Role of Plant Tissue Culture in Agricultural Research and Production

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Agricultural Biosystem and Biological Engineering".

Deadline for manuscript submissions: closed (31 March 2021) | Viewed by 44415

Special Issue Editor


E-Mail Website
Guest Editor
Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, 50 Stone Rd E,EC Bovey Bldg, Room 4221, Guelph, ON N1G 2W1, Canada
Interests: plant tissue cultures; medicinal plants; in vitro rooting; Plant Tissue Culture; disease resistance; plant genetics; micropropagation; Plant Biotechnology; Plant Molecular Biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plant tissue culture plays an important role in the field of fundamental research, conservation, and production. Studying plant morphogenesis and plant physiology requires the ability to grow plants in vitro and plant tissue culture techniques provide the best way to accomplish this. Due to the changing climate, preserving plant biodiversity for future crop security and vegetation is of utmost importance. Techniques such as ex-situ conservation are effective in maintaining plant biodiversity. In vitro technologies allow for the optimization and production of plants that can be used for ex-situ conservation. Furthermore, plant propagation by tissue-culture offers an excellent commercial prospect for the industry engaged in the production of ornamental, vegetable, and fruit plants, where the value of the products is high. The micropropagation technique has reportedly been successful in more than 100 species of plants. However, the development of new technologies and protocols that can be effective at the commercial scale is still needed.

This Special Issue is focused on the “Role of Plant Tissue Culture in Agricultural Research and Production.” This will entail novel research studies and reviews focusing on all related topics including plant morphogenesis, plant growth and development, mass propagation, ex-situ conservation, fruit trees, ornamentals, medicinal plants, cannabis, plant tissue culture lab, light conditions, etc.

Dr. Mukund R. Shukla
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Plant morphogenesis
  • plant growth and development
  • mass propagation
  • ex-situ conservation
  • fruit trees
  • ornamentals
  • medicinal plants
  • cannabis
  • plant tissue culture lab
  • light conditions

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1468 KiB  
Article
Unraveling Factors Affecting Micropropagation of Four Persian Walnut Varieties
by Togzhan Kadylbekovna Yegizbayeva, Silvia García-García, Tatyana Viktorovna Yausheva, Markhabat Kairova, Amangeldy Kairbekovich Apushev, Sergey Nikolaevich Oleichenko and Ricardo Julian Licea-Moreno
Agronomy 2021, 11(7), 1417; https://doi.org/10.3390/agronomy11071417 - 15 Jul 2021
Cited by 13 | Viewed by 2987
Abstract
Walnuts are considered recalcitrant to tissue culture, with a great genetic determinism on all stages of micropropagation; while other factors, also with great impact, become more complicated with the reproduction of newly realized varieties. In this research, a holistic approach aimed to determine [...] Read more.
Walnuts are considered recalcitrant to tissue culture, with a great genetic determinism on all stages of micropropagation; while other factors, also with great impact, become more complicated with the reproduction of newly realized varieties. In this research, a holistic approach aimed to determine the influence of genotype and the nutritive formulation throughout the whole cycle of micropropagation of four Persian walnut varieties (Juglans regia L.) was presented. During the in vitro establishment it was determined that besides genotype and culture medium, the effect of collection season and the likely interaction amongst factors had a great influence on the successful introduction of all four genotypes. However, all cultures were affected by a deep decay, being necessary the introduction of ethylenediamine di-2-hydroxyphenyl acetate ferric, as iron source, and Phloroglucinol in both Murashige and Skoog (1962) and the corrected Driver and Kuniyuki (1987) formulations. These modifications allowed the stabilization of cultures, maintaining thereafter a steady quality. Either proliferation, rooting and ex vitro survival of four clones were affected by the culture medium, obtaining the best results with the corrected Driver and Kuniyuki (1987) formulation. Finally, in vitro plants produced from all clones were acclimated with high survival rates (75.9–91.1% for the best culture medium), depending of clone and the culture medium used. Microsatellite analysis showed that micropropagated plants maintained the same genetic profiles of their corresponding donor trees. These results might contribute to deepening of the understanding of factors that determine the success of micropropagation of walnuts, and the extents of its influence; whereas, it sets the basis for the commercial micropropagation of all four clones. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

13 pages, 16091 KiB  
Article
Production of Virus-Free Garlic Plants through Somatic Embryogenesis
by Snježana Kereša, Katarina Kurtović, Smiljana Goreta Ban, Darko Vončina, Ivanka Habuš Jerčić, Snježana Bolarić, Boris Lazarević, Sara Godena, Dean Ban and Anita Bošnjak Mihovilović
Agronomy 2021, 11(5), 876; https://doi.org/10.3390/agronomy11050876 - 29 Apr 2021
Cited by 7 | Viewed by 3827
Abstract
The present study was conducted to establish a protocol for the regeneration of virus-free garlic plants through somatic embryogenesis of two Croatian garlic ecotypes. Basal parts of cloves from mother plants were cultured on a full Murashige and Skoog (MS) or modified MS [...] Read more.
The present study was conducted to establish a protocol for the regeneration of virus-free garlic plants through somatic embryogenesis of two Croatian garlic ecotypes. Basal parts of cloves from mother plants were cultured on a full Murashige and Skoog (MS) or modified MS medium (¼ of KNO3 and NH4NO3 and 2xMgSO4) containing 0.1 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D) or 1 mg L−1 2,4-D + 0.5 mg L−1 kinetin (Kin) and representing four different treatments. Plants were regenerated in MS medium containing 0.1 mg L−1 2,4-D and rooted in a medium containing 0.05 mg L−1 1-naphthaleneacetic acid (NAA) + 0.005 mg L−1 6-(γ,γ-dimethylallylamino)purine (2iP). The presence of viruses (i.e., sanitary status) of the mother plants and regenerants was checked by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-polymerase chain reaction (RT-PCR). The mother plants were infected with onion yellow dwarf virus (OYDV) and leek yellow stripe virus (LYSV). In addition, the presence of garlic common latent virus (GCLV) was confirmed in four mother plants. Embryogenic callus developed in all four treatments with success ranging from 55% to 81% depending on treatment and ecotype. Plant conversion was significantly higher in somatic embryos developed in media containing 0.1 mg L−1 2,4-D than those developed in media containing 1 mg L−1 2,4-D + 0.5 mg L−1 Kin. Virus elimination success ranged from 13.3% up to 62.5% depending on garlic ecotype and treatment. The overall rate of virus elimination by somatic embryogenesis for both treatments and ecotypes were 20.7%, 22.9%, and 30.5% for OYDV, GCLV, and LYSV, respectively. Based on these results, somatic embryogenesis has been shown to be equally or more successful in eliminating garlic viruses compared to other in vitro methods. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

15 pages, 1024 KiB  
Article
Suspension Cell Culture of Dioscorea deltoidea—A Renewable Source of Biomass and Furostanol Glycosides for Food and Pharmaceutical Industry
by Maria V. Titova, Elena V. Popova, Svetlana V. Konstantinova, Dmitry V. Kochkin, Igor M. Ivanov, Andrey G. Klyushin, Elena G. Titova, Elena A. Nebera, Ekaterina R. Vasilevskaya, Galina S. Tolmacheva, Elena A. Kotenkova, Alexandr M. Nosov and Kee-Yoeup Paek
Agronomy 2021, 11(2), 394; https://doi.org/10.3390/agronomy11020394 - 23 Feb 2021
Cited by 14 | Viewed by 3196
Abstract
Dioscorea deltoidea is a medicinal plant valued for its high content of steroidal glycosides (SG)—bioactive compounds with cardioprotective and immunomodulation actions, also used to treat reproductive system disorders. To overcome the limitations of natural resources of this species, a suspension cell culture of [...] Read more.
Dioscorea deltoidea is a medicinal plant valued for its high content of steroidal glycosides (SG)—bioactive compounds with cardioprotective and immunomodulation actions, also used to treat reproductive system disorders. To overcome the limitations of natural resources of this species, a suspension cell culture of D. deltoidea was developed as a renewable and ecologically sustainable source of raw biomass and SG. Cell culture demonstrated stable and intensive growth in the laboratory (20 L) and industrial (630 L) bioreactors operated under a semi-continuous regime (specific growth rate 0.11–1.12 day−1, growth index 3.5–3.7). Maximum dry weight accumulation (8.5–8.8 g/L) and SG content (47–57 mg/g DW) were recorded during the stationary phase. Bioreactor-produced cell biomass contained inorganic macro (K, Ca, Mg, Na) and micro (Zn, Mn, Fe, B, Al, Cu, Cr, Se, Co, Ni) elements in concentrations within the safe range of dietary recommendations. Acute toxicity test showed no or insignificant changes in organ weight, hematological panel and blood biochemistry of laboratory animals fed with 2000 and 5000 mg/kg dry biomass. The results suggest that cell culture of D. deltoidea grown in bioreactors has great potential to be used as functional foods and a component of specialized dietary supplements in complex therapy of reproductive system disorders and mineral deficiency. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

13 pages, 577 KiB  
Article
Alterations in Microrhizome Induction, Shoot Multiplication and Rooting of Ginger (Zingiber officinale Roscoe) var. Bentong with Regards to Sucrose and Plant Growth Regulators Application
by Nisar Ahmad Zahid, Hawa Z.E. Jaafar and Mansor Hakiman
Agronomy 2021, 11(2), 320; https://doi.org/10.3390/agronomy11020320 - 11 Feb 2021
Cited by 12 | Viewed by 4712
Abstract
Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of [...] Read more.
Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

14 pages, 2060 KiB  
Article
Selection and Micropropagation of an Elite Melatonin Rich Tulsi (Ocimum sanctum L.) Germplasm Line
by Mukund R. Shukla, Annaliese Kibler, Christina E. Turi, Lauren A. E. Erland, J. Alan Sullivan, Susan J. Murch and Praveen K. Saxena
Agronomy 2021, 11(2), 207; https://doi.org/10.3390/agronomy11020207 - 22 Jan 2021
Cited by 4 | Viewed by 3732
Abstract
Tulsi (Ocimum sanctum L.) is a sacred plant of medicinal and spiritual significance in many cultures. Medicinal properties of Tulsi are ascribed to its phytochemicals with antioxidant capabilities. The current study was undertaken to screen a large seed population of Tulsi to [...] Read more.
Tulsi (Ocimum sanctum L.) is a sacred plant of medicinal and spiritual significance in many cultures. Medicinal properties of Tulsi are ascribed to its phytochemicals with antioxidant capabilities. The current study was undertaken to screen a large seed population of Tulsi to select germplasm lines with high antioxidant potential and to standardize protocols for micropropagation and biomass production to produce a phytochemically consistent crop. A total of 80 germplasm lines were established under in vitro conditions and screened for their antioxidant potential determined with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) bioassay. The micropropagation of a selected line, named Vrinda, was established using nodal cultures grown on Murashige and Skoog medium containing benzylaminopurine (1.1 µM), gibberellic acid (0.3 µM), and activated charcoal (0.6%). The antioxidant phytohormones melatonin and serotonin were quantified in the field and greenhouse grown tissues of Vrinda and melatonin levels were found to be consistent in both conditions with higher serotonin levels under field conditions. This integrated approach combining the in vitro selection and propagation offers potential applications in the development of safe, effective, and novel natural health products of Tulsi, and many other medicinal plant species. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

12 pages, 2762 KiB  
Article
Artificial microRNA-Based RNA Interference and Specific Gene Silencing for Developing Insect Resistance in Solanum lycopersicum
by Mohammad Faisal, Eslam M. Abdel-Salam and Abdulrahman A. Alatar
Agronomy 2021, 11(1), 136; https://doi.org/10.3390/agronomy11010136 - 13 Jan 2021
Cited by 12 | Viewed by 2955
Abstract
RNA Interference (RNAi), which works against invading nucleic acids or modulates the expression of endogenous genes, is a natural eukaryotic regulating system, and it works by noncoding smaller RNA molecules. Plant-mediated gene silencing through RNAi can be used to develop plants with insect [...] Read more.
RNA Interference (RNAi), which works against invading nucleic acids or modulates the expression of endogenous genes, is a natural eukaryotic regulating system, and it works by noncoding smaller RNA molecules. Plant-mediated gene silencing through RNAi can be used to develop plants with insect tolerance at transcriptional or post-transcriptional levels. In this study, we selected Myzus persicae’s acetylcholinesterase 1 gene (Ace 1) as a silencing target to develop transgenic Solanum lycopersicum L. plants’ resistance to aphids. An RNAi plasmid vector containing an artificial microRNA (amiRNA) sequence was engineered and successfully transformed into Jamila and Tomaland, two elite tomato cultivars. A northern blot analysis and PCR were carried out to check the efficacy of Agrobacterium-mediated transformation in T0 transgenic plants. The quantitative PCR data showed a substantial downregulation of the Ace 1 gene in aphids fed in clip cages on T1 transgenic plants. Furthermore, there was a substantial drop in aphid colonies that were fed on T1 transgenic plants of both the cultivars. These findings strongly suggest that transgenic plants that express amiRNA could be an important tool for engineering plants resistant to aphids and possibly for the prevention of viral disease in other plant-infested pests. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

13 pages, 1320 KiB  
Article
In Vitro and Cryobiotechnology Approaches to Safeguard Lupinus rivularis Douglas ex Lindl., an Endangered Plant in Canada
by Elena V. Popova, Mukund R. Shukla, Terry McIntosh and Praveen K. Saxena
Agronomy 2021, 11(1), 37; https://doi.org/10.3390/agronomy11010037 - 26 Dec 2020
Cited by 14 | Viewed by 3319
Abstract
Conservation of threatened flora in genetic collections ex situ using in vitro culture and cryopreservation is receiving an increasing recognition as a complementary strategy to in situ conservation in natural habitats. The present study is focused on an integrated approach which involves conservation [...] Read more.
Conservation of threatened flora in genetic collections ex situ using in vitro culture and cryopreservation is receiving an increasing recognition as a complementary strategy to in situ conservation in natural habitats. The present study is focused on an integrated approach which involves conservation and propagation, emphasizing the usefulness of cryopreservation techniques for germplasm conservation of streambank lupine (Lupinus rivularis Douglas ex Lindl.), an endangered species in Canada. This included in vitro seed germination on Murashige and Skoog basal medium supplemented with 1 µM thidiazuron to induce multiple shoot formation, micropropagation on a medium with 5 µM benzylaminopurine, and in vitro rooting on medium with 20.0 µM indole-3-butyric acid. Cryopreservation of seeds and shoot tips of in vitro grown plants was successful with over 60% seed germination and 62% regrowth of cryopreserved shoot tips, respectively. Plants developed from cryopreserved seeds had chlorophyll contents in leaves and the growth characteristics including the development of inflorescence, similar to plants raised from non-cryopreserved seeds. These results provide further evidence that the combination of micropropagation with cryopreservation of seeds and vegetative parts may effectively facilitate long-term preservation of L. rivularis and other endangered species. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

9 pages, 2257 KiB  
Article
Phloroglucinol Improves Direct Rooting of In Vitro Cultured Apple Rootstocks M9 and M26
by Jin-Ho Kim, Bo-Min Kwon, Thanh-Tam Ho and So-Young Park
Agronomy 2020, 10(8), 1079; https://doi.org/10.3390/agronomy10081079 - 26 Jul 2020
Cited by 7 | Viewed by 2818
Abstract
Advances in micropropagation techniques have helped produce true-to-type clones of many horticulturally important plants. However, several cultivars of apple are difficult to root in vitro. In these cases, adventitious roots are induced together with undesirable formation of callus, which decrease the acclimatization rate [...] Read more.
Advances in micropropagation techniques have helped produce true-to-type clones of many horticulturally important plants. However, several cultivars of apple are difficult to root in vitro. In these cases, adventitious roots are induced together with undesirable formation of callus, which decrease the acclimatization rate of in vitro produced plantlets. In this study, two apple rootstocks, M9 and M26, were subjected to different concentrations of indole-3-butyric acid (IBA) to induce root formation. Although addition of IBA to the medium induced root formation, rhizogenesis was accompanied by the undesirable formation of callus in both cultivars. On the other hand, in gene expression analysis, the indole-3-acetic acid (IAA) synthase genes AAO1 and YUC1 were expressed more highly in M9 than in M26. This suggests that endogenous auxin levels may be higher in M9, which may explain why M9 plantlets are difficult to root and experience high levels of callus formation during propagation. In addition, rooting medium containing 0.1 mg·L−1 IBA was supplemented with different concentrations of phloroglucinol (0, 0.5, 1.0, and 2.0 mM) to examine whether direct rooting efficiency in the M9 could be improved. Addition of 1.0 mM phloroglucinol increased rooting percentage and decreased callus formation in the M9 rootstock. The rootstock M9 is a desirable cultivar but presents a problem with true-to-type direct rooting. Addition of phloroglucinol may improve direct rooting and eliminate callus formation during propagation. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

14 pages, 1567 KiB  
Article
Efficient Regeneration of Hedychium coronarium through Protocorm-Like Bodies
by Xiu Hu, Jiachuan Tan, Jianjun Chen, Yongquan Li and Jiaqi Huang
Agronomy 2020, 10(8), 1068; https://doi.org/10.3390/agronomy10081068 - 24 Jul 2020
Cited by 2 | Viewed by 3006
Abstract
Hedychium coronarium J. Koenig is a multipurpose plant with significant economic value, but it has been overexploited and listed as a vulnerable, near threatened or endangered species. In vitro culture methods have been used for propagating disease-free propagules for its conservation and production. [...] Read more.
Hedychium coronarium J. Koenig is a multipurpose plant with significant economic value, but it has been overexploited and listed as a vulnerable, near threatened or endangered species. In vitro culture methods have been used for propagating disease-free propagules for its conservation and production. However, explant contamination has been a bottleneck in in vitro propagation due to the use of rhizomes as the explant source. Plants in the family Zingiberaceae have pseudostems that support inflorescences, while rhizomes are considered true stems. The present study, for the first time, reported that the pseudostem bears nodes and vegetative buds and could actually be true stems. The evaluation of different sources of explants showed that mature node explants derived from the stem were the most suitable ones for in vitro culture because of the lowest contamination and the highest bud break rates. Culture of mature node explants on MS medium supplemented with 13.32, 17.76, and 22.20 μM 6-benzylaminopurine (BA), each in combination with 9.08 μM thidiazurin (TDZ) and 0.05 μM α-naphthaleneacetic acid (NAA) induced the conversion of buds to micro-rhizomes in six weeks. More than 96% of the micro-rhizomes cultured on MS medium supplemented with 17.76 μM BA, 6.81 μM TDZ, and 2.46 μM indole-3-butyric acid (IBA) were converted to globular-shaped clumps with protocorm-like bodies (PLBs). Further culture of a piece of the clumps induced more than 15 adventitious shoots. Adventitious roots were produced at the base of adventitious shoots, and plantlets were readily transplanted to a substrate for acclimatization in a shaded greenhouse. The survival rate of the plants in the greenhouse was up to 90%. Plants grew vigorously, and there were no off-types from the regenerated 11,100 plants. Our study also, for the first time, shows that H. coronarium can be regenerated via PLBs, which may represent a new way of the in vitro propagation of H. coronarium. The established protocol could be used for the increased propagation of H. coronarium for conservation or commercial production. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

11 pages, 1428 KiB  
Article
In Vitro Regeneration, Ex Vitro Rooting and Foliar Stoma Studies of Pseudostellaria heterophylla (Miq.) Pax
by Fengyun Wang, Xiaowei Xin, Hao Wei, Xiaohui Qiu and Boling Liu
Agronomy 2020, 10(7), 949; https://doi.org/10.3390/agronomy10070949 - 01 Jul 2020
Cited by 13 | Viewed by 2844
Abstract
Pseudostellaria heterophylla, in the family Caryophyllaceae, is an important Chinese medicinal plant commonly used to treat various diseases in children and valued for its ornamental properties. In this study, nodal segments were obtained from wild plants and used as explants to develop [...] Read more.
Pseudostellaria heterophylla, in the family Caryophyllaceae, is an important Chinese medicinal plant commonly used to treat various diseases in children and valued for its ornamental properties. In this study, nodal segments were obtained from wild plants and used as explants to develop an efficient micropropagation protocol for this species. Murashige and Skoog (MS) medium supplemented with 1.5 mg·L−1 6-benzyladenine (6-BA) was the most suitable medium for inducing axillary buds and enhancing their growth, and MS medium containing 0.1 mg·L−1 indole-3-butyric acid (IBA) was the most effective for inducing in vitro rooting. To reduce labor, time, and cost, microshoots were rooted under ex vitro conditions. Pretreatments of the shoots with 100 mg·L−1 naphthaleneacetic acid (NAA) for 1 min ensured successful rooting in 86.7% of shoots. Comparison of the leaf microstructure between in vitro- and ex vitro-rooted plantlets revealed abnormal stomatal apparatus in the former. The stomatal apparatus of ex vitro plantlets were normal, although the stomatal density was reduced, which indicated that these plantlets were more likely to be able to adapt to environmental conditions in the field. We identified the optimal medium for P. heterophylla multiplication with respect to increased rooting efficiency of micropropagated shoots under ex vitro conditions. This results presented here will be helpful for agricultural cultivation of P. heterophylla. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

15 pages, 12402 KiB  
Article
Impact of Ionic Liquids on Induction of Wheat Microspore Embryogenesis and Plant Regeneration
by Dorota Weigt, Idzi Siatkowski, Magdalena Magaj, Agnieszka Tomkowiak and Jerzy Nawracała
Agronomy 2020, 10(6), 839; https://doi.org/10.3390/agronomy10060839 - 12 Jun 2020
Cited by 2 | Viewed by 2287
Abstract
Ionic liquids are novel compounds with unique chemical and physical properties. They can be received based on synthetic auxins like 2,4-dichlorophenoxyacetic acid or dicamba, which are commonly used hormones in microspore embryogenesis. Nevertheless, ionic liquids have not been adapted in plant in vitro [...] Read more.
Ionic liquids are novel compounds with unique chemical and physical properties. They can be received based on synthetic auxins like 2,4-dichlorophenoxyacetic acid or dicamba, which are commonly used hormones in microspore embryogenesis. Nevertheless, ionic liquids have not been adapted in plant in vitro culture thus far. Therefore, we studied the impact of ionic liquids on the ability to undergo microspore embryogenesis in anther cultures of wheat. Two embryogenic and two recalcitrant genotypes were used for this study. Ten combinations of ionic liquids and 2,4-dichlorophenoxyacetic acid were added to the induction medium. In most cases, they stimulated induction of microspore embryogenesis and green plant regeneration more than a control medium supplemented with only 2,4-dichlorophenoxyacetic acid. Two treatments were the most favorable, resulting in over two times greater efficiency of microspore embryogenesis induction in comparison to the control. The effect of breaking down the genotype recalcitrance (manifested by green plant formation) was observed under the influence of 5 ionic liquids treatments. Summing up, ionic liquids had a positive impact on microspore embryogenesis induction and green plant regeneration, increasing the efficiency of these phenomena in both embryogenic and recalcitrant genotypes. Herbicidal ionic liquids can be successfully used in in vitro cultures. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

16 pages, 5970 KiB  
Article
Colchicine Mutagenesis from Long-term Cultured Adventitious Roots Increases Biomass and Ginsenoside Production in Wild Ginseng (Panax ginseng Mayer)
by Kim-Cuong Le, Thanh-Tam Ho, Jong-Du Lee, Kee-Yoeup Paek and So-Young Park
Agronomy 2020, 10(6), 785; https://doi.org/10.3390/agronomy10060785 - 31 May 2020
Cited by 7 | Viewed by 3450
Abstract
Panax ginseng Mayer is a perennial herb that has been used as a medicinal plant in Eastern Asia for thousands of years. The aim of this study was to enhance root biomass and ginsenoside content in cultured adventitious roots by colchicine mutagenesis. Adventitious [...] Read more.
Panax ginseng Mayer is a perennial herb that has been used as a medicinal plant in Eastern Asia for thousands of years. The aim of this study was to enhance root biomass and ginsenoside content in cultured adventitious roots by colchicine mutagenesis. Adventitious P. ginseng roots were treated with colchicine at different concentrations (100, 200, and 300 mg·L−1) and for different durations (1, 2, and 3 days). Genetic variability of mutant lines was assessed using random amplification of polymorphic DNA (RAPD) analysis. Ginsenoside biosynthesis gene expression, ginsenoside content, enzyme activities, and performance in bioreactor culture were assessed in four mutant lines (100–1-2, 100–1-18, 300–1-16, and 300–2-8). The results showed that ginsenoside productivity was enhanced in all mutant lines, with mutant 100–1-18 exhibiting the most pronounced increase (4.8-fold higher than the control). Expression of some ginsenoside biosynthetic enzymes was elevated in mutant lines. Enzyme activities varied among lines, and lipid peroxidation activity correlated with root biomass. All four lines were suitable for bioreactor cultivation, with mutant 100–1-18 exhibiting the highest biomass after culture scale-up. The results indicated that colchicine mutagenesis of P. ginseng roots increased biomass and ginsenosides production. This technique, and the root lines produced in this study, may be used to increase industrial yields of P. ginseng biomass and ginsenosides. Full article
(This article belongs to the Special Issue Role of Plant Tissue Culture in Agricultural Research and Production)
Show Figures

Figure 1

Back to TopTop