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Abstract: Residual film pollution and excessive nitrogen fertilizer have become limiting factors for
agricultural development. To investigate the feasibility of replacing conventional plastic film with
biodegradable plastic film in cold and arid environments under nitrogen application conditions, field
experiments were conducted from 2021 to 2022 with plastic film covering (including degradable
plastic film (D) and ordinary plastic film (P)) combined with nitrogen fertilizer 0 (N0), 160 (N1), 320
(N2), and 480 (N3) kg·ha−1. The results showed no significant difference (p > 0.05) in dry matter
accumulation, photosynthetic gas exchange parameters, soil enzyme activity, or yield of spring maize
under degradable plastic film cover compared to ordinary plastic film cover. Nitrogen fertilizer is
the main factor limiting the growth of spring maize. The above-ground and root biomass showed a
trend of increasing and then decreasing with the increase in nitrogen application level. Increasing
nitrogen fertilizer can also improve the photosynthetic gas exchange parameters of leaves, maintain
soil enzyme activity, and reduce soil pH. Under the nitrogen application level of N2, the yield of
degradable plastic film and ordinary plastic film coverage increased by 3.74~42.50% and 2.05~40.02%,
respectively. At the same time, it can also improve water use efficiency and irrigation water use
efficiency, but it will reduce nitrogen fertilizer partial productivity and nitrogen fertilizer agronomic
use efficiency. Using multiple indicators to evaluate the effect of plastic film mulching combined
with nitrogen fertilizer on the comprehensive growth of spring maize, it was found that the DN2
treatment had the best complete growth of maize, which was the best model for achieving stable
yield and income increase and green development of spring maize in cold and cool irrigation areas.

Keywords: film mulching; nitrogen; maize; yield; nitrogen use efficiency; soil quality

1. Introduction

As one of the C4 crops with the most extensive planting area in the world, maize is
a crop for food and feed and an essential source of industrial raw materials [1]. China
has become the second largest producer of maize, with the planting area accounting for
more than 30% of the national grain crop planting area, reaching over 40 million hm2 [2].
(https://www.stats.gov.cn/sj/. accessed on 25 March 2024). Thus, increasing maize yield is
essential to ensuring food security, achieving self-sufficiency in food supply, and stabilizing
economic development. However, the frequent occurrence of extreme drought and the
shrinking of arable land area has brought enormous pressure on agricultural production
and even caused decreases in food production [3,4]. How to alleviate the pressure of
reduced grain production and implement a food security strategy is a major challenge
currently faced.

Plants 2024, 13, 1241. https://doi.org/10.3390/plants13091241 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants13091241
https://doi.org/10.3390/plants13091241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://www.stats.gov.cn/sj/
https://doi.org/10.3390/plants13091241
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants13091241?type=check_update&version=1


Plants 2024, 13, 1241 2 of 22

Plastic film mulching is a key technology to improve crop yield [5] and change the
agricultural production mode in areas with water shortages [6]. Plastic film mulching may
improve soil moisture and heat status, promote the decomposition and transformation of
soil organic matter, improve soil nutrient content, enzyme activity, and microbial richness,
inhibit weed growth, reduce nutrient competition, and create a good soil environment
for crop growth [7]. Plastic film covering not only increases crop yield but also hinders
gas exchange between soil and atmosphere, enhances crop root respiration intensity, and
strengthens soil nitrification and denitrification processes to increase N2O and CH4 gas
emission pressure [8]. Ordinary film used in mulching is mainly made of polyethylene,
which is degraded very slowly in soil [9,10]. However, long-term plastic film mulching and
a lack of effective recovery measures make the residue of farmland mulching plastic film a
critical environmental problem. Film residue may destroy the continuity of soil pores [11],
change the composition of the soil microbial community [12], affect water [13] and nutrient
migration [14], hinder seed germination [15] and crop root development, and ultimately
reduce crop yield [16], even threatening food security. To solve the adverse effects caused
by continuous plastic film covering for many years, it is essential to develop and apply new
covering materials, such as degradable plastic film.

As a new plastic film, the degradable type could be degraded into CO2 and H2O with
the aid of the soil and natural environments [17], which could alleviate the pressure on
the agricultural ecological environment and was considered an effective way to solve the
problem of farmland residual film concentration. Therefore, the degradable plastic film has
been applied in many countries, such as China [18], Italy [19], Thailand [20], etc. In addition,
the soil water and heat preservation effects of degradable film are equivalent to those of
ordinary film [21], which can effectively improve the soil moisture and heat status [22]. In
the middle and late stages of crop growth, the soil moisture and heat of the degradable
plastic film were lower than those of the ordinary due to the expansion of the degradation
area [23]. The difference in crop yield and water use efficiency was slight between the
degradable film mulching and the ordinary [1]. Also, soil nitrate nitrogen accumulation
could even be reduced under degradable film mulching [24]. At present, nitrogen fertilizer
application is widespread in agricultural production to maintain high yields. However,
excessive application of nitrogen fertilizer does not significantly improve crop yield and
may result in yield reduction; furthermore, surplus nitrogen might be discharged into the
atmosphere in gaseous form, causing environmental pollution [25]. In addition, the low
nitrogen use efficiency and decline in recovery rate would lead to more soil residual nitrogen
or nitrogen leaching [26], resulting in soil salinization and groundwater pollution [27,28].
Therefore, optimizing nitrogen application rate and improving nitrogen utilization are of
great significance for improving grain quality, efficiency, and environmental protection.

Film mulching combined with nitrogen fertilizer application is an essential measure in
agricultural production, which can significantly improve crop yield and water use efficiency,
increase soil microbial nitrogen content and particulate organic nitrogen, and improve
soil fertility, conducive to sustainable development of the agricultural system. Therefore,
the objectives of this study were to determine: (1) effects of ordinary and degradable
plastic film on dry matter accumulation and physiological aspects of spring maize under
different nitrogen application gradients; (2) performance in crop yield, water and nitrogen
use efficiency, and soil quality subjected to nitrogen application; and (3) the possibility of
degradable plastic film replacing the ordinary by multiple indicators.

2. Materials and Methods
2.1. Description of the Study Site

The trial was conducted at the Yimin irrigation experimental station in Minle County,
Gansu Province, China, from April 2021 to October 2022. The area is located at 100◦43′

east longitude, 38◦39′ north latitude, and 1970 m above sea level, belonging to a temperate
continental climate (Figure 1). The average annual precipitation is about 200 mm, with
the evaporation of 1680–2270 mm; the average sunshine duration is about 2592–2997 h;
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the average yearly temperature is 3.4–5.6 ◦C; and the frost-free period is about 78–188 d.
The tested soil was light loam, with a maximum field water capacity of 24% and a soil
bulk density of 1.46 g·cm−3 in topsoil. The soil pH is 7.2 and soil fertility is medium
within 0–20 cm soil layer, with organic matter of 12.6 g·kg−1 and the available phosphorus,
potassium, and alkali hydrolyzed nitrogen of 15.8 mg·g−1, 192.1 mg·kg−1 and 57.5 mg·kg−1,
respectively. The rainfall in 2021 and 2022 was 244.7 mm and 237.4 mm, respectively
(Figure 2).
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Figure 1. Location of the experimental site. Red star represents the city where the experimental site
is located.
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Figure 2. Precipitation and temperature during the spring maize growth period in 2021 (a) and 2022 (b).

2.2. Experimental Design and Field Management

The spring maize crop was film-mulched and fertilized with nitrogen. There were
two kinds of mulching film: the ordinary mulching film and the egradable mulching film
(produced by Shandong Tianzhuang environmental protection Co., Ltd. with a thickness
of 0.008 mm and a width of 70 cm, Jinan, China), respectively recorded as P, D. There were
four nitrogen application levels: 0, 160, 320, and 480 kg·ha−1, respectively, recorded as N0,
N1, N2, and N3. There were 8 treatments in total, with 3 replications. There were 18 plots
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with each area of 28 m2 (2 m × 14 m), a 0.2 m interval between communities. The field plots
were arranged with random blocks. The spring maize was planted with a row spacing of
40 and plant spacing of 35cm, and a planting density of 74,000 plants per hectare, sown
on 16 April and harvested on 25 September 2021 or sown on 18 April and harvested on
28 September 2022, respectively. The fields were rotary tilled and leveled before sowing.
The application amounts of phosphorus fertilizer (P2O5) and potassium fertilizer (K2O)
were the same at 120 kg·ha−1 and 80 kg·ha−1, respectively, and all fertilizers were supplied
as base fertilizer, which was applied to the soil when the soil was turned. Nitrogen
fertilizer was applied four times at different growth stages, namely, 20% as base fertilizer,
30% at jointing, 30% at tasseling, and 20% at grain filling. The crop was watered using
plastic film-mulched drip irrigation with the same irrigation amount according to 100%ETc
(ETc = Kc × ET0, ET0 is calculated based on Penman–Monteith equation recommended by
FAO, while Kc refers to the standard of the China Meteorological Administration; the Kc
values for April, May, June, July, August, and September are 0.3, 0.4, 0.88, 1.26, 1.25, and
0.73, respectively) [29] (https://hbba.sacinfo.org.cn/, accessed on 10 January 2024). The
meteorological parameters were provided by the micro-meteorological instrument system
in the experimental station. The effective rainfall in the 2021 and 2022 crop growing seasons
was 138.86 mm and 123.66 mm, respectively (Figure 3), and the irrigation amount in the
above two growing seasons was 627 mm and 609 mm, respectively.
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Figure 3. ETc and the effective precipitation during the spring maize growth period in 2021 (a) and
2022 (b).

2.3. Measurements and Calculations
2.3.1. Above-Ground and Underground Biomass

Three plants were randomly selected with uniform jointing, tasseling, and grain
filling of spring maize. The root sampling area was 15 × 15 cm around the plant, and the
sampling depth was determined according to the depth of spring maize roots. The plants
were decomposed into different organs, then killed at 105 ◦C for 30 min, and finally dried at
80 ◦C to a constant weight. The dry weight of each organ was weighed, and the root/shoot
ratio was calculated according to equation R/S(%) = root biomass/above-ground biomass.

2.3.2. Photosynthetic Gas Exchange Characteristics

Photosynthetic gas exchange parameters at the third leaf of the spring maize ear with
three repetitions were measured at 9:00–11:00 a.m. on sunny days during spring maize
jointing, tasseling, and grain filling using a LI-6400 portable photosynthesis instrument,
including photosynthetic rate, stomatal conductance, and transpiration rate.

https://hbba.sacinfo.org.cn/
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2.3.3. Soil Quality

During the maize harvest period, 0–20 cm of soil was taken in the middle of two
corn plants, and 3 points were randomly taken from each treatment as mixed samples to
measure soil enzyme activity. The urease was measured by sodium phenol and sodium
hypochlorite colorimetry. The enzyme activity was expressed by the milligrams of NH3-N
produced by 1 g of soil after incubation at 37 ◦C for 24 h under the action of urease. The
sucrase was measured using the 3,5-dinitrosalicylic acid colorimetric method, and enzyme
activity was expressed as the milligrams of glucose produced in 1 g of soil after being
incubated at 37 ◦C for 24 h under the action of sucrase. The soil pH was measured by a pH
meter (PHS-3C), with a soil mass extract of 2.5:1.

2.3.4. Grain Yield and Its Components

Ten spring maize plants were randomly selected in each plot at spring maize ripening
to determine the grain yield after measuring the yield components, including grain number
per ear, row number per ear, ear longitudinal diameter, and ear diameter.

2.3.5. Water and Nitrogen Use Efficiency

The crop evapotranspiration (ET, mm) was calculated using the following equation [30]:

ET = P + I + U − D − S + ∆W (1)

where P is the effective precipitation (mm); I is the amount of irrigation (mm); U is the
amount of groundwater recharge (mm). The depth of groundwater is below 20 m, so
groundwater recharge can be ignored. D is the amount of deep leakage (mm) (the tested
area is flat, thus there is no surface runoff, therefore D = 0). ∆W is the soil water storage
change between plant sowing and harvest (mm).

The water use efficiency (WUE, kg·m−3) was calculated according to following formula:

WUE = Y/ET (2)

where Y is spring maize grain yield (kg·ha−1).
The irrigation water use efficiency (IWUE, kg·m−3) was calculated using the

following formula:
IWUE = Y/I (3)

The nitrogen fertilizer partial productivity (NPF, kg·kg−1) was calculated according to
the following formula:

NPF = YN/N (4)

where YN is the spring maize yield in nitrogen application area (kg·ha−1), and N is the
amount of nitrogen fertilizer input (kg·ha−1).

The nitrogen fertilizer agronomic use efficiency (NFA, kg·kg−1) was calculated using
the following formula:

NFA = (YN − Y0)YN/N (5)

where Y0 is the spring maize yield in the area without nitrogen application (kg·ha−1).

2.4. Statistical Analysis

The SPSS 22.0 software was used to analyze the difference in the measured data
(p < 0.05), and the Origin 2021 software was used for plotting. The Yaaph software
(http://www.jeffzhang.cn/, accessed on 25 March 2024) was used to draw the compre-
hensive analysis hierarchy model of spring maize and the weight analysis of each index.
The Matlab software (https://ww2.mathworks.cn/products/matlab.html, accessed on
25 March 2024) was used to calculate the weight of the combination based on the game
theory and the comprehensive score of TOPSIS.

http://www.jeffzhang.cn/
https://ww2.mathworks.cn/products/matlab.html
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3. Result
3.1. Root and Shoot Growth

Nitrogen fertilizer is the main factor affecting spring maize root and shoot growth. The
degradable plastic film was gradually degraded with spring maize growth, and the effects
of different film types on spring maize growth were quite different, showing significant
(p < 0.05) effects on spring maize growth at tasseling and grain filling and significant
(p < 0.01) effects on spring maize root and shoot growth (Table 1).

Table 1. Significance test on spring maize root and shoot growth at different growth stages; ns means no
significant difference (p > 0.05); * means significant at p < 0.05 level; ** means significant at p < 0.01 level.

Year F Fest

Jointing Tasseling Grain Filling

Above-Ground
Dry Matter

Root Dry
Matter

Above-Ground
Dry Matter

Root Dry
Matter

Above-Ground
Dry Matter

Root Dry
Matter

2021
F 1.16 ns 3.83 ns 4.35 ns 5.12 * 5.39 * 8.16 *
N 12.44 ** 29.36 ** 43.94 ** 102.72 ** 45.27 ** 139.07 **

F×N 0.04 ns 0.16 ns 0.16 ns 0.27 ns 0.15 ns 0.19 ns

2022
F 4.09 ns 4.31 ns 2.38 ns 5.52 * 7.01 * 10.18 **
N 29.27 ** 27.05 ** 18.33 ** 58.71 ** 63.02 ** 157.72 **

F×N 0.02 ns 0.06 ns 0.05 ns 0.26 ns 0.20 ns 0.04 ns

Y 34.57 ** 9.79 ** 3.48 ns 12.39 ** 16.10 ** 8.94 **
F 4.73 * 8.05 ** 5.87 * 10.55 ** 12.31 * 18.20 **
N 39.39 ** 54.90 ** 51.40 ** 151.20 ** 106.92 ** 295.61 **

Y×F 0.38 ns 0.21 ns 0.03 ns 0.19 ns 0.03 ns 0.01 ns
Y×N 1.52 ns 0.90 ns 0.03 ns 0.25 ns 0.66 ns 0.10 ns
F×N 0.02 ns 0.01 ns 0.16 ns 0.52 ns 0.28 ns 0.16 ns

Y×F×N 0.05 ns 0.19 ns 0.00 ns 0.01 ns 0.07 ns 0.08 ns

3.1.1. Above-Ground Dry Matter

The spring maize above-ground dry matter accumulation showed an increasing trend
with plant growth (Figure 4). At jointing, there was no significant difference (p > 0.05)
between the degradable plastic film mulching and the ordinary above-ground dry matter
accumulation. The above-ground dry matter was significantly improved under nitrogen
application, and that in N2 treatment marked the maximum with 7.76~31.43% increase
under the degradable plastic film mulching and 6.50~28.85% increase under the ordinary
mulching. At tasseling, nitrogen fertilizer was the main factor affecting spring maize
above-ground dry matter. Compared with N0, N1, and N3, N2 treatment, the above-
ground dry matter of spring maize was increased by 49.89%, 22.36%, and 7.12% under
the degradable plastic film mulching and 40.39%, 20.45%, and 5.27% under the ordinary
mulching, respectively. At the grain-filling stage, nitrogen fertilizer had a more significant
effect on increasing above-ground dry matter accumulation. Compared with N0 and
N1, N2 significantly increased by 61.45%, 28.66% under degradable plastic film mulching
and 52.87%, 28.74% under ordinary mulching, and the effect of nitrogen fertilizer under
degradable plastic film mulching was better than that of ordinary plastic film mulching.
It can be seen that a reasonable amount of nitrogen fertilizer can promote the growth
and development of spring maize and improve the dry matter quality of above-ground
parts. When the nitrogen fertilizer level exceeds N2, it will inhibit the growth of spring
maize and affect the accumulation of dry matter. There was no significant difference in the
development of spring maize under ordinary plastic film mulching and degradable plastic
film mulching (p > 0.05).
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Figure 4. Effects of different mulching and nitrogen application on root and shoot growth of spring
maize in 2021 (a) and 2022 (b). D represents degradable plastic film, P represents ordinary plastic
film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertilizer. The let-
ters above the histogram indicate that there are significant differences among different treatments
(p < 0.05). The data in the figure are the average of multiple repeated sets (n = 3). The bar above the
bar graph represents the standard error.

3.1.2. Root Dry Matter

The root biomass of spring maize reached its maximum, with the growth stage advanc-
ing to the filling phase (Figure 4). Nitrogen fertilizer can promote the growth of the spring
maize root system and improve its quality. At the jointing stage, N2 treatment increased the
root system by 40.57%, 20.58%, and 8.07% under the degradable plastic film mulching and
37.97%, 20.50%, and 7.66% under the ordinary mulching, respectively, compared with N0,
N1, and N3, indicating that N3 nitrogen application can inhibit the growth of the spring
maize root system. At the tasseling stage, under the cover of degradable plastic film and
ordinary plastic film, the growth rate from N0 to N1 increased by 40.39% and 31.06%, while
from N1 to N2 it increased by 26.38% and 25.43%. It can be seen that the effect of root
mass growth gradually decreased with the increase in nitrogen application level, and even
the N3 treatment of degradable plastic film and ordinary plastic film decreased by 6.58%
and 8.92%, respectively. At the grain filling stage, compared with N0, N1, and N3, N2
treatment significantly increased 115.73%, 58.17%, and 22.02% under the degradable plastic
film mulching and 103.56%, 49.18%, and 18.53% under the ordinary mulching (p < 0.05).
From the jointing stage to the grain filling period, the degradable mulching film improved
root quality more than the ordinary one.

3.1.3. Root Shoot Ratio

At the jointing stage, film mulching type, nitrogen application level, and their interac-
tion had no significant effect on root shoot ratio (p > 0.05). From the tasseling stage to the
grain filling stage, the impact of nitrogen fertilizer on the root shoot ratio reached p < 0.01
level, and film mulching and its interaction had no significant effect on the root shoot ratio
(p > 0.05) (Table 2).
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Table 2. Significance test of spring maize root shoot ratio at different growth stages; ns means no
significant difference (p > 0.05); * means significant at p < 0.05 level; ** means significant at p < 0.01 level.

Year F Fest Jointing Stage Tasseling Period Grain Filling Period

2021
F 0.41 ns 0.03 ns 0.22 ns
N 1.77 ns 19.24 ** 17.72 **

F×N 0.12 ns 0.38 ns 0.32 ns

2022
F 0.11 ns 0.27 ns 0.13 ns
N 0.60 ns 6.23 ** 10.43 **

F×N 0.07 ns 0.25 ns 0.17 ns

Y 4.73 * 1.41 ns 0.86 ns
F 0.45 ns 0.28 ns 0.33 ns
N 2.03 ns 19.40 ** 27.09 **

Y×F 0.02 ns 0.13 ns 0.00 ns
Y×N 0.13 ns 0.10 ns 0.25 ns
F×N 0.01 ns 0.56 ns 0.35 ns

Y×F×N 0.17 ns 0.01 ns 0.12 ns

The root shoot ratio increased first and then decreased with the growth period
(Figure 5). At a jointing stage, film mulching type and nitrogen application level had
no significant effect on the root shoot ratio (p > 0.05). At the tasseling stage, nitrogen
fertilizer could significantly improve the root shoot ratio of spring maize. The root shoot
ratio of spring maize under degradable plastic film mulching increased with the increase in
nitrogen application level; from N0 to N1 increased by 14.59%, from N2 to N2 increased
by 3.35%, and from N2 to N3 increased by 0.15%; Under ordinary plastic film mulching,
the root shoot ratio of the N3 treatment was 4.37% lower than that of N2, indicating that
degradable mulching was more conducive to the growth of the spring maize root shoot
and coordinated the root shoot ratio. There was no significant difference in the root shoot
ratio of the nitrogen application treatment (p > 0.05). At the grain-filling stage, the nitro-
gen application level of N2 was significantly higher than that of N0 and N1 by 33.35%,
22.56% under the degradable plastic film mulching, and 32.54%, 15.69% under the ordinary
mulching (p < 0.05), respectively. At the same time, there was no significant difference
between N3 and N2 (p > 0.05).
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Figure 5. Effect of different film mulching and nitrogen application on spring maize root shoot ratio
in 2021 (a) and 2022 (b). R/S represents root-to-shoot ratio, D represents degradable plastic film,
P represents ordinary plastic film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1

nitrogen fertilizer. The letters above the histogram indicate that there are significant differences
among different treatments (p < 0.05). The data are the figure is the average of multiple repeated sets
(n = 3). The bar above the bar graph represents the standard error.
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3.2. Photosynthetic Gas Exchange Characteristics

Nitrogen fertilizer was the main factor affecting the net photosynthetic rate, transpi-
ration rate, and stomatal conductance of spring maize, reaching a level of p < 0.01. Film
mulching and its interaction at the jointing stage did not significantly affect the net pho-
tosynthetic rate, transpiration rate, or stomatal conductance. Nitrogen fertilizer from the
tasseling location to the grain filling stage had significant (p < 0.05) and highly significant
(p < 0.01) effects on net photosynthetic rate, transpiration rate, and stomatal conductance,
and the interaction between film mulching and nitrogen fertilizer had no significant impact
(p > 0.05) (Table 3).

Table 3. Significance test of photosynthetic gas exchange parameters of spring maize at different
growth stages. Pn represents the net photosynthetic rate, Tr represents the transpiration rate, and Gs
represents stomatal conductance. ns means no significant difference (p > 0.05); * means significant at
p < 0.05 level; ** means significant at p < 0.01 level.

Year F Fest
Jointing Stage Tasseling Period Grain filling Period

Pn Tr Gs Pn Tr Gs Pn Tr Gs

2021
F 0.84 ns 3.02 ns 4.00 ns 2.10 ns 3.73 ns 3.88 ns 5.74 * 8.71 ** 21.70 **
N 15.14 ** 24.54 ** 33.63 ** 17.82 ** 26.54 ** 21.23 ** 38.33 ** 81.79 ** 86.84 **

F×N 0.12 ns 0.89 ns 0.44 ns 0.13 ns 0.08 ns 0.04 ns 0.12 ns 1.19 ns 4.31 *

2022
F 3.16 ns 4.22 ns 2.24 ns 3.39 ns 5.83 * 8.07 * 3.42 ns 4.57 * 8.84 **
N 19.89 ** 34.39 ** 8.29 ** 25.51 ** 34.77 ** 56.66 ** 23.08 ** 21.97 ** 136.09 **

F×N 0.27 ns 0.61 ns 0.23 ns 0.50 ns 0.22 ns 0.11 ns 0.10 ns 0.92 ns 0.04 ns

Y 7.13 * 1.15 ns 71.52 ** 35.52 ** 2.26 ns 21.89 ** 7.42 * 1.15 ns 0.72 ns
F 3.97 ns 7.14 * 5.56 * 5.42 * 9.36 ** 10.16 ** 8.85 ** 12.50 ** 28.98 **
N 34.23 ** 58.08 ** 31.60 ** 43.00 ** 60.68 ** 62.68 ** 59.28 ** 88.49 ** 213.84 **

Y×F 0.97 ns 0.02 ns 0.02 ns 0.08 ns 0.06 ns 0.02 ns 0.04 ns 0.07 ns 1.28 ns
Y×N 2.68 ns 0.21 ns 0.88 ns 0.39 ns 0.07 ns 0.23 ns 0.28 ns 5.04 ** 10.15 **
F×N 0.38 ns 1.47 ns 0.44 ns 0.55 ns 0.26 ns 0.11 ns 0.21 ns 0.77 ns 2.03 ns

Y×F×N 0.07 ns 0.05 ns 0.16 ns 0.09 ns 0.03 ns 0.01 ns 0.01 ns 1.30 ns 2.23 ns

3.2.1. Net Photosynthetic Rate

With the advance of the spring maize growth period, the net photosynthetic rate
reached its maximum at the tasseling stage and slightly decreased at the grain filling
stage. The net photosynthetic rate increased with the increase in nitrogen application
level (Figure 6). At jointing, there was no significant difference in net photosynthetic rate
between N2 and N3 treatments under degradable plastic film mulching (p > 0.05), which
was significantly increased by 19.40%, 8.95% and 24.25%, 13.37% compared with N0 and N1,
respectively. Under ordinary plastic film mulching, N3 was increased by 18.90%, 10.54%,
and 3.88% compared with N2, N1, and N0, respectively. At tasseling, the net photosynthetic
rate of degradable plastic film and ordinary plastic film mulching increased by 16.57%
and 11.45% from N0 to N1, increased by 9.24% and 7.78% from N1 to N2, and increased
by 2.87% and 2.17% from N2 to N3, respectively. It can be seen that the effect of nitrogen
fertilizer gradually weakened with the increase in nitrogen application level. At the grain
filling stage, the nitrogen application level of N3 was significantly higher than that of N0,
N1, and N2 (p < 0.05), increasing by 45.71%, 26.64%, and 15.10% under the degradable
plastic film mulching, and 43.44%, 29.41%, and 13.32% under the ordinary mulching
(p < 0.05), respectively. From the jointing to the grain filling stage, there was no significant
difference in the net photosynthetic rate between degradable plastic film and ordinary
plastic film under the same nitrogen application level (p > 0.05), and the increase in the net
photosynthetic rate of degradable plastic film combined with nitrogen fertilizer was higher
than that of ordinary plastic film.
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Figure 6. Effect of different film mulching combined with nitrogen fertilizer on the net photosynthetic
rate of spring maize (2021 (a) and 2022 (b)). D represents degradable plastic film, P represents ordinary
plastic film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertilizer. The
letters above the histogram indicate that there are significant differences among different treatments
(p < 0.05). The data in the figure are the average of multiple repeated sets (n = 3). The bar above the
bar graph represents the standard error.

3.2.2. Transpiration Rate

The transpiration rate of spring maize increased first, then decreased with the advance
of the growth period, and increased with the increase in nitrogen application level (Figure 7).
At a jointing stage, the degradable plastic film and common plastic film increased by 23.20%
and 10.96%, respectively, from N0 to N1, increased by 14.29% and 12.63%, respectively,
from N1 to N2, and increased by 5.23% and 4.62%, respectively, from N2 to N3. This
showed that nitrogen application significantly increased the transpiration rate. At the
tasseling stage, the transpiration rate of nitrogen application treatment was significantly
higher than that of no nitrogen application treatment (p < 0.05). N1, N2, and N3 under
degradable plastic film cover increased by 29.50%, 54.07%, and 68.84% compared to N0,
respectively. N1, N2, and N3 under ordinary plastic film cover increased by 22.81%, 40.40%,
and 52.66% compared to N0. Moreover, there was no significant difference in transpiration
rate between degradable plastic film cover and ordinary plastic film cover under the same
nitrogen application level (p > 0.05). At the grain filling stage, the nitrogen application
level treatment of N3 was 69.97%, 21.08%, and 5.06% under the degradable plastic film
mulching, and 55.42%, 15.13%, and 8.15% under the ordinary mulching, higher than that of
N0, N1, and N2, respectively. From the jointing to the tasseling stage, the transpiration rate
of common plastic film mulching was higher than that of degradable plastic film mulching,
but there was no significant difference (p > 0.05).

3.2.3. Stomatal Conductance

As the growth period progressed, the stomatal conductance of spring maize reached
its maximum at the tasseling stage and slightly decreased during the filling phase (Figure 8).
During the jointing stage, the stomatal conductance of nitrogen application treatments was
significantly higher than that of non-nitrogen application treatments (p < 0.05). N3, N2, and
N1 increased by 11.87%, 23.50%, and 32.00% under the degradable plastic film mulching,
and 11.57%, 16.67%, and 24.07% under the ordinary mulching, respectively, compared
to N0. Moreover, the stomatal conductance of ordinary plastic film was higher than that
of degradable plastic film, but there was no significant difference (p > 0.05). During the
tasseling period, N3 treatment under degradable plastic film coverage was significantly
higher than N2, N1, and N0 (p < 0.05), with increases of 48.95%, 23.48%, and 12.70%,
respectively. There was no significant difference in nitrogen application levels between N3
and N2 under ordinary plastic film coverage (p > 0.05), both of which were significantly
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higher than N1 and N0 (p < 0.05). During the grain-filling period, under the cover of
degradable and ordinary plastic film, the increase from N0 to N1 was 12.83% and 16.74%,
respectively. The increase from N1 to N2 was 29.02% and 35.48%, and the increase from N2
to N3 was 17.63% and 9.79%, respectively. Under the same nitrogen application level, the
stomatal conductance of ordinary plastic film was higher than that of degradable plastic
film, and when the nitrogen application level was lower than N2, the amplification effect
of average plastic film was better than that of degradable plastic film. Under the nitrogen
application level of N3, the amplification effect of degradable plastic film was better than
that of ordinary plastic film.
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transpiration rate (2021 (a) and 2022 (b)). D represents degradable plastic film, P represents ordinary
plastic film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertilizer. The
letters above the histogram indicate that there are significant differences among different treatments
(p < 0.05). The data in the figure are the average of multiple repeated sets (n = 3). The bar above the
bar graph represents the standard error.

Plants 2024, 13, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 8. The effect of different coverage and nitrogen fertilizer application on the stomatal conduct-
ance of spring maize (2021 (a) and 2022 (b)). D represents degradable plastic film, P represents or-
dinary plastic film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertilizer. 
The letters above the histogram indicate that there are significant differences among different treat-
ments (p < 0.05). The data in the figure are the average of multiple repeated sets (n = 3). The bar 
above the bar graph represents the standard error. 

3.3. Yield and Water and Nitrogen Use Efficiency 
Nitrogen fertilizer was the main factor affecting spring maize yield, water consump-

tion, and water and nitrogen utilization efficiency, reaching p < 0.05 and p < 0.01. Film 
mulching has a significant (p < 0.05) and highly effective (p < 0.01) impact on irrigation 
water use efficiency (IWUE) and nitrogen fertilizer agronomic utilization efficiency. The 
interaction between film mulching and nitrogen fertilizer had a significant (p < 0.01) im-
pact on nitrogen fertilizer agronomic utilization efficiency (Table 4). 

Table 4. Effects of different mulching and nitrogen application on spring maize yield and water and 
nitrogen use efficiency. The data in the table is the mean ± standard deviation, n = 3. Different letters 
after the same column of numbers indicate significant differences (p < 0.05); ns means no significant 
difference (p > 0.05); * means significant at p < 0.05 level; ** means significant at p < 0.01 level. 

Year Treatments Yield (kg·ha−1) ET (mm) WUE (kg·m−3) IWUE (kg·m−3) NPF (kg·kg−1) NFA (kg·kg−1) 

2021 

DN0 10,056.06 ± 723.38 d 786.20 ± 16.74 ab 1.28 ± 0.07 d 1.60 ± 0.12 d -- -- 
DN1 12,275.78 ± 497.49 bc 818.83 ± 14.01 ab 1.50 ± 0.05 bcd 1.96 ± 0.08 bc 76.72 ± 3.11 a 28.83 ± 3.03 a 
DN2 14,016.28 ± 542.33 ab 839.86 ± 15.91 a 1.67 ± 0.10 a 2.24 ± 0.11 ab 43.80 ± 2.04 b 12.38 ± 0.40 b 
DN3 13,680.4 ± 653.61 ab 844.57 ± 20.03 a 1.62 ± 0.03 abc 2.18 ± 0.08 ab 28.50 ± 1.13 c 7.55 ± 0.83 c 
PN0 11,014.06 ± 622.97 cd 770.25 ± 21.94 b 1.43 ± 0.10 cd 1.76 ± 0.10 cd -- -- 
PN1 12,973.96 ± 514.01 ab 793.97 ± 16.97 ab 1.63 ± 0.05 abc 2.07 ± 0.08 ab 81.09 ± 3.21 a 12.25 ± 1.28 b 
PN2 14,895.24 ± 586.73 a 827.76 ± 20.65 ab 1.80 ± 0.03 a 2.38 ± 0.10 a 46.55 ± 1.83 b 12.13 ± 0.23 b 
PN3 14,621.44 ± 607.53 a 835.34 ± 14.52 a 1.75 ± 0.09 a 2.33 ± 0.10 a 30.46 ± 1.27 c 7.52 ± 0.24 c 

F fest 
F 4.23 ns 1.52 ns 6.38 * 4.25 ns 2.71 ns 24.17 ** 
N 18.00 ** 5.05 * 9.52 ** 17.95 ** 251.76 ** 44.21 ** 

F×N 0.02 ns 0.07 ns 0.01 ns 0.02 ns 0.15 ns 22.97 ** 

2022 

DN0 9446.10 ± 446.82 d 746.38 ± 11.50 cd 1.26 ± 0.04 d 1.55 ± 0.07 d -- -- 

DN1 11,207.88 ± 488.95 cd 
765.96 ± 16.27 

bcd 
1.46 ± 0.07 cd 1.84 ± 0.08 cd 70.05 ± 3.06 a 25.21 ± 0.88 a 

DN2 13,773.96 ± 766.25 ab 801.97 ± 14.61 ab 1.72 ± 0.12 ab 2.26 ± 0.13 ab 43.04 ± 2.39 b 13.52 ± 1.31 bc 

DN3 
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Figure 8. The effect of different coverage and nitrogen fertilizer application on the stomatal con-
ductance of spring maize (2021 (a) and 2022 (b)). D represents degradable plastic film, P represents
ordinary plastic film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertil-
izer. The letters above the histogram indicate that there are significant differences among different
treatments (p < 0.05). The data in the figure are the average of multiple repeated sets (n = 3). The bar
above the bar graph represents the standard error.
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3.3. Yield and Water and Nitrogen Use Efficiency

Nitrogen fertilizer was the main factor affecting spring maize yield, water consump-
tion, and water and nitrogen utilization efficiency, reaching p < 0.05 and p < 0.01. Film
mulching has a significant (p < 0.05) and highly effective (p < 0.01) impact on irrigation
water use efficiency (IWUE) and nitrogen fertilizer agronomic utilization efficiency. The
interaction between film mulching and nitrogen fertilizer had a significant (p < 0.01) impact
on nitrogen fertilizer agronomic utilization efficiency (Table 4).

Table 4. Effects of different mulching and nitrogen application on spring maize yield and water and
nitrogen use efficiency. The data in the table is the mean ± standard deviation, n = 3. Different letters
after the same column of numbers indicate significant differences (p < 0.05); ns means no significant
difference (p > 0.05); * means significant at p < 0.05 level; ** means significant at p < 0.01 level.

Year Treatments Yield (kg·ha−1) ET (mm) WUE (kg·m−3) IWUE (kg·m−3) NPF (kg·kg−1) NFA (kg·kg−1)

2021

DN0 10,056.06 ± 723.38 d 786.20 ± 16.74 ab 1.28 ± 0.07 d 1.60 ± 0.12 d -- --
DN1 12,275.78 ± 497.49 bc 818.83 ± 14.01 ab 1.50 ± 0.05 bcd 1.96 ± 0.08 bc 76.72 ± 3.11 a 28.83 ± 3.03 a
DN2 14,016.28 ± 542.33 ab 839.86 ± 15.91 a 1.67 ± 0.10 a 2.24 ± 0.11 ab 43.80 ± 2.04 b 12.38 ± 0.40 b
DN3 13,680.4 ± 653.61 ab 844.57 ± 20.03 a 1.62 ± 0.03 abc 2.18 ± 0.08 ab 28.50 ± 1.13 c 7.55 ± 0.83 c
PN0 11,014.06 ± 622.97 cd 770.25 ± 21.94 b 1.43 ± 0.10 cd 1.76 ± 0.10 cd -- --
PN1 12,973.96 ± 514.01 ab 793.97 ± 16.97 ab 1.63 ± 0.05 abc 2.07 ± 0.08 ab 81.09 ± 3.21 a 12.25 ± 1.28 b
PN2 14,895.24 ± 586.73 a 827.76 ± 20.65 ab 1.80 ± 0.03 a 2.38 ± 0.10 a 46.55 ± 1.83 b 12.13 ± 0.23 b
PN3 14,621.44 ± 607.53 a 835.34 ± 14.52 a 1.75 ± 0.09 a 2.33 ± 0.10 a 30.46 ± 1.27 c 7.52 ± 0.24 c

F fest
F 4.23 ns 1.52 ns 6.38 * 4.25 ns 2.71 ns 24.17 **
N 18.00 ** 5.05 * 9.52 ** 17.95 ** 251.76 ** 44.21 **

F×N 0.02 ns 0.07 ns 0.01 ns 0.02 ns 0.15 ns 22.97 **

2022

DN0 9446.10 ± 446.82 d 746.38 ± 11.50 cd 1.26 ± 0.04 d 1.55 ± 0.07 d -- --
DN1 11,207.88 ± 488.95 cd 765.96 ± 16.27 bcd 1.46 ± 0.07 cd 1.84 ± 0.08 cd 70.05 ± 3.06 a 25.21 ± 0.88 a
DN2 13,773.96 ± 766.25 ab 801.97 ± 14.61 ab 1.72 ± 0.12 ab 2.26 ± 0.13 ab 43.04 ± 2.39 b 13.52 ± 1.31 bc
DN3 13,107.30 ± 518.96 abc 813.98 ± 15.09 a 1.61 ± 0.03 abc 2.15 ± 0.09 abc 27.31 ± 1.08 c 7.63 ± 0.18 d
PN0 10,028.44 ± 895.66 d 727.34 ± 10.15 d 1.38 ± 0.11 cd 1.65 ± 0.15 d -- --
PN1 12,017.44 ± 626.16 bc 758.35 ± 13.62 bcd 1.59 ± 0.10 bc 1.97 ± 0.10 bc 75.11 ± 3.91 a 12.43 ± 2.92 bcd
PN2 14,567.82 ± 498.79 a 784.20 ± 11.10 abc 1.86 ± 0.05 a 2.39 ± 0.08 a 45.52 ± 1.56 b 14.19 ± 1.25 b
PN3 14,248.88 ± 573.33 a 795.25 ± 16.05 ab 1.79 ± 0.07 ab 2.34 ± 0.09 a 29.69 ± 1.19 c 8.79 ± 1.16 cd

F fest
F 3.61 ns 2.65 ns 6.64 * 3.75 ns 2.78 ns 8.60 *
N 21.63 ** 9.98 ** 14.52 ** 21.65 ** 169.04 ** 24.24 **

F×N 0.07 ns 0.08 ns 0.09 ns 0.07 ns 0.20 ns 13.45 **

Y 4.45 * 25.85 ** 0.00 ns 0.83 ns 4.09 ns 0.02 ns
F 7.81 ** 3.88 ns 13.29 ** 7.97 ** 5.48 * 11.74 **
N 39.48 ** 13.72 ** 24.50 ** 39.48 ** 412.74 ** 25.52 **

Y×F 0.00 ns 0.00 ns 0.00 ns 0.00 ns 0.01 ns 0.53 ns
Y×N 0.29 ns 0.06 ns 0.35 ns 0.38 ns 1.77 ns 0.54 ns
F×N 0.05 ns 0.01 ns 0.03 ns 0.05 ns 0.34 ns 13.78 **

Y×F×N 0.04 ns 0.14 ns 0.07 ns 0.05 ns 0.01 ns 0.12 ns

Nitrogen fertilizer significantly increased the spring maize yield. Under biodegradable
plastic film and ordinary plastic film coverage, the yield increased from N0 to N1 by 20.42%
and 18.77%, respectively, and from N1 to N2 by 18.34% and 17.89%, respectively. As the
nitrogen application rate increased, the yield of spring maize gradually weakened and
even decreased by 2.01% to 3.61% at the N3 nitrogen application level. Moreover, under the
same nitrogen application level, the yield of biodegradable plastic film was not significantly
different from that of ordinary plastic film (p > 0.05). Nitrogen fertilizer promoted spring
maize water absorption and increased water consumption. N3 is 8.22%, 4.65%, and 1.02%
higher under the degradable plastic film mulching than N2, N1, and N0, respectively,
and 8.88%, 5.04%, and 1.16% under the ordinary mulching. Increasing nitrogen fertilizer
application can improve spring maize WUE and IWUE. Under degradable plastic film
coverage, N2 treatment increased WUE and IWUE by 33.55%, 14.53%, 42.55%, and 18.40%
compared to N1 and N0, respectively. Under ordinary plastic film coverage, N2 treatment
increased WUE and IWUE by 30.08%, 13.48%, 40.09%, and 17.94% compared to N1 and N0,
respectively. However, it reduced nitrogen fertilizer productivity. Degradable plastic film
treatment reduced N2 and N3 by 69.01% and 163.00%, respectively, while ordinary plastic
film treatment reduced N2 and N3 by 69.65% and 159.69%, respectively, compared to N1.
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3.4. Soil Enzyme Activity and pH

Nitrogen fertilizer significantly affected the soil urease and sucrase (p < 0.01), while
film mulching had a critical (p < 0.05) and highly effective (p < 0.01) effect on urease and
sucrase. Film mulching and nitrogen fertilizer had no significant effect on pH (p > 0.05), and
the interaction had no considerable impact on urease, sucrase, and pH (p > 0.05) (Table 5).

Table 5. Significance test of soil enzyme activity and pH. ns means no significant difference (p > 0.05);
* means significant at p < 0.05 level; ** means significant at p < 0.01 level.

Year F Fest Urease Sucrase pH

2021
F 9.66 ** 4.33 ns 0.02 ns
N 76.05 ** 15.13 ** 0.48 ns

F×N 0.06 ns 0.12 ns 0.002 ns

2022
F 6.16 * 8.61 * 0.06 ns
N 64.21 ** 37.80 ** 1.32 ns

F×N 0.24 ns 0.20 ns 0.003 ns

Y 1.21 ns 0.45 ns 0.08 ns
F 15.49 ** 11.18 ** 0.06 ns
N 139.26 ** 43.66 ** 1.57 ns

Y×F 0.10 ns 0.02 ns 0.00 ns
Y×N 0.24 ns 0.04 ns 0.04 ns
F×N 0.14 ns 0.25 ns 0.01 ns

Y×F×N 0.17 ns 0.04 ns 0.00 ns

The soil urease, sucrase, and pH under plastic film mulching were lower than those
under ordinary plastic film mulching, but there was no significant difference (p > 0.05)
(Figure 9). Under ordinary plastic film coverage, urease and sucrase increased by 34.24%
and 13.67% from N0 to N1, 26.72% and 15.24% from N1 to N2, and 11.18% and 1.44% from
N2 to N3, respectively. Under biodegradable plastic film coverage, urease and sucrase
increased by 42.21% and 21.92% from N0 to N1, 32.88% and 14.48% from N1 to N2, and
12.71% and 2.33% from N2 to N3, respectively. It can be seen that increasing nitrogen
fertilizer can significantly improve soil urease and sucrase activities, but the increase
gradually decreases with increasing nitrogen application. Increasing nitrogen fertilizer
application can reduce soil pH, but the treatments have no significant difference (p > 0.05).
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3.5. Correlation Analysis between Various Indicators of Spring Maize

The yield of spring maize mainly comes from the photosynthetic products during
the filling period [31], so the root and crown growth and photosynthetic gas exchange
parameters during the grain filling period are selected as evaluation indicators. Figure 10
showed a significant positive correlation (p < 0.05) between yield and water consumption,
transpiration rate, above-ground biomass, root biomass, root-to-shoot ratio, urease, and
sucrase under degradable plastic film coverage. The yield under plastic film coverage
was positively correlated with water consumption, above-ground biomass, root biomass,
root-to-shoot ratio, urease, and sucrase (p < 0.05) and negatively correlated with pH.
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Figure 10. Correlation analysis between various indicators of spring maize under different treatments,
* Significant difference at p < 0.05 level. D represents degradable plastic film, P represents ordinary
plastic film, Y represents yield, ET represents crop evapotranspiration, Pn represents net photo-
synthetic rate, Tr represents transpiration rate, Gs represents stomatal conductance, DY represents
above-ground biomass, R represents root biomass, R/S represents root to shoot ratio, U represents
urease, and S represents sucrase.

3.6. Construction of a Comprehensive Growth Evaluation Model for Spring Maize
3.6.1. Comprehensive Evaluation Hierarchy Model

They were using Yaaph software to establish a hierarchical model for the compre-
hensive evaluation of spring maize (Figure 11). The total growth index (C) target layer
includes four criteria layers: yield and water use index (C1), photosynthetic index (C2),
root and crown growth index (C3), and soil index (C4). The yield indicators include two
indicator layers: yield (C11) and water consumption (C12). The photosynthetic indicators
include three indicator layers: net photosynthetic rate (C21), transpiration rate (C22), and
stomatal conductance (C23). The root cap growth indicators include three indicator layers:
above-ground dry matter mass (C31), root mass (C32), and root cap ratio (C33). Soil quality
indicators include three indicator layers: urease (C41), sucrase (C42), and pH (C43).
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Figure 11. Comprehensive growth evaluation model diagram of spring maize.
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3.6.2. Indicator Weights
AHP Method for Determining Indicator Weights

After establishing the hierarchical model, a judgment matrix is specified using a scale
of 1–9. According to Figure 10, values are assigned to each indicator, and the consistency
of the judgment matrix is checked. The judgment matrices for the comprehensive growth
indicator (C), yield indicator (C1), root and crown growth indicator (C3), and soil indicator
(C4) are as follows:

Degradable plastic film:

C =


1.0000 2.0000 2.5000 3.0000
0.5000 1.0000 0.5000 0.5000
0.4000 2.0000 1.0000 2.0000
0.3333 2.0000 0.5000 1.000

C1 =

[
1.0000 2.0000
0.5000 1.0000

]

C2 =

1.0000 0.5000 1.0000
2.0000 1.0000 2.0000
1.0000 0.5000 1.0000

C3 =

1.0000 2.0000 1.5000
0.5000 1.0000 1.1000
0.6667 0.9091 1.0000



C4 =

1.0000 0.5000 1.5000
2.0000 1.0000 1.5000
0.6667 0.6667 1.0000


Ordinary plastic film:

C =


1.0000 2.0000 2.5000 2.0000
0.5000 1.0000 0.5000 1.5000
0.4000 2.0000 1.0000 2.0000
0.5000 0.6667 0.5000 1.000

C1 =

[
1.0000 1.5000
0.6667 1.0000

]

C2 =

1.0000 2.0000 2.5000
0.5000 1.0000 0.5000
0.4000 2.0000 1.0000

C3 =

1.0000 2.5000 1.5000
0.4000 1.0000 0.5000
0.6667 0.9091 1.0000



C4 =

1.0000 0.3333 0.5000
3.0000 1.0000 2.0000
2.0000 0.5000 1.0000


The consistency test coefficients CR of the comprehensive growth index (C), yield

index (C1), root and shoot growth index (C3), and soil index (C4) of the two plastic film
mulchings were all less than 0.1, indicating that the consistency test results were good. The
established judgment matrix was reliable and reasonable (Table 6, λmax is the maximum
eigenvalue). The results showed that the weight of each index under degradable plastic film
mulching was in the order of yield, water consumption, above-ground dry matter quality,
sucrase, transpiration rate, root-shoot ratio, root quality, urease, pH, net photosynthetic
rate, and stomatal conductance. The weight of each index under ordinary plastic film
mulching was in the order of yield, water consumption, above-ground dry matter quality,
net photosynthetic rate, root-shoot ratio, sucrase, stomatal conductance, root quality, pH,
transpiration rate, and urease.

Table 6. Weight calculation results of AHP Analytic Hierarchy Process.

Degradable Plastic Film Ordinary Plastic Film

Local
Weights Final Weight Consistency Check

Parameters
Local

Weights Final Weight Consistency Check
Parameters

Target
layer C

0.4435 0.4435
CR = 0.0664 < 0.1
λmax = 4.1774

0.4115 0.4115
CR = 0.0477 < 0.1
λmax = 4.1274

0.1360 0.1360 0.1781 0.1781
0.2493 0.2493 0.2604 0.2604
0.1713 0.1713 0.1460 0.1460
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Table 6. Cont.

Degradable Plastic Film Ordinary Plastic Film

Local
Weights Final Weight Consistency Check

Parameters
Local

Weights Final Weight Consistency Check
Parameters

Criterion
layer C1

0.6667 0.2957 CR = 0.0000 < 0.1
λmax = 2.0000

0.6000 0.2469 CR = 0.0000 < 0.1
λmax = 2.00000.3333 0.1478 0.4000 0.1646

Criterion
layer C2

0.2500 0.0340
CR = 0.0000 < 0.1
λmax = 3.0000

0.5232 0.0932
CR = 0.0904 < 0.1
λmax = 3.0940

0.5000 0.0680 0.1928 0.0343
0.2500 0.0340 0.2840 0.0506

Criterion
layer C3

0.4641 0.1157
CR = 0.0157 < 0.1
λmax = 3.0163

0.4797 0.1249
CR = 0.0036 < 0.1
λmax = 3.0037

0.2636 0.0657 0.1805 0.0470
0.2723 0.0679 0.3398 0.0885

Criterion
layer C4

0.2918 0.0500
CR = 0.0516 < 0.1
λmax = 3.0536

0.1634 0.0239
CR = 0.0088 < 0.1
λmax = 3.0092

0.4632 0.0793 0.5396 0.0788
0.2451 0.0420 0.2970 0.0434

Entropy Weight Method for Determining Indicator Weights

The weights of various indicators of spring maize were calculated using Matlab pro-
gramming, as shown in Table 7. According to the table, the consequences of multiple
indicators under degradable plastic film cover, in descending order, were: pH, stomatal
conductance, root-to-shoot ratio, root mass, net photosynthetic rate, urease, water con-
sumption, above-ground dry matter mass, yield, sucrase, and transpiration rate. Under
ordinary plastic film cover, the weights of various indicators were in descending order: pH,
stomatal conductance, net photosynthetic rate, root mass, above-ground dry matter mass,
urease, sucrase, and water consumption root-to-shoot ratio, yield, and transpiration rate.

Table 7. Single index weights of spring maize calculated based on Entropy Weight Method.

Treatments Index C11 C12 C21 C22 C23 C31 C32 C33 C41 C42 C43

D Weight 0.0797 0.0837 0.0922 0.0754 0.1102 0.0834 0.0923 0.0983 0.0864 0.0785 0.1199
P 0.0787 0.0817 0.0980 0.0717 0.0999 0.0858 0.0862 0.0802 0.0834 0.0822 0.1522

Combination Weight Determination Based on the Game Theory

To avoid the influence of subjective factors on evaluation, an essential weight set
formula was constructed based on two weighting values obtained from the AHP method
and the entropy weighting method:

w =
l

∑
k=1

αk × wT
k(αk > 0)

where αk, wk are the weights obtained from the AHP method and the entropy weight method.
Calculate the weight set model based on game theory and derive the formula for the

game model: Min = ∥
i

∑
j=1

aj × uT
i − uT

i ∥(i = 1, 2). The normalized combination coefficients

of the formula can be obtained using Matlab: a1 = 0.8507, a2 = 0.1493 (D); a1 = 0.7881,
a2 = 0.2119 (P). Thus, the combined weight vector was obtained, and the final result is
shown in Table 8. As shown in the table, the weights of various indicators under degradable
plastic film cover in descending order were yield, water consumption, above-ground dry
matter mass, sucrase, root-to-shoot ratio, root mass, transpiration rate, urease, pH, stomatal
conductance, and net photosynthetic rate. Under ordinary plastic film cover, the weights of
various indicators in descending order were yield, water consumption, above-ground dry
matter mass, net photosynthetic rate, root-to-shoot ratio, sucrase, pH, stomatal conductance,
root quality, transpiration rate, and urease.
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Table 8. Determination of Single Index Weights for spring maize Based on Game Theory through
Combination Weighting.

Treatments Index C11 C12 C21 C22 C23 C31 C32 C33 C41 C42 C43

D Weight 0.2634 0.1382 0.0427 0.0691 0.0454 0.1109 0.0697 0.0724 0.0554 0.0792 0.0536
P 0.2113 0.1470 0.0942 0.0422 0.0610 0.1166 0.0553 0.0867 0.0365 0.0795 0.0665

3.6.3. Comprehensive Growth Evaluation of Spring Maize Based on TOPSIS Method

Established a TOPSIS comprehensive evaluation model with combined weighting,
normalize the decision matrix, established a weighted matrix, and calculated the ideal
solution and fit degree Ci of the evaluation index. The calculation results were shown
in Table 9. As shown in the table, DN3 treatment had the highest comprehensive index
of adhesion (0.8522) for spring maize, followed by PN2 treatment (0.8435), and DN0
treatment had the lowest bonding (0.0194), indicated that poor comprehensive performance
of spring maize.

Table 9. Comprehensive indicators and ranking of spring maize based on TOPSIS method. S+

represents the ideal solution, S− represents the inverse perfect solution, D+ represents the distance
between each processing and the ideal solution, and D− represents the distance between each
processing and the inverse perfect solution.

Treatments C11 C12 C21 C22 C23 C31 C32 C33 C41 C42 C43 D+ D− Ci Sorted

DN0 0.3963 0.4774 0.4066 0.3435 0.3685 0.3703 0.3066 0.4288 0.2998 0.3930 0.5091 0.2023 0.0040 0.0194 8
DN1 0.4772 0.4936 0.4678 0.4821 0.4175 0.4647 0.4181 0.4666 0.4263 0.4792 0.5048 0.1245 0.0825 0.3985 5
DN2 0.5647 0.5114 0.5147 0.5557 0.5381 0.5979 0.6614 0.5719 0.5664 0.5485 0.4941 0.0322 0.1855 0.8522 1
DN3 0.5443 0.5166 0.5924 0.5838 0.6327 0.5380 0.5420 0.5209 0.6384 0.5613 0.4918 0.0413 0.1755 0.8097 4

S+ 0.5647 0.5166 0.5924 0.5838 0.6327 0.5979 0.6614 0.5719 0.6384 0.5613 0.5091
S− 0.3963 0.4774 0.4066 0.3435 0.3685 0.3703 0.3066 0.4288 0.2998 0.3930 0.4918

PN0 0.3999 0.4757 0.4121 0.3700 0.3570 0.3846 0.3169 0.4255 0.3284 0.4162 0.5091 0.1781 0.0043 0.0235 7
PN1 0.4749 0.4931 0.4568 0.4995 0.4165 0.4567 0.4325 0.4875 0.4408 0.4731 0.5055 0.1130 0.0689 0.3789 6
PN2 0.5599 0.5121 0.5216 0.5318 0.5623 0.5880 0.6452 0.5640 0.5586 0.5452 0.4928 0.0300 0.1616 0.8435 2
PN3 0.5487 0.5180 0.5911 0.5751 0.6188 0.5457 0.5443 0.5131 0.6211 0.5530 0.4925 0.0323 0.1584 0.8308 3
S+ 0.5599 0.5180 0.5911 0.5751 0.6188 0.5880 0.6452 0.5640 0.6211 0.5530 0.5091
S− 0.3999 0.4757 0.4121 0.3700 0.3570 0.3846 0.3169 0.4255 0.3284 0.4162 0.4925

4. Discussion
4.1. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Root and
Shoot Growth

Crop root and shoot growth is more sensitive to nitrogen fertilizer. Increasing nitrogen
fertilizer application can accelerate crop growth, root and shoot growth and development,
and increase nitrogen uptake. However, excessive or insufficient nitrogen application can
change crop growth morphology, affecting dry matter distribution and accumulation [32,33].
In the early stage of maize growth, degradable plastic film and ordinary plastic film
coverage can form a “diaphragm effect” to significantly promote maize growth. In the later
growth stage, degradable plastic film coverage degrades, which is beneficial for rainfall
infiltration. In addition, the same amount of irrigation provides a good water and fertilizer
environment for maize growth, with little impact on crop reproductive growth. Therefore,
the effect of ordinary plastic film coverage and the application of nitrogen fertilizer with
plastic film coverage on crop root and crown growth is consistent; under the same nitrogen
application level, there was no significant difference in the root and crown growth of maize
covered with degradable plastic film and ordinary plastic film, which was similar to the
research conclusions of Huang et al. [34] and Wang et al. [21]. The root system is the
main organ for crops to absorb nutrients. Increasing nitrogen fertilizer application can
promote the growth of maize roots and increase root biomass, and the relationship between
root biomass and nitrogen application is non-linear. When nitrogen application exceeds
320 kg·ha−1, it will inhibit root growth and development and reduce root biomass. This
was consistent with the research conclusion of Qi et al. [35], which indicated that reasonable
nitrogen fertilizer management measures can contribute to the formation of maize root
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morphology and increase root quality. The results of this study also indicated that there
was a non-linear relationship between the accumulation of above-ground dry matter in
maize and nitrogen application; that is, nitrogen application exceeding 320 kg·ha−1 will
affect maize growth and reduce above-ground biomass, which was consistent with the
research results of Li et al. [36]. Appropriate nitrogen fertilizer management measures
can promote the development of maize roots, benefit the accumulation of above-ground
biomass, form a reasonable root cap ratio, and lay the foundation for high crop yield.

4.2. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Photosynthetic Gas
Exchange Characteristics

Photosynthesis is the process by which crops convert inorganic substances in the
atmosphere, such as water and carbon dioxide, into organic matter and release oxygen.
Crops automatically adapt to environmental changes and develop in a direction that is
conducive to photosynthesis [37]. The future way to increase crop yield will mainly rely on
the increase in photosynthetic conversion rate [38]. The results of this study indicated that
increasing nitrogen fertilizer application can significantly enhance the photosynthetic ca-
pacity of maize leaves, and the photosynthetic gas exchange parameters (net photosynthetic
rate, transpiration rate, and stomatal conductance of maize) showed an approximately
linear relationship with increasing nitrogen application rate. At a nitrogen application level
of 480 kg·ha−1, net photosynthetic rate, transpiration rate, and stomatal conductance were
the highest, rising by 2.87~45.71%, 5.06~69.97%, and 12.70~71.24% under the degradable
plastic film mulching, and 2.17~43.44%, 4.62~55.42%, and 9.79~73.64% under the ordinary
mulching, respectively. This is because nitrogen can enhance the activity of mesophyll
cells; increasing the SPAD value of leaves can improve photosynthesis [39], which was
similar to the research conclusion of Gao et al. [40], and indicated that nitrogen fertilizer can
improve the photosynthetic capacity of maize leaves. However, the degree of improvement
varies due to factors such as crop variety, nitrogen fertilizer management measures, and
the experimental environment. At the same time, this study also found that there was no
significant difference in the photosynthetic gas exchange parameters between degradable
plastic film-covered leaves and ordinary plastic film at the same nitrogen application level
from the jointing stage to the grain-filling phase, indicating that the “diaphragm effect”
formed by degradable plastic film and ordinary plastic film is the same [41], which can
replace average plastic film to some extent.

4.3. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Maize Yield and
Water and Nitrogen Use Efficiency

Reasonable nitrogen fertilizer management measures can promote root nutrient ab-
sorption, enhance crop assimilation, and increase yield. This study showed that the yield
changed with nitrogen application rate in a quadratic parabolic relationship, and the yield-
increasing effect slowed down with an increase in nitrogen application rate, which was
in line with the diminishing returns effect. Moreover, excessive nitrogen application will
reduce yield because it will affect crop nitrogen absorption efficiency, reduce nitrogen
transport rate, and even affect root water absorption, resulting in a decreased yield [42,43].
Increasing the application of nitrogen fertilizer can enhance the water absorption capacity
of the root system [44]. The results of this study indicated that increasing the application of
nitrogen fertilizer can improve the water use efficiency and irrigation water use efficiency
of maize. However, with the increase in nitrogen application level, the agronomic use
efficiency and partial productivity of nitrogen fertilizer tended to decrease, which was
consistent with the research conclusions of Li et al. [1]. Therefore, the appropriate amount
of nitrogen fertilizer application provided a good soil environment for root growth, which
improved crop yield and water use efficiency.
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4.4. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Soil Enzyme
Activity and pH

Soil enzyme activity, as an essential component of soil microbial activity and soil
fertility, plays a critical catalytic role in soil nutrient cycling and energy conversion and
can reflect the impact of fertilization on soil fertility and quality [45]. The results of
this study indicated that the coverage area affected urease and sucrase activities. Under
the same nitrogen application level, soil urease and sucrase activities under ordinary
plastic film cover were higher than those under degradable plastic film, but there was no
significant difference. This was similar to the research conclusions of Yang et al. [46] and
Chen et al. [47]. Still, the reduction amplitude varies due to factors such as experimental
materials, the experimental area environment, and field management measures. The
application of nitrogen fertilizer can significantly increase the activities of urease and
sucrase, which were due to the promotion of microbial activity by nitrogen fertilizer,
changes in microbial composition, and thus affected soil enzyme activity [48], which was
consistent with the research findings of Li et al. [48]. This study also found that increasing
nitrogen fertilizer application can control soil salinity, reduce soil pH, and avoid soil
salinization, which was consistent with the findings of Fudjoe et al. [49]. Increasing the
application of nitrogen fertilizer can promote root development, enhance soil microbial
activity, improve soil fertility, and reduce soil salinity, which is conducive to the sustainable
development of agriculture.

5. Conclusions

Plastic film mulching and nitrogen fertilizer application are essential in agricultural
production. The results of this study indicated that although the root and shoot growth,
photosynthesis, and grain yield of spring maize under degradable plastic film mulching
were lower than those under ordinary film mulching, there was no significant difference
found. Nitrogen fertilizer was the main factor affecting spring maize growth and grain yield
formation. When the nitrogen application rate approached 320 kg·ha−1, spring maize root
growth and root biomass might be promoted, and there was no significant difference in net
photosynthetic rate, transpiration rate, and stomatal conductance compared to the nitrogen
application rate of 480 kg·ha−1. Under the nitrogen application level of 320 kg·ha−1, the
yield of degradable plastic film and ordinary plastic film coverage increased by 3.74~42.50%
and 2.05~40.02%, respectively, while spring maize had the highest water use efficiency
and irrigation water use efficiency. However, nitrogen fertilizer’s agronomic utilization
efficiency and partial productivity showed a decreasing trend. At the same time, there was
no significant difference in soil enzyme activity between the nitrogen application level and
480 kg·ha−1. After conducting a comprehensive evaluation of the impact of plastic film
mulching combined with nitrogen fertilizer on the growth of spring maize, using multiple
indicators, it was found that the best overall growth of corn was achieved by using a nitro-
gen application rate of 320 kg·ha−1 with degradable plastic film mulching. Therefore, this
strategy is optimal for plastic film mulching combined with nitrogen fertilizer application.
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