The Application of Spectral Techniques in Agriculture and Forestry

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Protection and Biotic Interactions".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 3038

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest A&F University, Yangling 712100, China
Interests: smart irrigation; efficient use of crop water and fertilizer

Special Issue Information

Dear Colleagues,

The application of spectroscopic techniques in the fields of agriculture and forestry has emerged as a focal point of research. As such, this Special Issue is dedicated to exploring the innovative applications of spectroscopic techniques in these domains, particularly at proximal and remote scales.
The non-invasive nature and high sensitivity of this technology render it an ideal choice for the study of plant ecosystems. Through spectroscopic techniques, we gain profound insights into the physiological status, growth processes, and environmental adaptability of crops and forest vegetation. From monitoring plant health to soil analysis, and from assessing water quality to monitoring forest ecosystems, spectroscopic technology provides a wealth of data, facilitating precision agriculture and sustainable forestry management.

This Special Issue warmly welcomes original research articles, reviews, and brief communications, focusing on the fundamental and applied research of spectroscopic techniques in the analysis and sensing of crop and plant systems. We eagerly anticipate contributions ranging from laboratory to field settings, and from proximal to remote scales, aiming to foster the continuous innovation of spectroscopic technology in the fields of agriculture and forestry.

Dr. Youzhen Xiang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermal infrared imaging
  • unmanned aerial vehicles(UAVs)
  • multispectral
  • hyperspectral
  • plants
  • crops
  • forestry
  • remote sensing
  • precision agriculture

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 4968 KiB  
Article
Optimizing the Mulching Pattern and Nitrogen Application Rate to Improve Maize Photosynthetic Capacity, Yield, and Nitrogen Fertilizer Utilization Efficiency
by Hengjia Zhang, Tao Chen, Shouchao Yu, Chenli Zhou, Anguo Teng, Lian Lei and Fuqiang Li
Plants 2024, 13(9), 1241; https://doi.org/10.3390/plants13091241 - 30 Apr 2024
Viewed by 345
Abstract
Residual film pollution and excessive nitrogen fertilizer have become limiting factors for agricultural development. To investigate the feasibility of replacing conventional plastic film with biodegradable plastic film in cold and arid environments under nitrogen application conditions, field experiments were conducted from 2021 to [...] Read more.
Residual film pollution and excessive nitrogen fertilizer have become limiting factors for agricultural development. To investigate the feasibility of replacing conventional plastic film with biodegradable plastic film in cold and arid environments under nitrogen application conditions, field experiments were conducted from 2021 to 2022 with plastic film covering (including degradable plastic film (D) and ordinary plastic film (P)) combined with nitrogen fertilizer 0 (N0), 160 (N1), 320 (N2), and 480 (N3) kg·ha−1. The results showed no significant difference (p > 0.05) in dry matter accumulation, photosynthetic gas exchange parameters, soil enzyme activity, or yield of spring maize under degradable plastic film cover compared to ordinary plastic film cover. Nitrogen fertilizer is the main factor limiting the growth of spring maize. The above-ground and root biomass showed a trend of increasing and then decreasing with the increase in nitrogen application level. Increasing nitrogen fertilizer can also improve the photosynthetic gas exchange parameters of leaves, maintain soil enzyme activity, and reduce soil pH. Under the nitrogen application level of N2, the yield of degradable plastic film and ordinary plastic film coverage increased by 3.74~42.50% and 2.05~40.02%, respectively. At the same time, it can also improve water use efficiency and irrigation water use efficiency, but it will reduce nitrogen fertilizer partial productivity and nitrogen fertilizer agronomic use efficiency. Using multiple indicators to evaluate the effect of plastic film mulching combined with nitrogen fertilizer on the comprehensive growth of spring maize, it was found that the DN2 treatment had the best complete growth of maize, which was the best model for achieving stable yield and income increase and green development of spring maize in cold and cool irrigation areas. Full article
(This article belongs to the Special Issue The Application of Spectral Techniques in Agriculture and Forestry)
Show Figures

Figure 1

18 pages, 3659 KiB  
Article
Monitoring Plant Height and Spatial Distribution of Biometrics with a Low-Cost Proximal Platform
by Giovanni Bitella, Rocco Bochicchio, Donato Castronuovo, Stella Lovelli, Giuseppe Mercurio, Anna Rita Rivelli, Leonardo Rosati, Paola D’Antonio, Pierluigi Casiero, Gaetano Laghetti, Mariana Amato and Roberta Rossi
Plants 2024, 13(8), 1085; https://doi.org/10.3390/plants13081085 - 12 Apr 2024
Viewed by 385
Abstract
Measuring canopy height is important for phenotyping as it has been identified as the most relevant parameter for the fast determination of plant mass and carbon stock, as well as crop responses and their spatial variability. In this work, we develop a low-cost [...] Read more.
Measuring canopy height is important for phenotyping as it has been identified as the most relevant parameter for the fast determination of plant mass and carbon stock, as well as crop responses and their spatial variability. In this work, we develop a low-cost tool for measuring plant height proximally based on an ultrasound sensor for flexible use in static or on-the-go mode. The tool was lab-tested and field-tested on crop systems of different geometry and spacings: in a static setting on faba bean (Vicia faba L.) and in an on-the-go setting on chia (Salvia hispanica L.), alfalfa (Medicago sativa L.), and wheat (Triticum durum Desf.). Cross-correlation (CC) or a dynamic time-warping algorithm (DTW) was used to analyze and correct shifts between manual and sensor data in chia. Sensor data were able to reproduce with minor shifts in canopy profile and plant status indicators in the field when plant heights varied gradually in narrow-spaced chia (R2 = 0.98), faba bean (R2 = 0.96), and wheat (R2 = up to 0.99). Abrupt height changes resulted in systematic errors in height estimation, and short-scale variations were not well reproduced (e.g., R2 in widely spaced chia was 0.57 to 0.66 after shifting based on CC or DTW, respectively)). In alfalfa, ultrasound data were a better predictor than NDVI (Normalized Difference Vegetation Index) for Leaf Area Index and biomass (R2 from 0.81 to 0.84). Maps of ultrasound-determined height showed that clusters were useful for spatial management. The good performance of the tool both in a static setting and in the on-the-go setting provides flexibility for the determination of plant height and spatial variation of plant responses in different conditions from natural to managed systems. Full article
(This article belongs to the Special Issue The Application of Spectral Techniques in Agriculture and Forestry)
Show Figures

Figure 1

12 pages, 2825 KiB  
Article
Indirect Estimation of Heavy Metal Contamination in Rice Soil Using Spectral Techniques
by Liang Zhong, Shengjie Yang, Yicheng Rong, Jiawei Qian, Lei Zhou, Jianlong Li and Zhengguo Sun
Plants 2024, 13(6), 831; https://doi.org/10.3390/plants13060831 - 14 Mar 2024
Viewed by 657
Abstract
The rapid growth of industrialization and urbanization in China has led to an increase in soil heavy metal pollution, which poses a serious threat to ecosystem safety and human health. The advancement of spectral technology offers a way to rapidly and non-destructively monitor [...] Read more.
The rapid growth of industrialization and urbanization in China has led to an increase in soil heavy metal pollution, which poses a serious threat to ecosystem safety and human health. The advancement of spectral technology offers a way to rapidly and non-destructively monitor soil heavy metal content. In order to explore the potential of rice leaf spectra to indirectly estimate soil heavy metal content. We collected farmland soil samples and measured rice leaf spectra in Xushe Town, Yixing City, Jiangsu Province, China. In the laboratory, the heavy metals Cd and As were determined. In order to establish an estimation model between the pre-processed spectra and the soil heavy metals Cd and As content, a genetic algorithm (GA) was used to optimise the partial least squares regression (PLSR). The model’s accuracy was evaluated and the best estimation model was obtained. The results showed that spectral pre-processing techniques can extract hidden information from the spectra. The first-order derivative of absorbance was more effective in extracting spectral sensitive information from rice leaf spectra. The GA-PLSR model selects only about 10% of the bands and has better accuracy in spectral modeling than the PLSR model. The spectral reflectance of rice leaves has the capacity to estimate Cd content in the soil (relative percent difference [RPD] = 2.09) and a good capacity to estimate As content in the soil (RPD = 2.97). Therefore, the content of the heavy metals Cd and As in the soil can be estimated indirectly from the spectral data of rice leaves. This study provides a reference for future remote sensing monitoring of soil heavy metal pollution in farmland that is quantitative, dynamic, and non-destructive over a large area. Full article
(This article belongs to the Special Issue The Application of Spectral Techniques in Agriculture and Forestry)
Show Figures

Graphical abstract

16 pages, 3123 KiB  
Article
Monitoring of Nitrogen Concentration in Soybean Leaves at Multiple Spatial Vertical Scales Based on Spectral Parameters
by Tao Sun, Zhijun Li, Zhangkai Wang, Yuchen Liu, Zhiheng Zhu, Yizheng Zhao, Weihao Xie, Shihao Cui, Guofu Chen, Wanli Yang, Zhitao Zhang and Fucang Zhang
Plants 2024, 13(1), 140; https://doi.org/10.3390/plants13010140 - 04 Jan 2024
Cited by 1 | Viewed by 1053
Abstract
Nitrogen is a fundamental component for building amino acids and proteins, playing a crucial role in the growth and development of plants. Leaf nitrogen concentration (LNC) serves as a key indicator for assessing plant growth and development. Monitoring LNC provides insights into the [...] Read more.
Nitrogen is a fundamental component for building amino acids and proteins, playing a crucial role in the growth and development of plants. Leaf nitrogen concentration (LNC) serves as a key indicator for assessing plant growth and development. Monitoring LNC provides insights into the absorption and utilization of nitrogen from the soil, offering valuable information for rational nutrient management. This, in turn, contributes to optimizing nutrient supply, enhancing crop yields, and minimizing adverse environmental impacts. Efficient and non-destructive estimation of crop LNC is of paramount importance for on-field crop management. Spectral technology, with its advantages of repeatability and high-throughput observations, provides a feasible method for obtaining LNC data. This study explores the responsiveness of spectral parameters to soybean LNC at different vertical scales, aiming to refine nitrogen management in soybeans. This research collected hyperspectral reflectance data and LNC data from different leaf layers of soybeans. Three types of spectral parameters, nitrogen-sensitive empirical spectral indices, randomly combined dual-band spectral indices, and “three-edge” parameters, were calculated. Four optimal spectral index selection strategies were constructed based on the correlation coefficients between the spectral parameters and LNC for each leaf layer. These strategies included empirical spectral index combinations (Combination 1), randomly combined dual-band spectral index combinations (Combination 2), “three-edge” parameter combinations (Combination 3), and a mixed combination (Combination 4). Subsequently, these four combinations were used as input variables to build LNC estimation models for soybeans at different vertical scales using partial least squares regression (PLSR), random forest (RF), and a backpropagation neural network (BPNN). The results demonstrated that the correlation coefficients between the LNC and spectral parameters reached the highest values in the upper soybean leaves, with most parameters showing significant correlations with the LNC (p < 0.05). Notably, the reciprocal difference index (VI6) exhibited the highest correlation with the upper-layer LNC at 0.732, with a wavelength combination of 841 nm and 842 nm. In constructing the LNC estimation models for soybeans at different leaf layers, the accuracy of the models gradually improved with the increasing height of the soybean plants. The upper layer exhibited the best estimation performance, with a validation set coefficient of determination (R2) that was higher by 9.9% to 16.0% compared to other layers. RF demonstrated the highest accuracy in estimating the upper-layer LNC, with a validation set R2 higher by 6.2% to 8.8% compared to other models. The RMSE was lower by 2.1% to 7.0%, and the MRE was lower by 4.7% to 5.6% compared to other models. Among different input combinations, Combination 4 achieved the highest accuracy, with a validation set R2 higher by 2.3% to 13.7%. In conclusion, by employing Combination 4 as the input, the RF model achieved the optimal estimation results for the upper-layer LNC, with a validation set R2 of 0.856, RMSE of 0.551, and MRE of 10.405%. The findings of this study provide technical support for remote sensing monitoring of soybean LNCs at different spatial scales. Full article
(This article belongs to the Special Issue The Application of Spectral Techniques in Agriculture and Forestry)
Show Figures

Figure 1

Back to TopTop