with proceeding soil drying, two
segment linear regression lines were used to specify the FTSW threshold at which the
transpiration rate started to decline. Figure 3 shows the results of that analysis as an
example for the cv. Desiree, which was included in all experiments. Early during soil
drying, plants had sufficient soil moisture and transpired almost constantly until the
FTSW threshold was reached. Afterwards, transpiration declined sharply, and available
soil moisture reached 0% on the death day. The FTSW thresholds for all genotypes are
presented in Table 3. In Exp 1, FTSW threshold ranged from 0.19 (cv. Granola) to 0.36 (cvs.
Tosca and Diego). In this experiment with low VPD condition, Tosca and Diego had a
significantly higher threshold than others. In Exp 2, the range of FTSW threshold among
genotypes was comparatively small. In Exp 3, Farida had a significantly higher threshold
(0.29) than Caesar (0.21) and Desiree (0.19), respectively. In general, high VPD conditions in
Exp 3 significantly reduced the FTSW threshold level compared to lower VPD conditions
in Exp 1 and 2, as demonstrated, e.g., by cv. Desiree (Figure 2). It is obvious that genotypes
with a higher FTSW threshold saved more water in the soil compared to the genotypes
with more water consumption due to a lower threshold (cf. Table 3).
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Table 3. Soil water consumption through transpiration, water saved at FTSW threshold, and relative
biomass production (%) of genotypes under water stress (WS).

Experimental
Condition Genotype

Soil Water
Consumed
until FTSW
Threshold

(mL)

Water Saved
Compared to

Highest
Consuming

Genotype (%)

Water Saved
Compared to

Highest
Consuming

Genotype (mL)

FTSW
Threshold of

WS Plants

Relative Biomass
Production (%) of
Genotypes under
Water Stress (WS)

Low VPD
(Exp 1)

Granola 1378.4 a 0.0 0.0 0.19 36.9 b

Diamant 1262.5 ab 9.2 115.9 0.22 66.2 a

Cardinal 1241.8 ab 11.0 136.6 0.20 48.3 ab

Desiree 1217.6 ab 13.2 160.8 0.27 56.1 ab

Agria 1129.9 ab 22.0 248.5 0.28 52.5 ab

Diego 1097.0 ab 25.7 281.4 0.36 58.1 ab

Tosca 993.1 b 38.8 385.3 0.36 47.7 ab

Average 1188.6 17.1 189.8 0.27 52.3

Moderate VPD
(Exp 2)

Diamant 928.4 a 0.0 0.0 0.24 58.6 ab

Desiree 766.8 b 21.1 161.6 0.24 50.2 b

Cardinal 755.1 b 22.9 173.2 0.28 62.4 ab

Caesar 749.7 b 23.8 178.7 0.31 79.5 a

Mondial 702.9 b 32.1 225.5 0.24 54.4 b

Farida 650.0 b 42.8 278.4 0.29 52.7 b

Spunta 645.9 b 43.7 282.4 0.31 52.3 b

Average 742.7 26.6 185.7 0.27 58.6

High VPD
(Exp 3)

Desiree 1298.0 a 0.0 0.0 0.19 70.3 b

Caesar 1290.5 a 0.6 7.6 0.21 91.0 a

Spunta 1234.9 a 5.1 63.2 0.25 43.9 c

Farida 1001.6 b 29.6 296.4 0.29 28.1 c

Average 1206.3 8.8 91.8 0.24 58.3

Different letters indicate significant differences in means.

3.3. Biomass Production during the Dry-Down Cycle

In all experiments, plants grown under WS treatment produced roughly half of the
dry mass (i.e., leaves, stems, stolons, and tubers; roots and mother tubers were excluded)
of the WW plants (Figure 4). WS biomass production of Granola in Exp 1 under low VPD
condition was worst affected (36.9% of WW). Desiree showed the strongest reduction (50.2%
of WW) in Exp 2 and Farida (28.1% of WW) under high VPD conditions in Exp 3 (Table 3).
Generally, Caesar was comparatively less impaired (79.5% and 91.0% of WW in Exp 2 and
Exp 3, respectively), indicating its better adaptability to water stress independent of VPD.
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Figure 4. Accumulated dry biomass production of genotypes among the water treatments and
different VPD conditions (i.e., experiments). Error bars indicate SEM and different letters indicate
differences in means (WW: well-watered, WS: water stress, (a) Exp 1 with low VPD, (b) Exp 2
with moderate VPD, (c) Exp 3 with high VPD). *, *** represent significant differences; ns represents
no significant.
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3.4. Transpiration Efficiency Based on Accumulated Biomass

Accumulated biomass per litre of water transpiration (i.e., TE) was generally higher
in WS plants compared to WW treatments (Figure 5). This advantage under water-stress
condition was significant only in Exp 1 and Exp 2. The comparatively high VPD which
prevailed in Exp 3 particularly substantially reduced the tuber fraction (data not shown)
and consequently TE. Genotypes showed significant variation in TE under water-deficit
conditions. TE was also significantly affected by VPD, with WS plants in Exp 3 showing
the lowest TE. Specifically, low TE under WS conditions was observed with cv. Granola
and Cardinal in Exp 1 and with cv. Farida in Exp 3 (Figure 5).
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3.5. Relationships between Transpiration and Water Saving Properties of WS Plants

FTSW threshold showed significant relationships with water transpired during the
dry-down cycle (r = 0.461) as well as with water saved (in % of genotype with highest
FTSW threshold, r = 0.533). A very weak correlation between FTSW and TE (r = 0.125)
shows their relative independence as water-saving traits. Almost no correlation of TE was
observed with water saving (r = 0.087) or total transpiration (r = 0.031) in WS plants.

4. Discussion

Transpiration efficiency (TE) in our experiments was based on total amount of water
transpired in the course of the dry-down cycle. This total transpiration varied significantly
among the genotypes in all experiments under well-watered condition but was not sig-
nificantly different under drought stress. In [48], the researchers detected no genotypic
variation in transpiration response with well-watered cotton plants under different VPD
conditions. In our experiments, plants did not change their transpiration behavior in
response to changes in VPD unless it was challenged by drought (Figure 2). Additionally,
the reduction in transpiration by >50% of total transpiration in WS plants during dry-down
compared to WW plants (Figure 2) shows restricted transpiration in WS plants and strong
influence of water supply on genotypic response, which has been reported by [41,49]
as well.

Together with water supply and genotype, VPD effect on transpiration was obvious as
well in our study (Figure 2). However, these influences might be different under various air
temperature and relative humidity as reported by [32]. Therefore, part of the uncertainty
about VPD impacts on plants relates to the difficulty of disentangling VPD effects from
temperature, radiation, and other climate factors affecting plant physiology. However, the
relative role of VPD vs. other stressors occurring during climate change may be much
higher than previously estimated [36].

Furthermore, due to VPD and progressive soil drying interactions, our results showed,
in most cases, higher FTSW values at lower VPD conditions (Table 3), which is clearly
exemplified by Desiree as a common genotype in all experiments (Figure 3). Similar
results were reported in [41]. Significant cultivar differences in FTSW threshold in our
study confirm the genotype-based reaction on progressive soil drying, which has also been
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reported for soybean [50] and cotton cultivars [49]. In our experiments, these genotypic
differences in FTSW threshold correlate with different amounts of soil water saved for
later use (Figure 3, Table 3), as previously demonstrated by [49] in cotton. In [51], a
limitation of transpiration rate in soybean was reported as a key trait in drought prone
regions, where VPD is high and irrigation is not available, which allows a significant
early season conservation of soil water, providing the crop with a soil water reserve to
complete development and growth during seed fill. This restricts maximum transpiration
trait which may boost TE as indicated by [52]. Consequently, the conserved soil water
available to consume late in the season allows the production of greater yield. Accordingly,
water treatment, genotype and VPD (which affects FTSW threshold, too) along with their
interactions affect transpiration efficiency (TE) as shown in Figure 5. Significant genotypic
variations for TE in many grain crops have been reported several times [28,30,37,53], but
few studies have been conducted so far on TE of potato.

TE in our study, based on total biomass (which includes shoots and stolons with new
tubers), was only half at high VPD compared to low VPD conditions (Figure 5). High TE at
lower VPD and its decrease with increasing VPD confirms the dependency of TE in potato
genotypes on environmental conditions. In contrast, the researchers in [53] reported high
TE at high VPD in C4 cereal species just under different VPD conditions, but without water
supply treatments. Averaged across all experiments, the significantly higher TE (7.4 g L−1)
measured in WS treatment compared to WW plants (6.2 g L−1) clearly shows the impact
of drought stress on TE in our study (Figure 5). Considering the water-saving ability of
individual genotypes together with TE shows that, for instance, the best candidates for
none or only very low water-saving coefficients, i.e., Tosca in Exp 1, Spunta and Farida in
Exp 2 and Farida in Exp 3, did not appear as those with highest TE (Table 3, Figure 5). In
contrast, Desiree in Exp 1 and Caesar in Exp 2 and Exp 3 had highest TE with none or only
low water-saving coefficients, respectively. Even the best water-savers, Farida and Spunta,
attained significantly lower TE than Caesar (Figure 5).

Under glasshouse conditions in our study, the very weak relation observed between
TE and FTSW and no influence of TE on water-saving proves that water-saving ability and
TE are not necessarily associated, as previously reported by [30,41,51,54].

5. Conclusions

Our results provide insights into genotypic interactions with environmental factors,
especially VPD effects, on FTSW threshold and TE under dry-down conditions in potato.
Although higher temperatures increase stomatal resistance that limits transpiration, we
determined that, based on our experiments under normal temperature and sufficiently
available soil water, daily transpiration in Desiree—as the only common genotype in all
three experiments—was substantially accelerated by increasing VPD. Future work may
focus on disentangling temperature- vs. humidity-driven impacts of VPD by using con-
trolled experiments (e.g., climate chambers, humidity manipulation in the field), possibly
across a wide range of genotypes.

Furthermore, we assumed that genotypes with a higher FTSW threshold (which
reduce transpiration earlier) would conserve soil water for higher transpiration efficiency.
However, no correlation of FTSW with transpiration efficiency was observed. This might be
due to genotypic variation of root characteristics or other traits, which opens new research
opportunities in the future.
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