Functional Polymer Composites for Emerging Contaminants Control

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 25 October 2024 | Viewed by 7463

Special Issue Editors

School of Environmental and Chemical Engineering, Yanshan Univerisity, Qinhuangdao, China
Interests: phosphate removal; adsorbent; adsorption, activation; sulfate root; advanced oxidation

E-Mail Website
Guest Editor
School of Environmental and Chemical Engineering, Yanshan Univerisity, Qinhuangdao, China
Interests: sewage; pyrolysis; pulp and paper sludge; flue gas desulfurization; condensation

E-Mail Website
Guest Editor
School of Environmental and Chemical Engineering, Yanshan Univerisity, Qinhuangdao, China
Interests: polymer composite; membrane separation; sustainable energy generation; carbon emission reduction; hydrogen generation; environmental protection; source reutilization; friction and lubrication

Special Issue Information

Dear Colleagues,

Environmental contamination remains a critical regional problem, with particles, heavy metals, organic and inorganic compounds, and pathogenic microorganisms being the major contributors to the considerably associated pollution, despite great efforts in treatment techniques. Research on polymer composites has attracted considerable attention due to their varied structures and physicochemical properties, which present novel prospects for efficient and cost-effective remediation and purification strategies. This Special Issue focuses on the design and application of polymer composites in environmental contamination control. Papers addressing pollutant purification, carbon emission reduction, sustainable energy generation, and hydrogen generation will be especially encouraged. Other polymer-based functional composites are also of interest for their application in environmental protection, resource reuse, friction reduction and lubrication. We are pleased to invite you to submit manuscripts in research areas including but not limited to those mentioned above. Both original research articles and reviews are welcome.

Dr. Qina Sun
Dr. Lichun Xiao
Prof. Dr. Liazhou Song
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer composite
  • membrane separation
  • pressure-driven membrane
  • electrically driven membrane
  • sustainable energy generation
  • carbon emission reduction
  • hydrogen generation
  • environmental protection
  • resource reuse
  • friction and lubrication
  • chemical coagulants

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3376 KiB  
Article
Environmental Potential of Carbonized MOF-5/PANI Composites for Pesticide, Dye, and Metal Cations—Can They Actually Retain Them All?
by Anka Jevremović, Marjetka Savić, Aleksandra Janošević Ležaić, Jugoslav Krstić, Nemanja Gavrilov, Danica Bajuk-Bogdanović, Maja Milojević-Rakić and Gordana Ćirić-Marjanović
Polymers 2023, 15(22), 4349; https://doi.org/10.3390/polym15224349 - 07 Nov 2023
Cited by 1 | Viewed by 931
Abstract
The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and [...] Read more.
The environmental application of the carbonized composites of the Zn-containing metal-organic framework MOF-5 and polyaniline (PANI) in its emeraldine salt and base forms (C-(MOF-5/PANI)) was investigated for the first time. Textural properties and particle size distributions revealed that composites are dominantly mesoporous and nanoscale in nature, while Raman spectroscopy revealed the ZnO phase beneath the carbon matrix. Adsorption of pesticide, dye, and metal cation on C-(MOF-5/PANI) composites in aqueous solutions was evaluated and compared with the behavior of the precursor components, carbonized MOF-5 (cMOF), and carbonized PANIs. A lower MOF-5 content in the precursor, a higher specific surface area, and the pore volume of the composites led to improved adsorption performance for acetamiprid (124 mg/g) and Methylene Blue (135 mg/g). The presence of O/N functional groups in composites is essential for the adsorption of nitrogen-rich pollutants through hydrogen bonding with an estimated monolayer capacity twice as high as that of cMOF. The proton exchange accompanying Cd2+ retention was associated with the Zn/Cd ion exchange, and the highest capacity (9.8 mg/g) was observed for the composite synthesized from the precursor with a high MOF-5 content. The multifunctionality of composites was evidenced in mixtures of pollutants where noticeably better performance for Cd2+ removal was found for the composite compared to cMOF. Competitive binding between three pollutants favored the adsorption of pesticide and dye, thereby hindering to some extent the ion exchange necessary for the removal of metal cations. The results emphasize the importance of the PANI form and MOF-5/PANI weight ratio in precursors for the development of surface, porosity, and active sites in C-(MOF-5/PANI) composites, thus guiding their environmental efficiency. The study also demonstrated that C-(MOF-5/PANI) composites retained studied pollutants much better than carbonized precursor PANIs and showed comparable or better adsorption ability than cMOF. Full article
(This article belongs to the Special Issue Functional Polymer Composites for Emerging Contaminants Control)
Show Figures

Graphical abstract

12 pages, 5053 KiB  
Article
Study on the Thermogravimetric Kinetics of Dehydrated Sewage Sludge Regulated by Cationic Polyacrylamide and Sawdust
by Kai Yang, Jianqi Sun, Hongning Liu, Weichao Yang and Lei Dong
Polymers 2023, 15(10), 2396; https://doi.org/10.3390/polym15102396 - 21 May 2023
Cited by 1 | Viewed by 1157
Abstract
With the continuous increase in sewage-sludge production worldwide, the pyrolytic disposal of sludge has received great attention. To build knowledge on the kinetics of pyrolysis, first, sludge was regulated using appropriate amounts of cationic polyacrylamide (CPAM) and sawdust to study their enhancing effect [...] Read more.
With the continuous increase in sewage-sludge production worldwide, the pyrolytic disposal of sludge has received great attention. To build knowledge on the kinetics of pyrolysis, first, sludge was regulated using appropriate amounts of cationic polyacrylamide (CPAM) and sawdust to study their enhancing effect on dehydration. Due to the effects of the charge neutralization and skeleton hydrophobicity, a certain dose of CPAM and sawdust reduced the sludge’s moisture content from 80.3% to 65.7%. Next, the pyrolysis characteristics of the dehydrated sludge regulated by CPAM and sawdust were investigated at a heating rate of 10~40 °C/min by using TGA method. The addition of sawdust enhanced the release of volatile substances and reduced the apparent activation energy of the sample. The maximum weight-loss rate decreased with the heating rate, and the DTG curves moved in the direction of high temperature. A model-free method, namely the Starink method, was adopted to calculate the apparent activation energies, which ranged from 135.3 kJ/mol to 174.8 kJ/mol. Combined with the master-plots method, the most appropriate mechanism function ultimately obtained was the nucleation-and-growth model. Full article
(This article belongs to the Special Issue Functional Polymer Composites for Emerging Contaminants Control)
Show Figures

Graphical abstract

14 pages, 4008 KiB  
Article
3D ZnO/Activated Carbon Alginate Beads for the Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes
by Zhe Liu, Xi Yu, Zhenchao Zhou, Jinyu Zhou, Xinyi Shuai, Zejun Lin and Hong Chen
Polymers 2023, 15(9), 2215; https://doi.org/10.3390/polym15092215 - 07 May 2023
Viewed by 1715
Abstract
The worldwide prevalence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have become one of the most urgent issues for public health. Thus, it is critical to explore more sustainable methods with less toxicity for the long-term removal of both ARB and [...] Read more.
The worldwide prevalence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have become one of the most urgent issues for public health. Thus, it is critical to explore more sustainable methods with less toxicity for the long-term removal of both ARB and ARGs. In this study, we fabricated a novel material by encapsulating zinc oxide (ZnO) nanoflowers and activated carbon (AC) in an alginate biopolymer. When the dosage of ZnO was 1.0 g (≈2 g/L), the composite beads exhibited higher removal efficiency and a slight release of Zn2+ in water treatment. Fixed bed column experiments demonstrated that ZnO/AC alginate beads had excellent removal capacities. When the flow rate was 1 mL/min, and the initial concentration was 107 CFU/mL, the removal efficiency of ARB was 5.69-log, and the absolute abundance of ARGs was decreased by 2.44–2.74-log. Moreover, the mechanism demonstrated that ZnO significantly caused cell lysis, cytoplasmic leakage, and the increase of reactive oxygen species induced subsequent oxidative stress state. These findings suggested that ZnO/AC alginate beads can be a promising material for removing ARB and ARGs from wastewater with eco-friendly and sustainable properties. Full article
(This article belongs to the Special Issue Functional Polymer Composites for Emerging Contaminants Control)
Show Figures

Graphical abstract

14 pages, 5918 KiB  
Article
Experimental Study on Humidification Coagulation and Removal of Fine Particles Using an Electrostatic Precipitator
by Lichun Xiao, Xiaoyu Zhai, Yingying Han, Hongrui Chen and Hengtian Li
Polymers 2023, 15(9), 2065; https://doi.org/10.3390/polym15092065 - 26 Apr 2023
Viewed by 1582
Abstract
A wet electrostatic precipitator (WESP) has much higher capture rate for fine particulate matter, PM2.5, than a traditional dry type electrostatic precipitator does. In order to make full use of existing dust removal equipment and reduce the emissions of smoke and [...] Read more.
A wet electrostatic precipitator (WESP) has much higher capture rate for fine particulate matter, PM2.5, than a traditional dry type electrostatic precipitator does. In order to make full use of existing dust removal equipment and reduce the emissions of smoke and dust to zero, a combination of chemical coagulation and humidification coagulation is proposed using a WESP. The results show that the addition of chemical coagulant can promote the coagulation of coal-fired dust particles. After the addition of pectin (PG), the median diameter of dust particles increases from 28.19 μm to 45.28 μm. Water vapor humidification can promote the coagulation of dust particles. When the water vapor injection rate increases from 0 kg/h to 3.2 kg/h, the median diameter of dust particles increases from 28.19 μm to 36.45 μm. The synergistic effect of the coagulant and water vapor can enhance the chemical coagulation effect; when 1.0 × 10−2 g/L PG and 3.2 kg/h water vapor synergize, the collection efficiency reaches 98.17%, and when 1.0 × 10−2 g/L polyacrylamide (PAM) and 3.2 kg/h water vapor synergize, the collection efficiency reaches 96.68%. Both chemical coagulation and water vapor humidification can promote the condensation of coal dust, which is beneficial to improve the efficient capture of fine particles using WESP. Full article
(This article belongs to the Special Issue Functional Polymer Composites for Emerging Contaminants Control)
Show Figures

Figure 1

15 pages, 5296 KiB  
Article
Fabrication of Laminated Micro/Nano Filter and Its Application for Inhalable PM Removal
by Wenhua Ma, Huan Qi, Yongmeng Zhang, Minggang Lin, Yiping Qiu and Chuyang Zhang
Polymers 2023, 15(6), 1459; https://doi.org/10.3390/polym15061459 - 15 Mar 2023
Cited by 4 | Viewed by 1635
Abstract
Particulate matter (PM) with a diameter of 0.3 µm is inhalable and brings great threats to human health. Traditional meltblown nonwovens used for air filtration need to be treated by high voltage corona charging, which has the problem of electrostatic dissipation and thus [...] Read more.
Particulate matter (PM) with a diameter of 0.3 µm is inhalable and brings great threats to human health. Traditional meltblown nonwovens used for air filtration need to be treated by high voltage corona charging, which has the problem of electrostatic dissipation and thus reduces the filtration efficiency. In this work, a kind of composite air-filter with high efficiency and low resistance was fabricated by alternating lamination of ultrathin electronspun nano-layer and melt-blown layer without corona charging treatment. The effects of fiber diameter, pore size, porosity, layer number, and weight on filtration performance were investigated. Meanwhile, the surface hydrophobicity, loading capacity, and storage stability of the composite filter were studied. The results indicate that the filters (18.5 gsm) laminated by 10 layers fiber-webs present excellent filtration efficiency (97.94%), low pressure drop (53.2 Pa), high quality factor (QF 0.073 Pa−1), and high dust holding capacity (9.72 g/m2) for NaCl aerosol particles. Increasing the layers and reducing individual layer weight can significantly improve filtration efficiency and reduce pressure drop of the filter. The filtration efficiency decayed slightly from 97.94% to 96.48% after 80 days storage. The alternate arrangement of ultra-thin nano and melt-blown layers constructed a layer-by-layer interception and collaborative filtering effect in the composite filter, realizing the high filtration efficiency and low resistance without high voltage corona charging. These results provided new insights for the application of nonwoven fabrics in air filtration. Full article
(This article belongs to the Special Issue Functional Polymer Composites for Emerging Contaminants Control)
Show Figures

Graphical abstract

Back to TopTop