molecules-logo

Journal Browser

Journal Browser

Advanced Analytical Tools for Characterization and Quality Control of Food, Drugs, and Natural Active Ingredients, 2nd Edition

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Analytical Chemistry".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 5235

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio Coppito, 67100 L’Aquila, Italy
Interests: chromatographic analysis; application of chemometrics to data analysis and optimization; quantitative structure-property relationship methodology; food analysis; food traceability
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, we have witnessed notable advancements of analytical methodologies, which can be attributed to two key factors: the emergence of innovative instruments and their synergic combination with chemometrics.

As a result, there is now a wealth of readily accessible informative data, demanding the use of more sophisticated tools. The aim of this Special Issue, ‘Advanced Analytical Tools for the Characterization and Quality Control of Food, Drugs, and Natural Active Ingredients, 2nd Edition’ is to collate research on the innovative techniques specifically designed for the characterization, authentication, and tracking of high-value products such as food, beverages, natural active components, and pharmaceutical drugs, by combining analytical methods with chemometrics. We also encourage submissions of reviews that provide critical analyses of the latest tools in this research domain.

Dr. Alessandra Biancolillo
Dr. Angelo Antonio D'Archivio
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • authentication
  • classification
  • pharmaceutical drugs
  • food
  • quality control
  • natural products
  • geographical origin
  • chemometrics

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3061 KiB  
Article
Investigation of the Influence of Anti-Solvent Precipitation Parameters on the Physical Stability of Amorphous Solids
by Zunhua Li, Zicheng Gong, Bowen Zhang and Asad Nawaz
Molecules 2024, 29(6), 1275; https://doi.org/10.3390/molecules29061275 - 13 Mar 2024
Viewed by 450
Abstract
Amorphous solids exhibit enhanced solubility and dissolution rates relative to their crystalline counterparts. However, attaining optimal bioavailability presents a challenge, primarily due to the need to maintain the physical stability of amorphous solids. Moreover, the precise manner in which precipitation parameters, including the [...] Read more.
Amorphous solids exhibit enhanced solubility and dissolution rates relative to their crystalline counterparts. However, attaining optimal bioavailability presents a challenge, primarily due to the need to maintain the physical stability of amorphous solids. Moreover, the precise manner in which precipitation parameters, including the feeding rate of the anti-solvent, agitation speed, and aging time, influence the physical stability of amorphous solids remains incompletely understood. Consequently, this study aimed to investigate these three parameters during the precipitation process of the anticancer drug, nilotinib free base. The physical stability of the resultant samples was evaluated by employing characterization techniques including powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), focused beam reflectance measurement (FBRM), and data analysis methods such as pair distribution function (PDF), reduced crystallization temperature (Rc), and principal component analysis (PCA). This study’s findings indicated that amorphous solids exhibited the greatest physical stability under particular conditions, namely a feeding rate of 5 mL/min, an agitation speed of 500 rpm, and an aging time of 10 min. Furthermore, the physical stability of the amorphous solids was primarily influenced by particle size and distribution, molecular interactions, microstructure, surface area, and interfacial energy. Notably, the parameters involved in the anti-solvent precipitation process, including the feeding rate of the anti-solvent, agitation speed, and aging time, exerted a significant impact on these factors. Consequently, they directly affected the physical stability of amorphous solids. Hence, this study comprehensively elucidated the mechanistic influence of these operational parameters on the physical stability of amorphous solids during the anti-solvent precipitation process. Full article
Show Figures

Figure 1

10 pages, 912 KiB  
Article
Application of Accelerated Predictive Stability Studies in Extemporaneously Compounded Formulations of Chlorhexidine to Assess the Shelf Life
by Olga González-González, M. Paloma Ballesteros, Juan J. Torrado and Dolores R. Serrano
Molecules 2023, 28(23), 7925; https://doi.org/10.3390/molecules28237925 - 04 Dec 2023
Viewed by 1141
Abstract
Industrially fabricated medicines have a well-defined shelf life supported by rigorous studies before their approval for commercialization. However, the shelf life of extemporaneous compounding topical formulations prepared at hospitals tends to be shorter, especially when no data are available to prove a longer [...] Read more.
Industrially fabricated medicines have a well-defined shelf life supported by rigorous studies before their approval for commercialization. However, the shelf life of extemporaneous compounding topical formulations prepared at hospitals tends to be shorter, especially when no data are available to prove a longer stability period. Also, the storage conditions are unknown in many circumstances. Accelerated Predictive Stability (APS) studies have been shown to be a useful tool to predict in a faster and more accurate manner the chemical stability of extemporaneously compounded formulations requiring a minimum amount of formulation, thereby reducing the chemical drug waste per study. Shelf life will be allocated based on scientific data without compromising drug efficacy or safety. In this work, the APS approach was applied to the commercially available Cristalmina® (CR) and an extemporaneously compounded formulation of chlorhexidine (DCHX). A different degradation kinetic was found between DCHX and CR (Avrami vs. zero-order kinetics, respectively). This can explain the different shelf life described by the International Council for Harmonisation of Technical Requirements Registration Pharmaceuticals Human Use (ICH) conditions between both formulations. A predicted stability for the DCHX solution was obtained from the extrapolation of the degradation rate in long-term conditions from the Arrhenius equation. The estimated degradation from the Arrhenius equation for DCHX at 5 °C, 25 °C, and 30 °C at 365 days was 3.1%, 17.4%, and 25.9%, respectively. The predicted shelf life, in which the DCHX content was above 90%, was 26.67 months under refrigerated conditions and 5.75 and 2.24 months at 25 and 30 °C, respectively. Currently, the Spanish National Formulary recommends a shelf life of no longer than 3 months at room temperature for DCHX solution. Based on the predicted APS and confirmed by experimental long-term studies, we have demonstrated that the shelf life of DCHX extemporaneously compounded formulations could be prolonged by up to 6 months. Full article
Show Figures

Graphical abstract

17 pages, 3296 KiB  
Article
Spectrophotometric Study of Charge-Transfer Complexes of Ruxolitinib with Chloranilic Acid and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone: An Application to the Development of a Green and High-Throughput Microwell Method for Quantification of Ruxolitinib in Its Pharmaceutical Formulations
by Khalid A. Aljaber, Ibrahim A. Darwish and Abdullah M. Al-Hossaini
Molecules 2023, 28(23), 7877; https://doi.org/10.3390/molecules28237877 - 30 Nov 2023
Cited by 1 | Viewed by 707
Abstract
Ruxolitinib (RUX) is a potent drug that has been approved by the Food and Drug Administration for the treatment of myelofibrosis, polycythemia vera, and graft-versus-host disease. This study describes the formation of colored charge-transfer complexes (CTCs) of RUX, an electron donor, with chloranilic [...] Read more.
Ruxolitinib (RUX) is a potent drug that has been approved by the Food and Drug Administration for the treatment of myelofibrosis, polycythemia vera, and graft-versus-host disease. This study describes the formation of colored charge-transfer complexes (CTCs) of RUX, an electron donor, with chloranilic acid (CLA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), the π-electron acceptors. The CTCs were characterized using UV-visible spectrophotometry. The formation of CTCs in methanol was confirmed via formation of new absorption bands with maximum absorption at 530 and 470 nm for CTCs with CLA and DDQ, respectively. The molar absorptivity and other physicochemical and electronic properties of CTCs were determined. The molar ratio was found to be 1:1 for both CTCs with CLA and CTCs with DDQ. The site of interaction on RUX molecules was assigned and the mechanisms of the reactions were postulated. The reactions were employed as basis for the development of a novel green and one-step microwell spectrophotometric method (MW-SPM) for high-throughput quantitation of RUX. Reactions of RUX with CLA and DDQ were carried out in 96-well transparent plates, and the absorbances of the colored CTCs were measured by an absorbance microplate reader. The MW-SPM was validated according to the ICH guidelines. The limits of quantitation were 7.5 and 12.6 µg/mL for the methods involving reactions with CLA and DDQ, respectively. The method was applied with great reliability to the quantitation of RUX content in Jakavi® tablets and Opzelura® cream. The greenness of the MW-SPM was assessed by three different metric tools, and the results proved that the method fulfills the requirements of green analytical approaches. In addition, the one-step reactions and simultaneous handling of a large number of samples with micro-volumes using the proposed method enables the high-throughput analysis. In conclusion, this study describes the first MW-SPM, a valuable analytical tool for the quality control of pharmaceutical formulations of RUX. Full article
Show Figures

Figure 1

16 pages, 3146 KiB  
Article
Stable Isotope Labeling-Based Nontargeted Strategy for Characterization of the In Vitro Metabolic Profile of a Novel Doping BPC-157 in Doping Control by UHPLC-HRMS
by Tian Tian, Jing Jing, Yuanyuan Li, Yang Wang, Xiaojun Deng and Yuanhong Shan
Molecules 2023, 28(21), 7345; https://doi.org/10.3390/molecules28217345 - 30 Oct 2023
Viewed by 941
Abstract
Traditional strategies for the metabolic profiling of doping are limited by the unpredictable metabolic pathways and the numerous proportions of background and chemical noise that lead to inadequate metabolism knowledge, thereby affecting the selection of optimal detection targets. Thus, a stable isotope labeling-based [...] Read more.
Traditional strategies for the metabolic profiling of doping are limited by the unpredictable metabolic pathways and the numerous proportions of background and chemical noise that lead to inadequate metabolism knowledge, thereby affecting the selection of optimal detection targets. Thus, a stable isotope labeling-based nontargeted strategy combined with ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC-HRMS) was first proposed for the effective and rapid metabolism analysis of small-molecule doping agents and demonstrated via its application to a novel doping BPC-157. Using 13C/15N-labeled BPC-157, a complete workflow including automatic 13C0,15N0-13C6,15N2 m/z pair picking based on the characteristic behaviors of isotope pairs was constructed, and one metabolite produced by a novel metabolic pathway plus eight metabolites produced by the conventional amide-bond breaking metabolic pathway were successfully discovered from two incubation models. Furthermore, a specific method for the detection of BPC-157 and the five main metabolites in human urine was developed and validated with satisfactory detection limits (0.01~0.11 ng/mL) and excellent quantitative ability (linearity: 0.02~50 ng/mL with R2 > 0.999; relative error (RE)% < 10% and relative standard deviation (RSD)% < 5%; recovery > 90%). The novel metabolic pathway and the in vitro metabolic profile could provide new insights into the biotransformation of BPC-157 and improved targets for doping control. Full article
Show Figures

Figure 1

19 pages, 4874 KiB  
Article
The Dynamic Accumulation Rules of Chemical Components during the Medicine Formation Period of Angelica sinensis and Chemometric Classifying Analysis for Different Bolting Times Using ATR-FTIR
by Fang Ma, Yuan Jiang, Baoshan Li, Yuxin Zeng, Hushan Shang, Fusheng Wang and Zhirong Sun
Molecules 2023, 28(21), 7292; https://doi.org/10.3390/molecules28217292 - 27 Oct 2023
Viewed by 846
Abstract
The dried roots of the perennial herb Angelica sinensis (Oliv.) Diels (AS) are commonly used as medicinal and edible resources. In commercial planting, early bolting and flowering (EB) of ca. 60% in the medicine formation period reduces root yield and quality, becoming a [...] Read more.
The dried roots of the perennial herb Angelica sinensis (Oliv.) Diels (AS) are commonly used as medicinal and edible resources. In commercial planting, early bolting and flowering (EB) of ca. 60% in the medicine formation period reduces root yield and quality, becoming a significant bottleneck in agricultural production. In the cultivation process, summer bolting (SB) occurs from June to July, and autumn bolting (AB) occurs in September. The AB root is often mistaken for the AS root due to its similar morphological characteristics. Few studies have involved whether the root of AB could be used as herbal medicine. This study explored and compared the accumulation dynamics of primary and secondary metabolites in AS and EB roots during the vegetative growth stage (from May to September) by light microscopy, ultraviolet spectrometry, and HPLC methods. Under a microscope, the amount of free starch granules and oil chamber in the AS root increased. On the contrary, they decreased further from EB-Jul to EB-Sep. By comparison, the wall of the xylem vessel was slightly thickened and stacked, and the cell walls of parenchyma and root cortex tissue were thickened in the EB root. Early underground bolting reduces soluble sugar, soluble protein, free amino acids, total C element, total N element, ferulic acid, and ligustilide accumulation, accompanied by the lignification of the root during the vegetative growth stage. Furthermore, a total of 55 root samples from different bolting types of AS root (29 samples), SB root (14 samples), and AB root (12 samples) were collected from Gansu Province during the harvesting period (October). The later the bolting occurred, the less difference there was between unbolted and bolted roots in terms of morphological appearance and efficacy components. Fourier transform infrared spectroscopy with the attenuated total reflection mode (ATR-FTIR) provides a “holistic” spectroscopic fingerprinting of all compositions in the tested sample. The ATR-FTIR spectrum of the AB root was similar to that of the AS root. However, the number and location of absorption peaks in the spectra of SB were different, and only one strong absorption peak at 1021 cm−1 was regarded as the characteristic peak of C-O stretching vibration in lignin. The ATR-FTIR spectra can be effectively differentiated based on their various characteristics using orthogonal partial least squares discrimination analysis (OPLS-DA). Results were assessed using multiple statistical techniques, including Spearman’s correlation, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and OPLS-DA. Among these methods, the ATR-FTIR data demonstrated the most effective outcomes in differentiating between viable and non-viable roots for their application in herbal medicine. Essential substances are ferulic acid and flavonoid, which are much more abundant in the AB root. It provides a material basis for the pharmacological action of the AB roots and a theoretical basis for improving their availability. Full article
Show Figures

Figure 1

18 pages, 1567 KiB  
Article
Three Innovative Green and High-Throughput Microwell Spectrophotometric Methods for the Quantitation of Ceritinib, a Potent Drug for the Treatment of ALK-Positive Non-Small Cell Lung Cancer: An Application to the Analysis of Capsules and Drug Uniformity Testing
by Reem M. Abuhejail, Nourah Z. Alzoman and Ibrahim A. Darwish
Molecules 2023, 28(20), 7054; https://doi.org/10.3390/molecules28207054 - 12 Oct 2023
Viewed by 840
Abstract
Ceritinib (CER) is a potent drug that has been recently approved by the Food and Drug Administration for the treatment of patients with non-small cell lung cancer harboring the anaplastic lymphoma kinase mutation gene. The existing methods for the quality control of CER [...] Read more.
Ceritinib (CER) is a potent drug that has been recently approved by the Food and Drug Administration for the treatment of patients with non-small cell lung cancer harboring the anaplastic lymphoma kinase mutation gene. The existing methods for the quality control of CER are very limited and suffer from limited analytical throughput and do not meet the requirements of the green analytical principles. This study presented the first-ever development and validation of three innovative green and high-throughput microwell spectrophotometric methods (MW-SPMs) for the quality control of CER in its dosage form (Zykadia® capsules). These MW-SPMs were based on the formation of colored N-vinylamino-substituted haloquinone derivatives of CER upon its reactions with each of chloranil, bromanil, and 2,3-dichloro-1,4-naphthoquinone in the presence of acetaldehyde. The optimized procedures of the MW-SPMs were established, and their analytical performances were validated according to the ICH. The linear range of the MW-SPMs was 5–150 µg/mL, with limits of quantitation of 5.3–7.6 µg/mL. The accuracy and precision of the MW-SPMs were proved, as the average recovery values were 99.9–101.0%, and the relative standard deviations did not exceed 1.8%. The three methods were applied to the determination of CER content in Zykadia® capsules and drug content uniformity testing. The greenness of the MW-SPMs was proved using three different metric tools. In addition, these methods encompassed the advantage of high-throughput analysis. In conclusion, the three methods are valuable tools for convenient and reliable application in the pharmaceutical quality control units for CER-containing capsules. Full article
Show Figures

Figure 1

Back to TopTop