Advanced Nanomaterials for Water Remediation (2nd Edition)

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Environmental Nanoscience and Nanotechnology".

Deadline for manuscript submissions: 10 August 2024 | Viewed by 1703

Special Issue Editors


E-Mail Website
Guest Editor
1. Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
2. IB-S–Institute of Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
Interests: nanoparticles synthesis; nanocomposites; membranes; photocatalysis; adsorption; water remediation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Química Inorgánica, Universidade de Vigo, 36310 Vigo, Spain
Interests: nanoparticles; synthesis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Water is necessary for life, and access to affordable and clean water is a requirement for assuring living quality. However, it is a limited resource, with the threat of scarcity and pollution being among the most critical environmental concerns. The World Health Organisation estimates that approximately 800,000 people die yearly from contaminated water consumption. The most pressing issues result from the increasing use of persistent contaminants in anthropogenic activities, endangering aquatic organisms and humans, and the obsolescence of traditional water and wastewater treatment plants against these contaminants.

The use of nanotechnology to overcome this deficiency appear to be a promising strategy. Nanomaterials, due to their unique physical–chemical properties, can be employed in water and wastewater remediation through several mechanisms such as adsorption, filtration or catalysis/photocatalysis. In this regard, special attention should be given to the development of novel synthesis methods that yield non-toxic nanomaterials, minimizing the use of chemical reagents and solvent and reducing the generation of wastes.

A thorough investigation is also vital in terms of nanomaterials’ ecotoxicity for determining whether the produced materials are harmful to aquatic organisms and understanding how they affect ecosystems, food chains, and the putative bioaccumulation process.

This Special Issue will focus on, but is not limited to, the following items:

  • Novel synthesis, characterisation, and application of nanomaterials in water/wastewater remediation processes.
  • Green or sustainable synthesis routes of materials for water/wastewater remediation.
  • All types of nanomaterials and nanocomposites for water/wastewater remediation.
  • Multifunctional nanomaterials (e.g., antimicrobial/antifouling) for water remediation.
  • Ecotoxicity assessment of all types of nanomaterials.

Dr. Pedro Manuel Martins
Dr. Noelia González-Ballesteros
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • photocatalysis
  • absorption
  • filtration
  • green synthesis
  • ecotoxicity
  • eco-physiology
  • sustainability
  • water remediation

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3893 KiB  
Article
A 3D-Printed Portable UV and Visible Photoreactor for Water Purification and Disinfection Experiments
by Nelson Castro, Joana M. Queirós, Dinis C. Alves, Margarida M. Macedo Fernandes, Senetxu Lanceros-Méndez and Pedro M. Martins
Nanomaterials 2024, 14(6), 525; https://doi.org/10.3390/nano14060525 - 15 Mar 2024
Viewed by 850
Abstract
Water scarcity and contamination are urgent issues to be addressed. In this context, different materials, techniques, and devices are being developed to mitigate contemporary and forthcoming water constraints. Photocatalysis-based approaches are suitable strategies to address water contamination by degrading contaminants and eliminating microbes. [...] Read more.
Water scarcity and contamination are urgent issues to be addressed. In this context, different materials, techniques, and devices are being developed to mitigate contemporary and forthcoming water constraints. Photocatalysis-based approaches are suitable strategies to address water contamination by degrading contaminants and eliminating microbes. Photoreactors are usually designed to perform photocatalysis in a scalable and standardised way. Few or none have been developed to combine these characteristics with portability, flexibility, and cost effectiveness. This study reports on designing and producing a portable (490 g), low-cost, and multifunctional photoreactor that includes adjustable radiation intensity and two types of wavelengths (UV-A and visible), including combined agitation in a compact mechanism produced through 3D printing technology. The mechanical, electrical, and optical subsystems were designed and assembled into a robust device. It is shown that it is possible to apply radiations that can reach 65 mW/cm2 and 110 mW/cm2 using the installed visible and UV LEDs and apply mechanical agitation up to 200 rpm, all under a ventilated system. Regarding functionality, the photoreactor proof of concept indicated the ability to degrade ~80% and 30% ciprofloxacin under UV and visible irradiation of TiO2 and Ag/TiO2 nanoparticles. The device also showed the ability to eliminate E. coli bacteria, recurring to radiation set-ups and nanoparticles. Therefore, the originally designed and constructed photoreactor concept was characterised and functionally validated as an exciting and flexible device for lab-scaled or outdoor experiments, assuring standardised and comparable results. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Figure 1

14 pages, 6090 KiB  
Article
Cellulose Sulfate Nanofibers for Enhanced Ammonium Removal
by Ken I. Johnson, William Borges, Priyanka R. Sharma, Sunil K. Sharma, Hao-Yen Chang, Mortaga M. Abou-Krisha, Abdulrahman G. Alhamzani and Benjamin S. Hsiao
Nanomaterials 2024, 14(6), 507; https://doi.org/10.3390/nano14060507 - 12 Mar 2024
Viewed by 673
Abstract
In this study, a sulfonation approach using chlorosulfonic acid (CSA) to prepare cellulose sulfate nanofibers (CSNFs) from raw jute fibers is demonstrated. Both elemental sulfur content and zeta potential in the CSNFs are found to increase with increasing CSA content used. However, the [...] Read more.
In this study, a sulfonation approach using chlorosulfonic acid (CSA) to prepare cellulose sulfate nanofibers (CSNFs) from raw jute fibers is demonstrated. Both elemental sulfur content and zeta potential in the CSNFs are found to increase with increasing CSA content used. However, the corresponding crystallinity in the CSNFs decreases with the increasing amount of CSA used due to degradation of cellulose chains under harsh acidic conditions. The ammonium adsorption results from the CSNFs with varying degrees of sulfonation were analyzed using the Langmuir isotherm model, and the analysis showed a very high maximum ammonium adsorption capacity (41.1 mg/g) under neutral pH, comparable to the best value from a synthetic hydrogel in the literature. The high ammonium adsorption capacity of the CSNFs was found to be maintained in a broad acidic range (pH = 2.5 to 6.5). Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Figure 1

Back to TopTop