Engineering Nanoparticles for Photocatalytic Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: closed (31 May 2023) | Viewed by 9655

Special Issue Editor


E-Mail Website
Guest Editor
Department of Industrial Engineering, University Salerno, Via Giovanni Paolo 2 132, I-84084 Fisciano, Salerno, Italy
Interests: photocatalysis for sustainable chemistry; photocatalytic and photo-fenton processes for pollutants removal in wastewater; catalytic combustion of sewage sludge; decomposition and oxidative decomposition of H2S; hydrolysis of COS in the liquid phase
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Semiconductor-based nanomaterials can be used as photocatalysts for the activation of a wide variety of chemical reactions such as synthesis of useful chemicals in mild conditions by partial oxidation or selective reduction and mineralization of organic pollutants present in both liquid and gaseous phases.

This Special Issue is devoted to the preparation methods for semiconductor-based nanomaterials and control strategies that could be adopted for the engineering of photocatalyst nanoparticles in order to formulate photocatalytic materials at enhanced performances.

Research and review papers related to the preparation and characterization of nanomaterials with photocatalytic properties (metal oxide, metal sulfide, and carbon-based nanomaterials) for different applications, including environmental protection and synthesis of organic compounds are welcome in this Special Issue.

Dr. Vincenzo Vaiano
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • semiconductor-based nanomaterials
  • preparation methods
  • chemical-physical characterization
  • heterogeneous photocatalysis

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3187 KiB  
Article
Sulfidogenic Bioreactor-Mediated Formation of ZnS Nanoparticles with Antimicrobial and Photocatalytic Activity
by Aileen Segura, Araceli Rodriguez, Pedro Hernández, Hector Pesenti, Jacobo Hernández-Montelongo, Antonio Arranz, Noelia Benito, José Bitencourt, Luis Vergara-González, Iván Nancucheo and Gonzalo Recio-Sánchez
Nanomaterials 2023, 13(5), 935; https://doi.org/10.3390/nano13050935 - 04 Mar 2023
Cited by 4 | Viewed by 1677
Abstract
The use of sulfidogenic bioreactors is a biotechnology trend to recover valuable metals such as copper and zinc as sulfide biominerals from mine-impacted waters. In the present work, ZnS nanoparticles were produced using “green” H2S gas generated by a sulfidogenic bioreactor. [...] Read more.
The use of sulfidogenic bioreactors is a biotechnology trend to recover valuable metals such as copper and zinc as sulfide biominerals from mine-impacted waters. In the present work, ZnS nanoparticles were produced using “green” H2S gas generated by a sulfidogenic bioreactor. ZnS nanoparticles were physico-chemically characterized by UV-vis and fluorescence spectroscopy, TEM, XRD and XPS. The experimental results showed spherical-like shape nanoparticles with principal zinc-blende crystalline structure, a semiconductor character with an optical band gap around 3.73 eV, and fluorescence emission in the UV-visible range. In addition, the photocatalytic activity on the degradation of organic dyes in water, as well as bactericidal properties against several bacterial strains, were studied. ZnS nanoparticles were able to degrade methylene blue and rhodamine in water under UV radiation, and also showed high antibacterial activity against different bacterial strains including Escherichia coli and Staphylococcus aureus. The results open the way to obtain valorous ZnS nanoparticles from the use of dissimilatory reduction of sulfate using a sulfidogenic bioreactor. Full article
(This article belongs to the Special Issue Engineering Nanoparticles for Photocatalytic Applications)
Show Figures

Figure 1

24 pages, 6081 KiB  
Article
Development of Sulfur-Doped Graphitic Carbon Nitride for Hydrogen Evolution under Visible-Light Irradiation
by Tamer M. Khedr, Said M. El-Sheikh, Maya Endo-Kimura, Kunlei Wang, Bunsho Ohtani and Ewa Kowalska
Nanomaterials 2023, 13(1), 62; https://doi.org/10.3390/nano13010062 - 23 Dec 2022
Cited by 13 | Viewed by 2251
Abstract
Developing eco-friendly strategies to produce green fuel has attracted continuous and extensive attention. In this study, a novel gas-templating method was developed to prepare 2D porous S-doped g-C3N4 photocatalyst through simultaneous pyrolysis of urea (main g-C3N4 precursor) [...] Read more.
Developing eco-friendly strategies to produce green fuel has attracted continuous and extensive attention. In this study, a novel gas-templating method was developed to prepare 2D porous S-doped g-C3N4 photocatalyst through simultaneous pyrolysis of urea (main g-C3N4 precursor) and ammonium sulfate (sulfur source and structure promoter). Different content of ammonium sulfate was examined to find the optimal synthesis conditions and to investigate the property-governed activity. The physicochemical properties of the obtained photocatalysts were analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), scanning transmission electron microscopy (STEM), specific surface area (BET) measurement, ultraviolet-visible light diffuse reflectance spectroscopy (UV/vis DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and reversed double-beam photo-acoustic spectroscopy (RDB-PAS). The as-prepared S-doped g-C3N4 photocatalysts were applied for photocatalytic H2 evolution under vis irradiation. The condition-dependent activity was probed to achieve the best photocatalytic performance. It was demonstrated that ammonium sulfate played a crucial role to achieve concurrently 2D morphology, controlled nanostructure, and S-doping of g-C3N4 in a one-pot process. The 2D nanoporous S-doped g-C3N4 of crumpled lamellar-like structure with large specific surface area (73.8 m2 g−1) and improved electron−hole separation showed a remarkable H2 generation rate, which was almost one order in magnitude higher than that of pristine g-C3N4. It has been found that though all properties are crucial for the overall photocatalytic performance, efficient doping is probably a key factor for high photocatalytic activity. Moreover, the photocatalysts exhibit significant stability during recycling. Accordingly, a significant potential of S-doped g-C3N4 has been revealed for practical use under natural solar radiation. Full article
(This article belongs to the Special Issue Engineering Nanoparticles for Photocatalytic Applications)
Show Figures

Graphical abstract

12 pages, 2827 KiB  
Article
Morphological Structures and Self-Cleaning Properties of Nano-TiO2 Coated Cotton Yarn at Different Washing Cycles
by Mirra Edreena Sallehudin, Nor Dalila Nor Affandi, Ahmad Mukifza Harun, Mohammad Khursheed Alam and Liliana Indrie
Nanomaterials 2023, 13(1), 31; https://doi.org/10.3390/nano13010031 - 21 Dec 2022
Cited by 4 | Viewed by 1364
Abstract
Titanium dioxide (TiO2) has an extraordinary photocatalytic activity and it effectively provides self-cleaning properties for cotton products. With the presence of succinic acid, it helps the adherence of the TiO2 nanoparticles on cotton surfaces. However, the ability of succinic acid [...] Read more.
Titanium dioxide (TiO2) has an extraordinary photocatalytic activity and it effectively provides self-cleaning properties for cotton products. With the presence of succinic acid, it helps the adherence of the TiO2 nanoparticles on cotton surfaces. However, the ability of succinic acid to keep the TiO2 adhered on cotton after washing is not yet fully understood. Therefore, this study aimed to investigate the effects of washing cycles on nano-TiO2 coated cotton yarn with the aid of succinic acid on the morphological structures and self-cleaning properties. In this study, the nano-TiO2 was synthesized using a hydrothermal method. The cotton yarn was coated with succinic acid and was later dipped in a nano-TiO2 nanoparticles suspension. The nano-TiO2 coated yarn samples then underwent the 5th, 10th, 15th, and 20th wash cycles and were tested for morphological structures and self-cleaning. The self-cleaning properties of the nano-TiO2 coated yarn were determined using the depth of colour stain. The depth of the colour stain was presented as K/S value, where K and S are corresponded to the absorption and scattering coefficients of the stained fabric, respectively. From the analysis, our synthesized nano-TiO2 had a size of 20–50 nm range with a band gap of 3.06 eV. After coating, the nano-TiO2 coated cotton yarn changed in its morphological structure at 5th, 10th, 15th, and 20th wash cycles, respectively. At the 20th wash cycle, the weight (%) of the Ti element continued to decrease up to 4.45%, reducing the photocatalytic activity with the K/S value close to the stained yarn, which was about 0.4. The 5th wash cycle maintained a good photocatalytic activity with the K/S value of 0.06 near to the K/S value of the unstained cotton yarn. The presence of succinic acid in the nano-TiO2 coated cotton yarn provided good self-cleaning properties up to the 15th wash cycle. By undertaking this study, an enhanced cotton property has been developed that will benefit the textile and clothing industry. This nano-TiO2 coated cotton the has potential to be used for daily apparel and sportwear. Full article
(This article belongs to the Special Issue Engineering Nanoparticles for Photocatalytic Applications)
Show Figures

Figure 1

20 pages, 3218 KiB  
Article
Serratula coronata L. Mediated Synthesis of ZnO Nanoparticles and Their Application for the Removal of Alizarin Yellow R by Photocatalytic Degradation and Adsorption
by Anastassiya A. Mashentseva, Nurgulim A. Aimanova, Nursanat Parmanbek, Bakhtiyar S. Temirgaziyev, Murat Barsbay and Maxim V. Zdorovets
Nanomaterials 2022, 12(19), 3293; https://doi.org/10.3390/nano12193293 - 22 Sep 2022
Cited by 15 | Viewed by 1637
Abstract
In this study, the potential of biogenic zinc oxide nanoparticles (ZnO NPs) in the removal of alizarin yellow R (AY) from aqueous solutions by photocatalytic degradation, as well as adsorption, was investigated. The synthesized ZnO NPs were prepared by the simple wet-combustion method [...] Read more.
In this study, the potential of biogenic zinc oxide nanoparticles (ZnO NPs) in the removal of alizarin yellow R (AY) from aqueous solutions by photocatalytic degradation, as well as adsorption, was investigated. The synthesized ZnO NPs were prepared by the simple wet-combustion method using the plant extract of Serratula coronata L. as a reducing and stabilizing agent and characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. Photocatalytic degradation of AY was monitored by UV–visible spectroscopy and the effects of parameters, such as light source type (UV-, visible- and sunlight), incubation time, pH, catalyst dosage and temperature on degradation were investigated. It was demonstrated that the source of light plays an important role in the efficiency of the reaction and the UV-assisted degradation of AY was the most effective, compared to the others. The degradation reaction of AY was found to follow the Langmuir-Hinshelwood mechanism and a pseudo-first-order kinetic model. The degradation kinetics of AY accelerated with increasing temperature, and the lowest activation energy (Ea) was calculated as 3.4 kJ/mol for the UV-light irradiation system, while the Ea values were 4.18 and 7.37 kJ/mol for visible light and sunlight, respectively. The dye removal by the adsorption process was also affected by several parameters, such as pH, sorbent amount and contact time. The data obtained in the kinetics study fit the pseudo-second-order equation best model and the rate constant was calculated as 0.001 g/mg·min. The isotherm analysis indicated that the equilibrium data fit well with the Freundlich isotherm model. The maximum adsorption capacity of AY on biogenic ZnO NPs was 5.34 mg/g. Full article
(This article belongs to the Special Issue Engineering Nanoparticles for Photocatalytic Applications)
Show Figures

Figure 1

25 pages, 6929 KiB  
Article
Nanocomposites of Titanium Dioxide and Peripherally Substituted Phthalocyanines for the Photocatalytic Degradation of Sulfamethoxazole
by Joanna Musial, Artium Belet, Dariusz T. Mlynarczyk, Michal Kryjewski, Tomasz Goslinski, Stéphanie D. Lambert, Dirk Poelman and Beata J. Stanisz
Nanomaterials 2022, 12(19), 3279; https://doi.org/10.3390/nano12193279 - 21 Sep 2022
Cited by 6 | Viewed by 2065
Abstract
Phthalocyanines (Pcs) are often used in photosensitization of titanium(IV) oxide, a commonly employed photocatalyst, as such an approach holds the promise of obtaining highly stable and efficient visible light-harvesting materials. Herein, we report on the preparation, characterization and photoactivity of a series of [...] Read more.
Phthalocyanines (Pcs) are often used in photosensitization of titanium(IV) oxide, a commonly employed photocatalyst, as such an approach holds the promise of obtaining highly stable and efficient visible light-harvesting materials. Herein, we report on the preparation, characterization and photoactivity of a series of composites based on TiO2 and peripherally modified metallophthalocyanines: either tetrasulfonated or 4,4′,4′′,4′′′-tetraazaphthalocyanines, with either copper(II), nickel(II) or zinc(II) as the central metal ion. Physicochemical characterization was performed using UV-Vis diffuse reflectance spectroscopy, hydrodynamic particle-size analysis, surface-area analysis using N2 adsorption-desorption measurements and thermogravimetry combined with differential scanning calorimetry. The band-gap energy values were lower for the composites with peripherally modified phthalocyanines than for the commercial TiO2 P25 or the unsubstituted zinc(II) phthalocyanine-grafted TiO2. TG–DSC results confirmed that the chemical deposition, used for the preparation of Pc/TiO2 composites, is a simple and efficient method for TiO2 surface modification, as all the Pc load was successfully grafted on TiO2. The photocatalytic potential of the Pc/TiO2 materials was assessed in the photocatalytic removal of sulfamethoxazole—a commonly used antibacterial drug of emerging ecological concern. To compare the activity of the materials in different conditions, photodegradation tests were conducted both in water and in an organic medium. Full article
(This article belongs to the Special Issue Engineering Nanoparticles for Photocatalytic Applications)
Show Figures

Graphical abstract

Back to TopTop