Advanced Polymer Composite Materials: Processing, Modeling, Properties and Applications III

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Processing and Engineering".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 629

Special Issue Editors


E-Mail Website1 Website2
Guest Editor
Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR-SCITEC, 16149 Genova, Italy
Interests: composite material processing; material characterization
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
National Research Council of Italy—Institute of Chemical Sciences and Technologies “Giulio Natta” CNR SCITEC, Via De Marini 6, 16149 Genova, Italy
Interests: polymer calorimetric characterization; spettroscopy; design of experiments
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of previous successful Special Issues, titled “Advanced Polymer Composite Materials: Processing, Modeling, Properties and Applications” and "Advanced Polymer Composite Materials: Processing, Modeling, Properties and Applications II", also hosted by these editors. 

The subject of composite materials is truly a multi- and interdisciplinary one. People who work in fields such as materials science, processing, polymer chemistry, inorganic chemistry, chemical engineering, solid mechanics and fracture mechanics, nanotechnologies, etc., are important contributors to the field of composite materials. Furthermore, polymer-based composites are often a valid alternative to traditional materials because they combine mechanical resistance to lightness, flexibility to optical properties, and formability to low-cost processing. Due to their peculiar properties and versatility, polymer-based composites have found applications in many industrial fields, such as the construction, automotive, aerospace, biomedicine, and marine fields, to name a few. The performance of a polymeric composite material mainly depends on the nature of the components, the degree of interaction between its components, and the processing technology.

The purpose of this Special Issue is to highlight the latest original results in the development of advanced composite materials based on synthetic/natural polymers and synthetic/natural (nano)fillers/fibers, with improved properties as required by the different foreseen applications. As such, we invite submissions on cutting-edge applications related to advanced polymeric composite materials. All kinds of polymer matrices, including commodity and engineering polymers or newly developed ones—such as bio-based and/or biodegradable polymers, from thermosets and thermoplastics to vitrimers—will be considered. Manuscripts may cover, but are not limited to, the following application fields:

  • Energy storage and harvesting;
  • Biomedicals;
  • Sensors and actuators;
  • Coatings;
  • Textiles;
  • Optoelectronics and photonics;
  • Flexible and stretchable electronics;
  • Membranes;
  • Industrial (automotive, aerospace, naval);
  • 3D printing.

Dr. Maurizio Vignolo
Dr. Giorgio Luciano
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • processing technologies
  • modeling, simulation and material optimization
  • synthetic and/or natural polymers
  • modification and/or activation of polymers
  • surface modification
  • fillers and nanofillers
  • (natural) fibers
  • nanoparticles
  • biocomposites
  • bio-based hybrid materials
  • renewable materials
  • green chemistry
  • composites and nanocomposites
  • polymer composites
  • biocomposites
  • composite recycling
  • phase compatibilization
  • properties of composites
  • characterization
  • applications

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3536 KiB  
Article
Release and Degradation Mechanism of Modified Polyvinyl Alcohol-Based Double-Layer Coated Controlled-Release Phosphate Fertilizer
by Teng Sun, Dekang Zhan, Xiangzhu Wang, Qingjie Guo, Mingzhou Wu, Pu Shen and Man Wu
Polymers 2024, 16(8), 1041; https://doi.org/10.3390/polym16081041 - 10 Apr 2024
Viewed by 396
Abstract
This study aims to improve the slow-release performance of a film material for a controlled-release fertilizer (CRF) while enhancing its biodegradability. A water-based biodegradable polymer material doped with biochar (BC) was prepared from modified polyvinyl alcohol (PVA) with polyvinylpyrrolidone (PVP) and chitosan (CTS), [...] Read more.
This study aims to improve the slow-release performance of a film material for a controlled-release fertilizer (CRF) while enhancing its biodegradability. A water-based biodegradable polymer material doped with biochar (BC) was prepared from modified polyvinyl alcohol (PVA) with polyvinylpyrrolidone (PVP) and chitosan (CTS), hereinafter referred to as PVA/PVP–CTSaBCb. An environmentally friendly novel controlled-release phosphate fertilizer (CRPF) was developed using PVA/PVP-CTS8%BC7% as the film. The effect of the PVA/PVP-CTS8%BC7% coating on the service life of the CRPF was investigated. The film was characterized via stress–strain testing, SEM, FTIR, XRD, and TGA analyses. The addition of the CTS modifier increased the stress of PVA/PVP-CTS8% by 7.6% compared with that of PVA/PVP owing to the decrease in the crystallinity of PVP/PVP-CTS8%. The hydrophilic –OH groups were reduced due to the mixing of CTS and PVA/PVP. Meanwhile, the water resistance of the PVA/PVP-CTS8%BC7% was improved. And the controlled-release service life of the CRPF was prolonged. Moreover, the addition of BC increased the crystallinity of the PVA/PVP-CTS8% by 10%, reduced the fracture elongation of the material, and further improved the biodegradability of the PVA/PVP-CTS8%BC7%. When the amount of BC added was 7%, the phosphorus release rate of the CRPF was 30% on the 28th day. Moreover, the degradation rate of the PVA/PVP-CTS8%BC7% polymer film was 35% after 120 days. This study provides basic data for applying water-based degradable polymer materials in CRFs. Full article
Show Figures

Figure 1

Back to TopTop