Cellular Mechanisms Regulating HIV Replication

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Human Virology and Viral Diseases".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 1919

Special Issue Editor


E-Mail Website
Guest Editor
Department of Medicine, Howard University, Washington, DC, USA
Interests: HIV-1; filoviruses; sickle cell disease; proteomics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Curing and eradicating HIV require a deep insight into viral replication mechanisms. Over the past two decades, significant progress has been made in understanding the complex interaction between HIV-1 and host factors that either facilitate or inhibit viral replication. This Special Issue of Viruses will review the latest developments in the HIV-1 field, with a particular focus on host cell factors that participate in various steps of viral replication such as viral entry and capsid nuclear import, as well as uncoating, integration, transcription, viral packaging, and assembly. This collection of comprehensive articles will summarize our current knowledge of the role of host factors in HIV-1 replication, which can help in the future development of novel HIV-1-targeting therapeutics.

Prof. Dr. Sergei Nekhai
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 2173 KiB  
Article
Schlafen14 Impairs HIV-1 Expression in a Codon Usage-Dependent Manner
by Carlos Valenzuela, Sergio Saucedo and Manuel Llano
Viruses 2024, 16(4), 502; https://doi.org/10.3390/v16040502 - 25 Mar 2024
Viewed by 645
Abstract
Schlafen (SLFN) is a family of proteins upregulated by type I interferons with a regulatory role in translation. Intriguingly, SLFN14 associates with the ribosome and can degrade rRNA, tRNA, and mRNA in vitro, but a role in translation is still unknown. Ribosomes are [...] Read more.
Schlafen (SLFN) is a family of proteins upregulated by type I interferons with a regulatory role in translation. Intriguingly, SLFN14 associates with the ribosome and can degrade rRNA, tRNA, and mRNA in vitro, but a role in translation is still unknown. Ribosomes are important regulatory hubs during translation elongation of mRNAs rich in rare codons. Therefore, we evaluated the potential role of SLFN14 in the expression of mRNAs enriched in rare codons, using HIV-1 genes as a model. We found that, in a variety of cell types, including primary immune cells, SLFN14 regulates the expression of HIV-1 and non-viral genes based on their codon adaptation index, a measurement of the synonymous codon usage bias; consequently, SLFN14 inhibits the replication of HIV-1. The potent inhibitory effect of SLFN14 on the expression of the rare codon-rich transcript HIV-1 Gag was minimized by codon optimization. Mechanistically, we found that the endoribonuclease activity of SLFN14 is required, and that ribosomal RNA degradation is involved. Therefore, we propose that SLFN14 impairs the expression of HIV-1 transcripts rich in rare codons, in a catalytic-dependent manner. Full article
(This article belongs to the Special Issue Cellular Mechanisms Regulating HIV Replication)
Show Figures

Graphical abstract

12 pages, 1349 KiB  
Article
PTEN Mediates the Silencing of Unintegrated HIV-1 DNA
by An Thanh Phan and Yiping Zhu
Viruses 2024, 16(2), 291; https://doi.org/10.3390/v16020291 - 14 Feb 2024
Viewed by 895
Abstract
The integration of viral DNA into a host genome is an important step in HIV-1 replication. However, due to the high failure rate of integration, the majority of viral DNA exists in an unintegrated state during HIV-1 infection. In contrast to the robust [...] Read more.
The integration of viral DNA into a host genome is an important step in HIV-1 replication. However, due to the high failure rate of integration, the majority of viral DNA exists in an unintegrated state during HIV-1 infection. In contrast to the robust expression from integrated viral DNA, unintegrated HIV-1 DNA is very poorly transcribed in infected cells, but the molecular machinery responsible for the silencing of unintegrated HIV-1 DNA remains poorly characterized. In this study, we sought to characterize new host factors for the inhibition of expression from unintegrated HIV-1 DNA. A genome-wide CRISPR-Cas9 knockout screening revealed the essential role of phosphatase and tensin homolog (PTEN) in the silencing of unintegrated HIV-1 DNA. PTEN’s phosphatase activity negatively regulates the PI3K-Akt pathway to inhibit the transcription from unintegrated HIV-1 DNA. The knockout (KO) of PTEN or inhibition of PTEN’s phosphatase activity by point mutagenesis activates Akt by phosphorylation and enhances the transcription from unintegrated HIV-1 DNA. Inhibition of the PI3K-Akt pathway by Akt inhibitor in PTEN-KO cells restores the silencing of unintegrated HIV-1 DNA. Transcriptional factors (NF-κB, Sp1, and AP-1) are important for the activation of unintegrated HIV-1 DNA in PTEN-KO cells. Finally, the knockout of PTEN increases the levels of active epigenetic marks (H3ac and H3K4me3) and the recruitment of PolII on unintegrated HIV-1 DNA chromatin. Our experiments reveal that PTEN targets transcription factors (NF-κB, Sp1, and AP-1) by negatively regulating the PI3K-Akt pathway to promote the silencing of unintegrated HIV-1 DNA. Full article
(This article belongs to the Special Issue Cellular Mechanisms Regulating HIV Replication)
Show Figures

Figure 1

Back to TopTop