Bioinformatics and Functional Genomics in Modern Plant Science

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Genetics, Genomics and Biotechnology".

Deadline for manuscript submissions: 31 July 2024 | Viewed by 2644

Special Issue Editor


E-Mail Website
Guest Editor
The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
Interests: bioinformatics; genomics; development; abiotic stress

Special Issue Information

Dear Colleagues,

We are delighted to announce a Special Issue of the journal Plants dedicated to Bioinformatics and Functional Genomics in Modern Plant Science. With an increasing number of available genome sequences across the plant kingdom, it has become imperative to unravel the genomic code and establish connections between functional sequences and phenotypes using bioinformatics methodologies. This Special Issue aims to offer a comprehensive overview of recent advancements and discoveries aimed at comprehending functional genomics within plants. We believe that this compilation of articles will make a significant contribution to the scientific community's comprehension of plant genetics and genomics, shedding light on its profound impacts on plant growth, development, and responses to environmental cues.

Dr. Mingquan Ding
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional genomics
  • bioinformatics
  • abiotic stress
  • plant development
  • genome sequence analysis

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 12642 KiB  
Article
Genome-Wide Analysis of the Xyloglucan Endotransglucosylase/Hydrolase (XTH) Gene Family: Expression Pattern during Magnesium Stress Treatment in the Mulberry Plant (Morus alba L.) Leaves
by Blessing Danso, Michael Ackah, Xin Jin, Derek M. Ayittey, Frank Kwarteng Amoako and Weiguo Zhao
Plants 2024, 13(6), 902; https://doi.org/10.3390/plants13060902 - 21 Mar 2024
Viewed by 715
Abstract
Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we identified several differential [...] Read more.
Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we identified several differential candidate genes associated with Mg homeostasis via transcriptome analysis, including the xyloglucan endotransglucosylase/hydrolase (XTH) gene family. The XTH gene family is crucial for plant cell wall reconstruction and stress responses. These genes have been identified and thoroughly investigated in various plant species. However, there is no research pertaining to XTH genes within the M. alba plant. This research systematically examined the M. alba XTH (MaXTH) gene family at the genomic level using a bioinformatic approach. In total, 22 MaXTH genes were discovered and contained the Glyco_hydro_16 and XET_C conserved domains. The MaXTHs were categorized into five distinct groups by their phylogenetic relationships. The gene structure possesses four exons and three introns. Furthermore, the MaXTH gene promoter analysis reveals a plethora of cis-regulatory elements, mainly stress responsiveness, phytohormone responsiveness, and growth and development. GO analysis indicated that MaXTHs encode proteins that exhibit xyloglucan xyloglucosyl transferase and hydrolase activities in addition to cell wall biogenesis as well as xyloglucan and carbohydrate metabolic processes. Moreover, a synteny analysis unveiled an evolutionary relationship between the XTH genes in M. alba and those in three other species: A. thaliana, P. trichocarpa, and Zea mays. Expression profiles from RNA-Seq data displayed distinct expression patterns of XTH genes in M. alba leaf tissue during Mg treatments. Real-time quantitative PCR analysis confirmed the expression of the MaXTH genes in Mg stress response. Overall, this research enhances our understanding of the characteristics of MaXTH gene family members and lays the foundation for future functional genomic study in M. alba. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

19 pages, 5226 KiB  
Article
Transcriptome-Wide Identification and Integrated Analysis of a UGT Gene Involved in Ginsenoside Ro Biosynthesis in Panax ginseng
by Xiaochen Yu, Jinghui Yu, Sizhang Liu, Mingming Liu, Kangyu Wang, Mingzhu Zhao, Yanfang Wang, Ping Chen, Jun Lei, Yi Wang and Meiping Zhang
Plants 2024, 13(5), 604; https://doi.org/10.3390/plants13050604 - 23 Feb 2024
Viewed by 641
Abstract
Panax ginseng as a traditional medicinal plant with a long history of medicinal use. Ginsenoside Ro is the only oleanane-type ginsenoside in ginseng, and has various pharmacological activities, including anti-inflammatory, detoxification, and antithrombotic activities. UDP-dependent glycosyltransferase (UGT) plays a key role in the [...] Read more.
Panax ginseng as a traditional medicinal plant with a long history of medicinal use. Ginsenoside Ro is the only oleanane-type ginsenoside in ginseng, and has various pharmacological activities, including anti-inflammatory, detoxification, and antithrombotic activities. UDP-dependent glycosyltransferase (UGT) plays a key role in the synthesis of ginsenoside, and the excavation of UGT genes involved in the biosynthesis of ginsenoside Ro has great significance in enriching ginsenoside genetic resources and further revealing the synthesis mechanism of ginsenoside. In this work, ginsenoside-Ro-synthesis-related genes were mined using the P. ginseng reference-free transcriptome database. Fourteen hub transcripts were identified by differential expression analysis and weighted gene co-expression network analysis. Phylogenetic and synteny block analyses of PgUGAT252645, a UGT transcript among the hub transcripts, showed that PgUGAT252645 belonged to the UGT73 subfamily and was relatively conserved in ginseng plants. Functional analysis showed that PgUGAT252645 encodes a glucuronosyltransferase that catalyzes the glucuronide modification of the C3 position of oleanolic acid using uridine diphosphate glucuronide as the substrate. Furthermore, the mutation at 622 bp of its open reading frame resulted in amino acid substitutions that may significantly affect the catalytic activity of the enzyme, and, as a consequence, affect the biosynthesis of ginsenoside Ro. Results of the in vitro enzyme activity assay of the heterologous expression product in E. coli of PgUGAT252645 verified the above analyses. The function of PgUGAT252645 was further verified by the result that its overexpression in ginseng adventitious roots significantly increased the content of ginsenoside Ro. The present work identified a new UGT gene involved in the biosynthesis of ginsenoside Ro, which not only enriches the functional genes in the ginsenoside synthesis pathway, but also provides the technical basis and theoretical basis for the in-depth excavation of ginsenoside-synthesis-related genes. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

16 pages, 5929 KiB  
Article
Alternative Splicing under Cold Stress in Paper Mulberry
by Zhipeng Yu, Xia Huang, Shuhan Wen, Haijuan Cao, Nan Wang, Shihua Shen and Mingquan Ding
Plants 2023, 12(23), 3950; https://doi.org/10.3390/plants12233950 - 23 Nov 2023
Cited by 2 | Viewed by 888
Abstract
The paper mulberry is a commonly found tree species with a long history of cultivation. It also serves as a crucial case study for understanding how woody plants adapt to low temperatures. Under cold treatment, we observed a substantial number of alternative splicing [...] Read more.
The paper mulberry is a commonly found tree species with a long history of cultivation. It also serves as a crucial case study for understanding how woody plants adapt to low temperatures. Under cold treatment, we observed a substantial number of alternative splicing (AS) genes, showcasing the intricate landscape of AS events. We have detected all seven types of AS events, with the alternative 3′ splice site (A3) having the most. We observed that many genes that underwent differential AS were significantly enriched in starch and sucrose metabolism and circadian rhythm pathways. Moreover, a considerable proportion of differentially spliced genes (DSGs) also showed differential expression, with 20.38% and 25.65% under 12 h and 24 h cold treatments, respectively. This suggests a coordinated regulation between gene AS and expression, playing a pivotal role in the paper mulberry’s adaptation to cold stress. We further investigated the regulatory mechanisms of AS, identifying 41 serine/arginine-rich (SR) splicing factors, among which 11 showed differential expression under cold treatment, while 29 underwent alternative splicing. Additionally, genes undergoing AS displayed significantly higher DNA methylation levels under cold stress, while normal splicing (non-AS) genes exhibited relatively lower methylation levels. These findings suggest that methylation may play an important role in governing gene AS. Finally, our research will provide useful information on the role of AS in the cold acclimation tolerance of the paper mulberry. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

Back to TopTop