Next Issue
Volume 8, December
Previous Issue
Volume 8, October
 
 

Infrastructures, Volume 8, Issue 11 (November 2023) – 10 articles

Cover Story (view full-size image): Railway noise barriers are subjected to high aerodynamic loads during train passages. Due to the current increasing number of trains and train speeds, material fatigue becomes important for all construction parts. The objective of this paper is to develop an efficient combination of visual inspection with data-based methods of monitoring and digital twin modelling to perform a reliability-based remaining service life assessment of fatigue-prone elements of noise barriers. These approaches are combined into a progressive four-stage model in which the information content increases with each model stage, and thus successively increases the accuracy of the determined structural conditions and the prediction of the remaining service life, and therefore enables infrastructure operators to ensure the structures’ safety more economically. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 624 KiB  
Article
Transferring Research Innovations in Bridge Inspection Planning to Bridge Inspection Practice: A Qualitative Study
Infrastructures 2023, 8(11), 164; https://doi.org/10.3390/infrastructures8110164 - 20 Nov 2023
Viewed by 1465
Abstract
Over the last two decades, many researchers have focused on providing new ideas and frameworks to help improve conventional bridge inspection planning approaches, however, little guidance is provided for implementing these new ideas in practice, resulting in limited change. Accordingly, this qualitative study [...] Read more.
Over the last two decades, many researchers have focused on providing new ideas and frameworks to help improve conventional bridge inspection planning approaches, however, little guidance is provided for implementing these new ideas in practice, resulting in limited change. Accordingly, this qualitative study aims to identify the factors that can help improve research products and accelerate research transfer to bridge inspection departments with the goal of enhancing bridge inspection practice. This study used semi-structured interviews, written interviews, and questionnaires for data collection to provide rich results. Responses from twenty-six bridge personnel from state Departments of Transportation (DOTs) across the United States (U.S.) were included in this study. The study found that most participants support a fixed inspection interval over a variable interval since fixed intervals are easier in scheduling and budget planning. Also, participants indicated that the barriers hindering the use of nondestructive techniques are the training required by inspectors, traffic control, and the required access equipment. The study presents the factors change leaders should focus on to facilitate organizational change in DOTs such as enhancing the capacity of DOT staff members and gaining support from the Federal Highway Administration (FHWA) Full article
Show Figures

Figure 1

18 pages, 2223 KiB  
Article
Evaluating the Ageing Sensitivity of the Asphalt Binder via Distinct Ageing Methods
Infrastructures 2023, 8(11), 163; https://doi.org/10.3390/infrastructures8110163 - 17 Nov 2023
Viewed by 1419
Abstract
Asphalt binder is a crucial component of asphalt pavements that undergoes ageing over time, which can result in the reduced performance and deterioration of pavements. Consequently, artificial ageing methods play a significant role in providing valuable insights into the ageing behaviour and long-term [...] Read more.
Asphalt binder is a crucial component of asphalt pavements that undergoes ageing over time, which can result in the reduced performance and deterioration of pavements. Consequently, artificial ageing methods play a significant role in providing valuable insights into the ageing behaviour and long-term performance of asphalt binders. However, a consensus on the most effective method for simulating ageing behaviour remains elusive, leading to disparities in the outcomes across different research studies. To address this issue, the study utilises two thermo-oxidative ageing approaches, one focusing on the binder itself and another on the loose asphalt mixture. The study investigates the effect of these ageing methods on the behaviour of asphalt binder using physical, rheological, and chemical characterisation. For the binder ageing method, a rolling thin film oven (RTFO) and a pressure ageing vessel (PAV) were utilised, whereas the loose asphalt mixture ageing was performed in an oven at 95 °C for various durations. The results indicated that the ageing trend differed between the two oxidative ageing approaches as the ageing duration increased. However, by employing an ageing sensitivity index, comparable rheological properties were observed between the binders aged using the PAV for 20 h and the loose asphalt mixture for 5 days. The Fourier Transform Infrared (FTIR) spectroscopy analysis revealed that the ageing methods influenced the functional groups associated with ageing in distinct ways, even though they exhibited similar rheological behaviour. Overall, this study provides a comprehensive understanding of different thermo-oxidative ageing approaches, their correlation, and their relevance to the studied field-aged binders. Full article
Show Figures

Figure 1

19 pages, 4745 KiB  
Article
Data-Driven Condition Assessment and Life Cycle Analysis Methods for Dynamically and Fatigue-Loaded Railway Infrastructure Components
Infrastructures 2023, 8(11), 162; https://doi.org/10.3390/infrastructures8110162 - 13 Nov 2023
Viewed by 1477
Abstract
Railway noise barrier constructions are subjected to high aerodynamic loads during the train passages, and the knowledge of their actual structural condition is relevant to assure safety for railway users and to create a basis for forecasting. This paper deals with deterministic and [...] Read more.
Railway noise barrier constructions are subjected to high aerodynamic loads during the train passages, and the knowledge of their actual structural condition is relevant to assure safety for railway users and to create a basis for forecasting. This paper deals with deterministic and probabilistic approaches for the condition assessment and prediction of the remaining lifetime of railway noise barriers that are embedded in a safety concept that takes into account the damage consequence classes. These approaches are combined into a holistic assessment concept, in other words, a progressive four-stage model in which the information content increases with each model stage and thus successively increases the accuracy of the determined structural conditions at the time of observation and the forecast of the remaining service life of the structure. The analytical methods used in the first stage of the developed holistic framework are based on common static calculations used in engineering practice and, together with expert knowledge and large-scale fatigue test results of noise barrier constructions, form the basis for the subsequent stages. In the second stage of the data-driven condition assessment and life cycle analysis approach, linking routines are implemented that combine the condition assessments from the visual inspections with the additional information from temporary or permanent monitoring systems with the analytical methods. With the application of numerical finite element methods for the development of a digital twin of the noise barrier in the third stage and the probabilistic approaches in the fourth stage, a maximum determination accuracy of the noise barrier condition at the time of observation and prediction accuracy of the remaining service life is achieved. The data-driven condition assessment and life cycle analysis approach enables infrastructure operators to plan their future investments more economically regarding the maintenance, retrofitting, or new construction of railway noise barriers. Ultimately, the aim is to integrate the presented four-stage holistic assessment concept into the specific maintenance and repair planning of infrastructure operators for aerodynamically loaded railway noise barrier constructions. Full article
Show Figures

Figure 1

27 pages, 9669 KiB  
Review
Biomaterials in Concrete for Engineering Applications: A Bibliometric Review
Infrastructures 2023, 8(11), 161; https://doi.org/10.3390/infrastructures8110161 - 10 Nov 2023
Viewed by 1734
Abstract
The incorporation of biomaterials into concrete for engineering applications has gained significant attention in recent years due to its potential to enhance both the mechanical properties and sustainability of construction materials. This study conducts a comprehensive bibliometric analysis (BA) to examine the state [...] Read more.
The incorporation of biomaterials into concrete for engineering applications has gained significant attention in recent years due to its potential to enhance both the mechanical properties and sustainability of construction materials. This study conducts a comprehensive bibliometric analysis (BA) to examine the state of the research on utilizing biomaterials in concrete through the analysis of scientific production considering the information in the Scopus database. The BA provides insights into this interdisciplinary field’s evolution, trends, and global research landscape. Key aspects explored include the types of biomaterials employed, their impacts on concrete properties, and the environmental benefits associated with their masonry use. R-Software was used to analyze the scientific growth and topics (BA) in the field of biomaterials in concrete for industrial applications. The results exposed that biomaterials in concrete related to scientific production represent a total amount of 1558 documents published by 489 journals and 4521 authors, which represents an annual rate of 20.81% higher than other related topics, with India, the United Kingdom, and China being the most representative countries. Finally, this work exposes the growing interest in sustainable construction practices and the promising future of biomaterial-infused concrete in the engineering sector, seeking to advance the knowledge and application of biomaterials in concrete technology. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

12 pages, 3121 KiB  
Article
Rheological and Aging Characteristics of Polymer-Modified Asphalt with the Addition of Sulfur
Infrastructures 2023, 8(11), 160; https://doi.org/10.3390/infrastructures8110160 - 09 Nov 2023
Viewed by 1313
Abstract
Crosslinking agents, notably sulfur, are used in asphalt binder modification to facilitate chemical bonding between polymer chains and the asphalt binder. Despite some prior research indicating the benefits of sulfur crosslinking in enhancing polymer-modified asphalt’s (PMA) stability, there is a lack of comprehensive [...] Read more.
Crosslinking agents, notably sulfur, are used in asphalt binder modification to facilitate chemical bonding between polymer chains and the asphalt binder. Despite some prior research indicating the benefits of sulfur crosslinking in enhancing polymer-modified asphalt’s (PMA) stability, there is a lack of comprehensive understanding regarding its impact on rheological properties and its anti-aging potential. This study addresses these gaps by thoroughly investigating the effects of varying the sulfur content (ranging from 0.03% to 0.5% by total weight of binder) on PMA’s rheological properties. The research assesses the effectiveness of sulfur in enhancing PMA’s resistance to aging using various methods, including the Glover-Rowe parameter, FTIR analysis, and the examination of the dynamic modulus and phase angle master curves. The results indicated that the addition of sulfur, particularly up to 0.3%, bumps the high-temperature performance grade by one level, and significantly improves elasticity, allowing the PMA to support heavier traffic without experiencing rutting, all while maintaining resistance to low-temperature cracking. Furthermore, PMA with sulfur demonstrated an increase in resistance to aging, reducing the aging potential by approximately 15% with the best sulfur formulation. This enhanced durability can reduce the frequency of maintenance activities, leading to cost savings, reduced roadwork emissions, and prolonged pavement life. Full article
Show Figures

Figure 1

19 pages, 6711 KiB  
Article
Roles of Wireless Networks in Bridging the Rural Smart Infrastructural Divide
Infrastructures 2023, 8(11), 159; https://doi.org/10.3390/infrastructures8110159 - 08 Nov 2023
Viewed by 1249
Abstract
The past decade has seen a rise in the availability of modern information and communication technologies (ICTs) for developing smart societies and communities. However, the smart divide, characterized by inequalities in ICT infrastructures, software access, and individual capabilities, remains a significant barrier for [...] Read more.
The past decade has seen a rise in the availability of modern information and communication technologies (ICTs) for developing smart societies and communities. However, the smart divide, characterized by inequalities in ICT infrastructures, software access, and individual capabilities, remains a significant barrier for rural communities. Limited empirical studies exist that explore what and how ICT infrastructures can be developed to bridge the smart divide. The paper aimed to address rural broadband access in the context of infrastructural dimensions of smart divide (i.e., smart infrastructural divide) in the United States, focusing on the wireless network infrastructure’s role in narrowing the gap. It examined the broadband specifications needed for smart applications like smart education and telehealth, emphasizing the importance of wireless network capabilities. While fixed broadband offers higher speeds, wireless networks can support many smart applications with decent flexibility and ease of access. To further understand the implications of wireless broadband to rural communities, we conducted a case study in Carbondale and Cairo, two rural towns in Southern Illinois, using on-site user-inspired speed testing. An Android application was developed to measure download/upload speeds and Reference Signal Received Power (RSRP) for broadband quality. Results suggest both Carbondale and Cairo experienced below-average speeds with high variability among census blocks, which highlights the need for improved wireless network infrastructure. The paper culminated in the technological and policy recommendations to narrow down the smart infrastructural divide. Full article
(This article belongs to the Section Smart Infrastructures)
Show Figures

Figure 1

18 pages, 2342 KiB  
Article
Structural Health Monitoring-Based Bridge Lifecycle Extension: Survival Analysis and Monte Carlo-Based Quantification of Value of Information
Infrastructures 2023, 8(11), 158; https://doi.org/10.3390/infrastructures8110158 - 05 Nov 2023
Cited by 1 | Viewed by 1545
Abstract
A key goal of structural health monitoring (SHM) systems applied to infrastructure is to improve asset management. SHM systems yield benefits by providing information that allows improved asset management decisions. Often, improvement is measured in monetary terms, whereby lower expenses are sought. The [...] Read more.
A key goal of structural health monitoring (SHM) systems applied to infrastructure is to improve asset management. SHM systems yield benefits by providing information that allows improved asset management decisions. Often, improvement is measured in monetary terms, whereby lower expenses are sought. The value of information (VoI) is often evaluated through the quantification of the incremental benefit, resulting from the information provided by the SHM system. The VoI can be considered as having two components: value derived from the improved operation of the infrastructure and value derived from increased useful life. This work focuses on the latter source of value in the context of concrete decks in US highway bridges. To estimate the lifecycle extension potential and the connected VoI, we need to simulate bridge deck condition degradation over time to support a discounted cash flow analysis of bridge replacement cost. We accomplish this by utilizing a neural network-based survival analysis combined with Monte Carlo simulation. We present a case study using the developed methods. We have chosen to study the southbound portion of the bridge on the US Highway 202, located in Wayne, NJ. The selected bridge is a representative concrete highway overpass, the type of which there are large numbers in the US. The case study demonstrates the applicability of the methods developed for the general evaluation of the VoI obtained via SHM. The results are encouraging for the widespread use of SHM for lifecycle extension purposes; the potential value in such applications is large. Full article
(This article belongs to the Special Issue Advances in Structural Health Monitoring of the Built Environment)
Show Figures

Figure 1

22 pages, 7070 KiB  
Article
Enhancing Reinforced Concrete Beams: Investigating Steel Dust as a Cement Substitute
Infrastructures 2023, 8(11), 157; https://doi.org/10.3390/infrastructures8110157 - 31 Oct 2023
Cited by 1 | Viewed by 1422
Abstract
This research undertook an extensive examination of the ramifications of integrating steel dust as a partial substitute for cement within reinforced concrete beams. The investigation encompassed an assessment of various facets, encompassing the workability of the concrete mixture, alongside crucial mechanical properties such [...] Read more.
This research undertook an extensive examination of the ramifications of integrating steel dust as a partial substitute for cement within reinforced concrete beams. The investigation encompassed an assessment of various facets, encompassing the workability of the concrete mixture, alongside crucial mechanical properties such as compressive strength, split tensile strength, flexural strength, ultrasonic pulse velocity (UPV), and elasticity modulus. The findings unveiled a notable reduction in workability as the proportion of steel dust increased within the mixture, with a consequential substantial impact on the elasticity modulus. Notably, compressive strength exhibited an enhancement at a 10% replacement of cement yet exhibited a decline with higher degrees of cement substitution. The inclusion of steel dust led to the formulation of adjusted equations pertaining to split tensile and flexural strength characteristics within the mixture. Remarkably, the incorporation of 10% steel dust yielded an increase in ductility. Conversely, at a 30% steel dust inclusion level, ductility diminished alongside a reduction in the maximum load-bearing capacity. In light of these findings, it is imperative to exercise prudence when considering the utilization of steel dust as a cement substitute, particularly when approaching or exceeding the 10% replacement level threshold. Further comprehensive research is imperative to acquire a comprehensive understanding of its implications and its susceptibility to potential corrosion concerns. Full article
(This article belongs to the Special Issue IOCI 2022 Special Issue Session 4: Materials and Sustainability)
Show Figures

Figure 1

12 pages, 2124 KiB  
Article
Comparative Analysis of Machine-Learning Models for Recognizing Lane-Change Intention Using Vehicle Trajectory Data
Infrastructures 2023, 8(11), 156; https://doi.org/10.3390/infrastructures8110156 - 25 Oct 2023
Viewed by 1539
Abstract
Accurate detection and prediction of the lane-change (LC) processes can help autonomous vehicles better understand their surrounding environment, recognize potential safety hazards, and improve traffic safety. This study focuses on the LC process, using vehicle trajectory data to select a model for identifying [...] Read more.
Accurate detection and prediction of the lane-change (LC) processes can help autonomous vehicles better understand their surrounding environment, recognize potential safety hazards, and improve traffic safety. This study focuses on the LC process, using vehicle trajectory data to select a model for identifying vehicle LC intentions. Considering longitudinal and lateral dimensions, the information extracted from vehicle trajectory data includes the interactive effects among target and adjacent vehicles (54 indicators) as input parameters. The LC intention of the target vehicle serves as the output metric. This study compares three widely recognized machine-learning models: support vector machines (SVM), ensemble methods (EM), and long short-term memory (LSTM) networks. The ten-fold cross-validated method was used for model training and evaluation. Classification accuracy and training complexity were used as critical metrics for evaluating model performance. A total of 1023 vehicle trajectories were extracted from the CitySim dataset. The results indicate that, with an input length of 150 frames, the XGBoost and LightGBM models achieve an impressive overall classification performance of 98.4% and 98.3%, respectively. Compared to the LSTM and SVM models, the results show that the two ensemble models reduce the impact of Types I and III errors, with an improved accuracy of approximately 3.0%. Without sacrificing recognition accuracy, the LightGBM model exhibits a sixfold improvement in training efficiency compared to the XGBoost model. Full article
(This article belongs to the Special Issue Recent Progress in Transportation Infrastructures)
Show Figures

Figure 1

14 pages, 5911 KiB  
Technical Note
Practical Aspects of Correlation Analysis of Compressive Strength from Destructive and Non-Destructive Methods in Different Directions
Infrastructures 2023, 8(11), 155; https://doi.org/10.3390/infrastructures8110155 - 24 Oct 2023
Viewed by 1335
Abstract
The research presented here demonstrates the practical aspects of the numerical correlation of the results of the compressive strength test. The destructive test (DT) in a hydraulic press and the non-destructive test (NDT) using a Schmidt hammer in several process variations were evaluated. [...] Read more.
The research presented here demonstrates the practical aspects of the numerical correlation of the results of the compressive strength test. The destructive test (DT) in a hydraulic press and the non-destructive test (NDT) using a Schmidt hammer in several process variations were evaluated. The aim was to evaluate the real differences between the tool supplier’s curve and testing. Therefore, 150 concrete cube specimens with an edge length of 150 mm were produced using a mixture of three types of concrete classes: C30, C35, and C40. The test was carried out 7 and 28 days of age of the concrete. The Schmidt hammer test was carried out in horizontal (θ = 0) and vertical (θ = 90) directions and using a series of 10 measurements. Furthermore, the tests were performed in two sets: first, the sample was placed on the ground, and second, under a hydraulic jack with a load of 50% of the maximum bearing capacity of specific concrete. Then, regression analysis was performed on the data sets to establish linear mathematical relationships between compressive strength and number of bounces. The results showed that the correlation between the DT and NDT tests has a high value for each group, but the correlation equations are different and must be taken into account. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop