molecules-logo

Journal Browser

Journal Browser

The Functional Applications of Medicinal Plants

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Applied Chemistry".

Deadline for manuscript submissions: closed (30 November 2022) | Viewed by 72976

Special Issue Editors


E-Mail Website
Guest Editor
Department of Oriental Medicinal Materials & Processing, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
Interests: new ginseng resource development; ginseng based nanoparticles; Invitro screening of ginseng materials; cultured roots of mountain ginseng (CRMG); novel ginseng compounds synthesis and bioconversion; hybrid and cultivar development; ginseng abiotic and biotic stress resistance
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Biotechnology, Kyung Hee University, Yongin-si, Gyeonggi-do, Korea
Interests: ginseng and medicinal plant phytochemicals based polymeric nano conjugates and metal nanoparticles for invitro screening of various disease cell lines and more in-depth for treatment of skin cancer

Special Issue Information

Dear Colleagues,

Medicinal plants are not only used as raw materials for food; they are also a great source of medicines to maintain health and cure various health ailments in traditional medicine. In addition, they are the basis for the development of drugs in modern medicine.

This Special Issue is focused on all aspects of application of medicinal plants which are not limited to the development of novel resources by bioconversion or synthesis, processing methodologies, nanoparticles for phytocompounds delivery, in vitro and in vivo screening in various diseases, and abiotic and biotic stress resistance.

Prof. Dr. Deok-Chun Yang
Dr. Ramya Mathiyalagan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Medicinal plants
  • Nanoparticle synthesis and delivery
  • Therapeutic applications
  • Development of novel resources
  • Abiotic and biotic stress resistance

Published Papers (23 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

38 pages, 10245 KiB  
Article
7-Geranyloxycinnamic Acid Isolated from Melicope lunu-ankenda Leaves Perturbs Colon Cancer and Breast Cancer Cell Lines’ Growth via Induction of Apoptotic Pathway
by Enas Mohamed Eliaser, Najihah Mohd. Hashim, Yaya Rukayadi and Ahmad Faizal Abdull Razis
Molecules 2023, 28(8), 3612; https://doi.org/10.3390/molecules28083612 - 21 Apr 2023
Cited by 1 | Viewed by 1307
Abstract
Globally, breast cancer is the most prevalent form of cancer in women and there is a need for alternative therapies such as plant-derived compounds with low systemic toxicity and selective toxicity to cancer cells. The aim of this study is to assess the [...] Read more.
Globally, breast cancer is the most prevalent form of cancer in women and there is a need for alternative therapies such as plant-derived compounds with low systemic toxicity and selective toxicity to cancer cells. The aim of this study is to assess the cytotoxicity effects of 7-geranyloxycinnamic acid isolated from leaves of Melicope lunu-ankenda, a traditional medicinal plant, on the human breast cancer cell lines. Dried leaf powder was used for the preparation of different crude extracts using different solvents of increasing order of polarity. The structure of the isolated compound from the petroleum ether extract was elucidated by 1H and 13C NMR, LC-MS, and DIP−MS spectroscopy. The cytotoxic activity of the crude extract and 7-geranyloxycinnamic acid analyzed using MTT assay. Apoptotic analysis was evaluated using Annexin V-PI staining, AO/PI staining, intracellular ROS measurement, and measurement of activities of caspases 3/7, 8, and 9. Crude extracts and the isolated pure compound showed significant cytotoxicity against tested cancer cell lines. 7-geranyloxycinnamic acid was found to exert significant cytotoxic effects against breast cancer cell lines such as the MCF-7 and MDA-MB-231 cell lines. The cytotoxic effects are attributed to its ability to induce apoptosis via accumulation of ROS and activation of caspases in both breast cancer cell lines. The pure compound, 7-geranyloxycinnamic acid isolated from the leaves of M. lunu-ankenda, can exert significant cytotoxic effects against breast cancer cell lines without affecting the normal cells. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

18 pages, 3383 KiB  
Article
Apoptotic Potential of Glucomoringin Isothiocyanate (GMG-ITC) Isolated from Moringa oleifera Lam Seeds on Human Prostate Cancer Cells (PC-3)
by Nurul Ashikin Abd Karim, Aziza Hussein Bakheit Adam, Mohammed Sani Jaafaru, Yaya Rukayadi and Ahmad Faizal Abdull Razis
Molecules 2023, 28(7), 3214; https://doi.org/10.3390/molecules28073214 - 04 Apr 2023
Cited by 4 | Viewed by 1857
Abstract
Inhibition of several protein pathways involved in cancer cell regulation is a necessary key in the discovery of cancer chemotherapy. Moringa oleifera Lam is often used in traditional medicine for the treatment of various illnesses. The plant contains glucomoringin isothiocyanate (GMG-ITC) with therapeutic [...] Read more.
Inhibition of several protein pathways involved in cancer cell regulation is a necessary key in the discovery of cancer chemotherapy. Moringa oleifera Lam is often used in traditional medicine for the treatment of various illnesses. The plant contains glucomoringin isothiocyanate (GMG-ITC) with therapeutic potential against various cancer cells. Therefore, GMG-ITC was evaluated for its cytotoxicity against the PC-3 prostate cancer cell line and its potential to induce apoptosis. GMG-ITC inhibited cell proliferation in the PC-3 cell line with IC50 value 3.5 µg/mL. Morphological changes as a result of GMG-ITC-induced apoptosis showed chromatin condensation, nuclear fragmentation, and membrane blebbing. Additionally, Annexin V assay showed proportion of cells in early and late apoptosis upon exposure to GMG-ITC in a time-dependent manner. Moreover, GMG-ITC induced a time-dependent G2/M phase arrest, with reduction of 39.1% in the PC-3 cell line. GMG-ITC also activates apoptotic genes including caspase, tumor suppressor gene (p53), Akt/MAPK, and Bax of the proapoptotic Bcl family. Early apoptosis proteins (JNK, Bad, Bcl2, and p53) were significantly upregulated upon GMG-ITC treatment. It is concluded that apoptosis induction was observed in PC-3 cells treated with GMG-ITC. These phenomena suggest that GMG-ITC from M. oleifera seeds could be useful as a future cytotoxic agent against prostate cancer. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

14 pages, 3088 KiB  
Article
β-Myrcene Mitigates Colon Inflammation by Inhibiting MAP Kinase and NF-κB Signaling Pathways
by Saeeda Almarzooqi, Balaji Venkataraman, Vishnu Raj, Sultan Ali Abdulla Alkuwaiti, Karuna M. Das, Peter D. Collin, Thomas E. Adrian and Sandeep B. Subramanya
Molecules 2022, 27(24), 8744; https://doi.org/10.3390/molecules27248744 - 09 Dec 2022
Cited by 4 | Viewed by 1779
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders that include Crohn’s disease (CD) and ulcerative colitis (UC). The incidence of IBD is rising globally. However, the etiology of IBD is complex and governed by multiple factors. The current clinical treatment for IBD mainly [...] Read more.
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders that include Crohn’s disease (CD) and ulcerative colitis (UC). The incidence of IBD is rising globally. However, the etiology of IBD is complex and governed by multiple factors. The current clinical treatment for IBD mainly includes steroids, biological agents and need-based surgery, based on the severity of the disease. Current drug therapy is often associated with adverse effects, which limits its use. Therefore, it necessitates the search for new drug candidates. In this pursuit, phytochemicals take the lead in the search for drug candidates to benefit from IBD treatment. β-myrcene is a natural phytochemical compound present in various plant species which possesses potent anti-inflammatory activity. Here we investigated the role of β-myrcene on colon inflammation to explore its molecular targets. We used 2% DSS colitis and TNF-α challenged HT-29 adenocarcinoma cells as in vivo and in vitro models. Our result indicated that the administration of β-myrcene in dextran sodium sulfate (DSS)-treated mice restored colon length, decreased disease activity index (DAI), myeloperoxidase (MPO) enzyme activity and suppressed proinflammatory mediators. β-myrcene administration suppressed mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways to limit inflammation. β-myrcene also suppressed mRNA expression of proinflammatory chemokines in tumor necrosis factor-α (TNF-α) challenged HT-29 adenocarcinoma cells. In conclusion, β-myrcene administration suppresses colon inflammation by inhibiting MAP kinases and NF-κB pathways. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

22 pages, 5147 KiB  
Article
Investigating the Anticancer Activity of G-Rh1 Using In Silico and In Vitro Studies (A549 Lung Cancer Cells)
by Jinnatun Nahar, Vinothini Boopathi, Mohanapriya Murugesan, Esrat Jahan Rupa, Deok Chun Yang, Se Chan Kang and Ramya Mathiyalagan
Molecules 2022, 27(23), 8311; https://doi.org/10.3390/molecules27238311 - 28 Nov 2022
Cited by 4 | Viewed by 1945
Abstract
Ginsenoside Rh1 (G-Rh1), a possible bioactive substance isolated from the Korean Panax ginseng Meyer, has a wide range of pharmacological effects. In this study, we have investigated the anticancer efficacy of G-Rh1 via in silico and in vitro methodologies. This study mainly focuses [...] Read more.
Ginsenoside Rh1 (G-Rh1), a possible bioactive substance isolated from the Korean Panax ginseng Meyer, has a wide range of pharmacological effects. In this study, we have investigated the anticancer efficacy of G-Rh1 via in silico and in vitro methodologies. This study mainly focuses on the two metastatic regulators, Rho-associated protein kinase 1 (ROCK1) and RhoA, along with other standard apoptosis regulators. The ROCK1 protein is a member of the active serine/threonine kinase family that is crucial for many biological processes, including cell division, differentiation, and death, as well as many cellular processes and muscle contraction. The abnormal activation of ROCK1 kinase causes several disorders, whereas numerous studies have also shown that RhoA is expressed highly in various cancers, including colon, lung, ovarian, gastric, and liver malignancies. Hence, inhibiting both ROCK1 and RhoA will be promising in preventing metastasis. Therefore, the molecular level interaction of G-Rh1 with the ROCK1 and RhoA active site residues from the preliminary screening clearly shows its inhibitory potential. Molecular dynamics simulation and principal component analysis give essential insights for comprehending the conformational changes that result from G-Rh1 binding to ROCK1 and RhoA. Further, MTT assay was employed to examine the potential cytotoxicity in vitro against human lung cancer cells (A549) and Raw 264.7 Murine macrophage cells. Thus, G-Rh1 showed significant cytotoxicity against human lung adenocarcinoma (A549) at 100 µg/mL. In addition, we observed an elevated level of reactive oxygen species (ROS) generation, perhaps promoting cancer cell toxicity. Additionally, G-Rh1 suppressed the mRNA expression of RhoA, ROCK1, MMP1, and MMP9 in cancer cell. Accordingly, G-Rh1 upregulated the p53, Bax, Caspase 3, caspase 9 while Bcl2 is downregulated intrinsic pathway. The findings from our study propose that the anticancer activity of G-Rh1 may be related to the induction of apoptosis by the RhoA/ROCK1 signaling pathway. As a result, this study evaluated the functional drug-like compound G-Rh1 from Panax ginseng in preventing and treating lung cancer adenocarcinoma via regulating metastasis and apoptosis. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Graphical abstract

16 pages, 5789 KiB  
Article
Light and Potassium Improve the Quality of Dendrobium officinale through Optimizing Transcriptomic and Metabolomic Alteration
by Yue Jia, Juan Liu, Mengyao Xu, Guihong Chen, Mingpu Tan and Zengxu Xiang
Molecules 2022, 27(15), 4866; https://doi.org/10.3390/molecules27154866 - 29 Jul 2022
Cited by 6 | Viewed by 1556
Abstract
Background: Dendrobium officinale is a perennial epiphytic herb in Orchidaceae. Cultivated products are the main alternative for clinical application due to the shortage of wild resources. However, the phenotype and quality of D. officinale have changed post-artificial cultivation, and environmental cues such as [...] Read more.
Background: Dendrobium officinale is a perennial epiphytic herb in Orchidaceae. Cultivated products are the main alternative for clinical application due to the shortage of wild resources. However, the phenotype and quality of D. officinale have changed post-artificial cultivation, and environmental cues such as light, temperature, water, and nutrition supply are the major influencing factors. This study aims to unveil the mechanisms beneath the cultivation-induced variation by analyzing the changes of the metabolome and transcriptome of D. officinale seedlings treated with red- blue LED light and potassium fertilizer. Results: After light- and K-treatment, the D. officinale pseudobulbs turned purple and the anthocyanin content increased significantly. Through wide-target metabolome analysis, compared with pseudobulbs in the control group (P), the proportion of flavonoids in differentially-accumulated metabolites (DAMs) was 22.4% and 33.5% post light- and K-treatment, respectively. The gene modules coupled to flavonoids were obtained through the coexpression analysis of the light- and K-treated D. officinale transcriptome by WGCNA. The KEGG enrichment results of the key modules showed that the DEGs of the D. officinale pseudobulb were enriched in phenylpropane biosynthesis, flavonoid biosynthesis, and jasmonic acid (JA) synthesis post-light- and K-treatment. In addition, anthocyanin accumulation was the main contribution to the purple color of pseudobulbs, and the plant hormone JA induced the accumulation of anthocyanins in D. officinale. Conclusions: These results suggested that light and potassium affected the accumulation of active compounds in D. officinale, and the gene-flavone network analysis emphasizes the key functional genes and regulatory factors for quality improvement in the cultivation of this medicinal plant. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

20 pages, 2654 KiB  
Article
Safety Assessment and Pain Relief Properties of Saffron from Taliouine Region (Morocco)
by Maroua Ait Tastift, Rachida Makbal, Thouria Bourhim, Zineb Omari, Hiroko Isoda and Chemseddoha Gadhi
Molecules 2022, 27(10), 3339; https://doi.org/10.3390/molecules27103339 - 23 May 2022
Cited by 3 | Viewed by 2807
Abstract
Saffron is the most expensive spice in the world. In addition to its culinary utilization, this spice is used for medicinal purposes such as in pain management. In this study, the analgesic activity of Crocus sativus stigma extract (CSSE) was evaluated in rodents [...] Read more.
Saffron is the most expensive spice in the world. In addition to its culinary utilization, this spice is used for medicinal purposes such as in pain management. In this study, the analgesic activity of Crocus sativus stigma extract (CSSE) was evaluated in rodents and its possible physiological mechanism was elucidated. The anti-nociceptive effect of CSSE was evaluated using three animal models (hot plate, writhing, and formalin tests). The analgesic pathways involved were assessed using various analgesia-mediating receptors antagonists. The oral administration of CSSE, up to 2000 mg/kg, caused no death or changes in the behavior or in the hematological and biochemical blood parameters of treated animals nor in the histological architecture of the animals’ livers and kidneys. CSSE showed a central, dose-dependent, anti-nociceptive effect in response to thermal stimuli; and a peripheral analgesic effect in the test of contortions induced by acetic acid. The dual (central and peripheral) analgesic effect was confirmed by the formalin test. The anti-nociceptive activity of CSSE was totally or partially reversed by the co-administration of receptor antagonists, naloxone, atropine, haloperidol, yohimbine, and glibenclamide. CSSE influenced signal processing, by the modulation of the opioidergic, adrenergic, and muscarinic systems at the peripheral and central levels; and by regulation of the dopaminergic system and control of the opening of the ATP-sensitive K+ channels at the spinal level. The obtained data point to a multimodal mechanism of action for CSSE: An anti-inflammatory effect and a modulation, through different physiological pathways, of the electrical signal generated by the nociceptors. Further clinical trials are required to endorse the potential utilization of Moroccan saffron as a natural painkiller. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Graphical abstract

21 pages, 36383 KiB  
Article
Untargeted Metabolomic Approach to Determine the Regulatory Pathways on Salicylic Acid-Mediated Stress Response in Aphanamixis polystachya Seedlings
by Kanakarajan Vijayakumari Rakhesh, Sunkarankutty Nair Ashalatha, Karthikeyan Mahima, Venkidasamy Baskar and Muthu Thiruvengadam
Molecules 2022, 27(9), 2966; https://doi.org/10.3390/molecules27092966 - 06 May 2022
Viewed by 1920
Abstract
Plants thrive under abiotic and biotic stress conditions with the changes in phytohormones like salicylic acid (SA), resulting in the synthesis of secondary metabolites. The present study determines the response of plants in producing secondary metabolites towards different SA concentrations at varying time [...] Read more.
Plants thrive under abiotic and biotic stress conditions with the changes in phytohormones like salicylic acid (SA), resulting in the synthesis of secondary metabolites. The present study determines the response of plants in producing secondary metabolites towards different SA concentrations at varying time intervals. Liquid chromatography-mass spectrometry-based metabolomics studies in Aphanamixis polystachya (Wall.) Parker seedlings are grown at 10 mM, 50 mM, and 100 mM SA concentrations, showed the differential expression of metabolites towards the stress. Alkaloids like amaranthin showed a 15-fold increase on the second day, and analog of androvinblastin showed a 20-fold increase on the sixth day in 10 mM SA compared with other groups. Flavanoid cyanidin 3-3 glucosyl was found to be with a 22-fold increment along with terpenoids betavulgaroside (18-fold), asiaticoside (17-fold), mubenin B (20-fold), and deslanoside (22-fold) increment in 50 mM SA on the sixth day. The shock exerted by 100 mM was too harsh, and the lowered metabolite production level was insufficient for the seedlings to survive at this higher SA condition. Arrangement of stressed groups using Pearson correlation studies, principal component analysis, and partial least square analysis placed 10 mM SA and controlled group closer and 50 mM SA and 100 mM SA groups closer to each other. The study observed that SA regulates metabolites that mediate biotic stress responses at low concentrations, and higher concentrations regulate abiotic stress regulating metabolites. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

8 pages, 1083 KiB  
Article
Antifungal Sesquiterpenoids from Michelia formosana Leaf Essential Oil against Wood-Rotting Fungi
by Chia-Che Wu, Shou-Ling Huang, Chun-Han Ko and Hui-Ting Chang
Molecules 2022, 27(7), 2136; https://doi.org/10.3390/molecules27072136 - 25 Mar 2022
Cited by 10 | Viewed by 1989
Abstract
Michelia formosana (Kanehira) Masamune is a broad-leaved species widespread in East Asia; the wood extract and its constituents possess antifungal activity against wood-decay fungi. Antifungal activities of leaf essential oil and its constituents from M. formosana were investigated in the present study. Bioassay-guided [...] Read more.
Michelia formosana (Kanehira) Masamune is a broad-leaved species widespread in East Asia; the wood extract and its constituents possess antifungal activity against wood-decay fungi. Antifungal activities of leaf essential oil and its constituents from M. formosana were investigated in the present study. Bioassay-guided isolation was applied to isolate the phytochemicals from leaf essential oil. 1D and 2D NMR, FTIR, and MS spectroscopic analyses were applied to elucidate the chemical structures of isolated compounds. Leaf essential oil displayed antifungal activity against wood decay fungi and was further separated into 11 fractions by column chromatography. Four sesquiterpenoids were isolated and identified from the active fractions of leaf essential oil through bioassay-guided isolation. Among these sesquiterpenoids, guaiol, bulnesol, and β-elemol have higher antifungal activity against brown-rot fungus Laetiporus sulphureus and white-rot fungus Lenzites betulina. Leaf essential oil and active compounds showed better antifungal activity against L. sulphureus than against L. betulina. The molecular structure of active sesquiterpenoids all contain the hydroxyisopropyl group. Antifungal sesquiterpenoids from M. formosana leaf essential oil show potential as natural fungicides for decay control of lignocellulosic materials. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

16 pages, 6677 KiB  
Article
In Vitro and In Vivo Regulation of SRD5A mRNA Expression of Supercritical Carbon Dioxide Extract from Asparagus racemosus Willd. Root as Anti-Sebum and Pore-Minimizing Active Ingredients
by Warintorn Ruksiriwanich, Chiranan Khantham, Pichchapa Linsaenkart, Tanakarn Chaitep, Pensak Jantrawut, Chuda Chittasupho, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Yuthana Phimolsiripol, Sarana Rose Sommano, Chaiwat Arjin, Houda Berrada, Francisco J. Barba and Korawan Sringarm
Molecules 2022, 27(5), 1535; https://doi.org/10.3390/molecules27051535 - 24 Feb 2022
Cited by 9 | Viewed by 2954
Abstract
Oily skin from overactive sebaceous glands affects self-confidence and personality. There is report of an association between steroid 5-alpha reductase gene (SRD5A) expression and facial sebum production. There is no study of the effect of Asparagus racemosus Willd. root extract on [...] Read more.
Oily skin from overactive sebaceous glands affects self-confidence and personality. There is report of an association between steroid 5-alpha reductase gene (SRD5A) expression and facial sebum production. There is no study of the effect of Asparagus racemosus Willd. root extract on the regulation of SRD5A mRNA expression and anti-sebum efficacy. This study extracted A. racemosus using the supercritical carbon dioxide fluid technique with ethanol and investigated its biological compounds and activities. The A. racemosus root extract had a high content of polyphenolic compounds, including quercetin, naringenin, and p-coumaric acid, and DPPH scavenging activity comparable to that of the standard L-ascorbic acid. A. racemosus root extract showed not only a significant reduction in SRD5A1 and SRD5A2 mRNA expression by about 45.45% and 90.86%, respectively, but also a reduction in the in vivo anti-sebum efficacy in male volunteers, with significantly superior percentage changes in facial sebum production and a reduction in the percentages of pore area after 15 and 30 days of treatment. It can be concluded that A. racemosus root extract with a high content of polyphenol compounds, great antioxidant effects, promising downregulation of SRD5A1 and SRD5A2, and predominant facial sebum reduction and pore-minimizing efficacy could be a candidate for an anti-sebum and pore-minimizing active ingredient to serve in functional cosmetic applications. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

17 pages, 1365 KiB  
Article
Investigating Antiarthritic Potential of Nanostructured Clove Oil (Syzygium aromaticum) in FCA-Induced Arthritic Rats: Pharmaceutical Action and Delivery Strategies
by Faiyaz Shakeel, Prawez Alam, Abuzer Ali, Mohammed H. Alqarni, Abdullah Alshetaili, Mohammed M. Ghoneim, Sultan Alshehri and Amena Ali
Molecules 2021, 26(23), 7327; https://doi.org/10.3390/molecules26237327 - 02 Dec 2021
Cited by 12 | Viewed by 2200
Abstract
The combined application of clove oil in a lipid nanocarrier opens a promising avenue for bone and joints therapy. In this study, we successfully developed a tunable controlled-release lipid platform for the efficient delivery of clove oil (CO) for the treatment of rheumatoid [...] Read more.
The combined application of clove oil in a lipid nanocarrier opens a promising avenue for bone and joints therapy. In this study, we successfully developed a tunable controlled-release lipid platform for the efficient delivery of clove oil (CO) for the treatment of rheumatoid arthritis (RA). The ultra-small nanostructured lipid carriers co-loaded with CO (CONCs) were developed through an aqueous titration method followed by microfluidization. The CONCs appeared to be spherical (particle size of 120 nm), stable (zeta potential of −27 mV), and entrapped efficiently (84.5%). In toluene:acetone:glacial acetic acid (90:9:1 percent v/v/v) solvent systems, high-performance thin layer chromatography (HPTLC) analysis revealed the primary components in CO as eugenol (RF = 0.58). The CONCs greatly increased the therapeutic impact of CO in both in vitro and in vivo biological tests, which was further supported by excellent antiarthritic action. The CONC had an antiarthritic activity that was slightly higher than neat CO and slightly lower than standard, according to our data. The improved formulation inhibited serum lysosomal enzymes and proinflammatory cytokines while also improving hind leg function. This study provides a proof of concept to treat RA with a new strategy utilizing essential oils via nanodelivery. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

11 pages, 1442 KiB  
Article
Effect of the Gintonin-Enriched Fraction on Glucagon-Like-Protein-1 Release
by Rami Lee, Sun-Hye Choi, Han-Sung Cho, Hongik Hwang, Hyewhon Rhim, Hyoung-Chun Kim, Sung-Hee Hwang and Seung-Yeol Nah
Molecules 2021, 26(20), 6298; https://doi.org/10.3390/molecules26206298 - 18 Oct 2021
Cited by 1 | Viewed by 1951
Abstract
Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we [...] Read more.
Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we examined the effects of GEF on GLP-1 secretion using human enteroendocrine NCI-H716 cells. The expression of several of LPA receptor subtypes in NCI-H716 cells using qPCR and Western blotting was examined. LPA receptor subtype expression was in the following order: LPA6 > LPA2 > LPA4 > LPA5 > LPA1 (qPCR), and LPA6 > LPA4 > LPA2 > LPA1 > LPA3 > LPA5 (Western blotting). GEF-stimulated GLP-1 secretion occurred in a dose- and time-dependent manner, which was suppressed by cAMP-Rp, a cAMP antagonist, but not by U73122, a phospholipase C inhibitor. Furthermore, silencing the human LPA6 receptor attenuated GEF-mediated GLP-1 secretion. In mice, low-dose GEF (50 mg/kg, peroral) increased serum GLP-1 levels; this effect was not blocked by Ki16425 co-treatment. Our findings indicate that GEF-induced GLP-1 secretion could be achieved via LPA6 receptor activation through the cAMP pathway. Hence, GEF-induced GLP secretion via LPA6 receptor regulation might be responsible for its beneficial effects on human endocrine physiology. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

14 pages, 1784 KiB  
Article
Nanoemulsification Improves the Pharmaceutical Properties and Bioactivities of Niaouli Essential Oil (Melaleuca quinquenervia L.)
by Faiyaz Shakeel, Mounir M. Salem-Bekhit, Nazrul Haq and Sultan Alshehri
Molecules 2021, 26(16), 4750; https://doi.org/10.3390/molecules26164750 - 05 Aug 2021
Cited by 11 | Viewed by 2466
Abstract
We develop a suitable delivery system for niaouli essential oil (NEO) using a nanoemulsification method for acne vulgaris. Prepared nanoemulsions (NEs) were characterized for droplet dimension, rheology, surface charge, and stability. The ability of NEO formulations against Propionibacterium acnes and Staphylococcus epidermidis was [...] Read more.
We develop a suitable delivery system for niaouli essential oil (NEO) using a nanoemulsification method for acne vulgaris. Prepared nanoemulsions (NEs) were characterized for droplet dimension, rheology, surface charge, and stability. The ability of NEO formulations against Propionibacterium acnes and Staphylococcus epidermidis was investigated and all formulations showed antiacne potential in vitro. Ex vivo permeation studies indicated significant improvement in drug permeations and steady state flux of all NEO-NEs compared to the neat NEO (p < 0.05). On the basis of the studied pharmaceutical parameters, enhanced ex vivo skin permeation, and marked effect on acne pathogens, formulation NEO-NE4 was found to be the best (oil (NEO; 10% v/v); Kolliphor EL (9.25% v/v), Carbitol (27.75% v/v), and water (53% v/v)). Concisely, the in vitro and ex vivo results revealed that nanoemulsification improved the delivery as well as bioactivities of NEO significantly. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

14 pages, 3270 KiB  
Article
Protective Effects of Gintonin on Reactive Oxygen Species-Induced HT22 Cell Damages: Involvement of LPA1 Receptor-BDNF-AKT Signaling Pathway
by Yeon-Jin Cho, Sun-Hye Choi, Ra-Mi Lee, Han-Sung Cho, Hyewhon Rhim, Hyoung-Chun Kim, Byung-Joo Kim, Jong-Hoon Kim and Seung-Yeol Nah
Molecules 2021, 26(14), 4138; https://doi.org/10.3390/molecules26144138 - 07 Jul 2021
Cited by 5 | Viewed by 2478
Abstract
Gintonin is a kind of ginseng-derived glycolipoprotein that acts as an exogenous LPA receptor ligand. Gintonin has in vitro and in vivo neuroprotective effects; however, little is known about the cellular mechanisms underlying the neuroprotection. In the present study, we aimed to clarify [...] Read more.
Gintonin is a kind of ginseng-derived glycolipoprotein that acts as an exogenous LPA receptor ligand. Gintonin has in vitro and in vivo neuroprotective effects; however, little is known about the cellular mechanisms underlying the neuroprotection. In the present study, we aimed to clarify how gintonin attenuates iodoacetic acid (IAA)-induced oxidative stress. The mouse hippocampal cell line HT22 was used. Gintonin treatment significantly attenuated IAA-induced reactive oxygen species (ROS) overproduction, ATP depletion, and cell death. However, treatment with Ki16425, an LPA1/3 receptor antagonist, suppressed the neuroprotective effects of gintonin. Gintonin elicited [Ca2⁺]i transients in HT22 cells. Gintonin-mediated [Ca2⁺]i transients through the LPA1 receptor-PLC-IP3 signaling pathway were coupled to increase both the expression and release of BDNF. The released BDNF activated the TrkB receptor. Induction of TrkB phosphorylation was further linked to Akt activation. Phosphorylated Akt reduced IAA-induced oxidative stress and increased cell survival. Our results indicate that gintonin attenuated IAA-induced oxidative stress in neuronal cells by activating the LPA1 receptor-BDNF-TrkB-Akt signaling pathway. One of the gintonin-mediated neuroprotective effects may be achieved via anti-oxidative stress in nervous systems. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

18 pages, 804 KiB  
Article
Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination
by Hafedh Hajlaoui, Soumaya Arraouadi, Emira Noumi, Kaïss Aouadi, Mohd Adnan, Mushtaq Ahmad Khan, Adel Kadri and Mejdi Snoussi
Molecules 2021, 26(12), 3625; https://doi.org/10.3390/molecules26123625 - 13 Jun 2021
Cited by 58 | Viewed by 4640
Abstract
Herbs and spices have been used since antiquity for their nutritional and health properties, as well as in traditional remedies for the prevention and treatment of many diseases. Therefore, this study aims to perform a chemical analysis of both essential oils (EOs) from [...] Read more.
Herbs and spices have been used since antiquity for their nutritional and health properties, as well as in traditional remedies for the prevention and treatment of many diseases. Therefore, this study aims to perform a chemical analysis of both essential oils (EOs) from the seeds of Carum carvi (C. carvi) and Coriandrum sativum (C. sativum) and evaluate their antioxidant, antimicrobial, anti-acetylcholinesterase, and antidiabetic activities alone and in combination. Results showed that the EOs mainly constitute monoterpenes with γ-terpinene (31.03%), β-pinene (18.77%), p-cymene (17.16%), and carvone (12.20%) being the major components present in C. carvi EO and linalool (76.41%), γ-terpinene (5.35%), and α-pinene (4.44%) in C. sativum EO. In comparison to standards, statistical analysis revealed that C. carvi EO showed high and significantly different (p < 0.05) antioxidant activity than C. sativum EO, but lower than the mixture. Moreover, the mixture exhibited two-times greater ferric ion reducing antioxidant power (FRAP) (IC50 = 11.33 ± 1.53 mg/mL) and equipotent chelating power (IC50 = 31.33 ± 0.47 mg/mL) than the corresponding references, and also potent activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 19.00 ± 1.00 mg/mL), β-carotene (IC50 = 11.16 ± 0.84 mg/mL), and superoxide anion (IC50 = 10.33 ± 0.58 mg/mL) assays. Antimicrobial data revealed that single and mixture EOs were active against a panel of pathogenic microorganisms, and the mixture had the ability to kill more bacterial strains than each EO alone. Additionally, the anti-acetylcholinesterase and α-glucosidase inhibitory effect have been studied for the first time, highlighting the high inhibition effect of AChE by C. carvi (IC50 = 0.82 ± 0.05 mg/mL), and especially by C. sativum (IC50 = 0.68 ± 0.03 mg/mL), as well as the mixture (IC50 = 0.63 ± 0.02 mg/mL) compared to the reference drug, which are insignificantly different (p > 0.05). A high and equipotent antidiabetic activity was observed for the mixture (IC50 = 0.75 ± 0.15 mg/mL) when compared to the standard drug, acarbose, which is about nine times higher than each EO alone. Furthermore, pharmacokinetic analysis provides some useful insights into designing new drugs with favorable drug likeness and safety profiles based on a C. carvi and C. sativum EO mixture. In summary, the results of this study revealed that the combination of these EOs may be recommended for further food, therapeutic, and pharmaceutical applications, and can be utilized as medicine to inhibit several diseases. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

11 pages, 1660 KiB  
Article
Evaluation of Motor Coordination and Antidepressant Activities of Cinnamomum osmophloeum ct. Linalool Leaf Oil in Rodent Model
by Hui-Ting Chang, Mei-Ling Chang, Yen-Ting Chen, Shang-Tzen Chang, Fu-Lan Hsu, Chia-Chen Wu and Cheng-Kuen Ho
Molecules 2021, 26(10), 3037; https://doi.org/10.3390/molecules26103037 - 19 May 2021
Cited by 8 | Viewed by 2803
Abstract
Cinnamomum plants (Lauraceae) are a woody species native to South and Southeast Asia forests, and are widely used as food flavors and traditional medicines. This study aims to evaluate the chemical constituents of Cinnamomum osmophloeum ct. linalool leaf oil, and its antidepressant and [...] Read more.
Cinnamomum plants (Lauraceae) are a woody species native to South and Southeast Asia forests, and are widely used as food flavors and traditional medicines. This study aims to evaluate the chemical constituents of Cinnamomum osmophloeum ct. linalool leaf oil, and its antidepressant and motor coordination activities and the other behavioral evaluations in a rodent animal model. The major component of leaf oil is linalool, confirmed by GC-MS analysis. Leaf oil would not induce the extra body weight gain compared to the control mice at the examined doses after 6 weeks of oral administration. The present results provide the first evidence for motor coordination and antidepressant effects present in leaf oil. According to hypnotic, locomotor behavioral, and motor coordination evaluations, leaf oil would not cause side effects, including weight gain, drowsiness and a diminishment in the motor functions, at the examined doses. In summary, these results revealed C. osmophloeum ct. linalool leaf essential oil is of high potential as a therapeutic supplement for minor/medium depressive syndromes. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Graphical abstract

16 pages, 4061 KiB  
Article
Antibacterial Effects of Essential Oils of Seven Medicinal-Aromatic Plants Against the Fish Pathogen Aeromonas veronii bv. sobria: To Blend or Not to Blend?
by Manolis Mandalakis, Thekla I. Anastasiou, Natalia Martou, Sofoklis Keisaris, Vasileios Greveniotis, Pantelis Katharios, Diamanto Lazari, Nikos Krigas and Efthimia Antonopoulou
Molecules 2021, 26(9), 2731; https://doi.org/10.3390/molecules26092731 - 06 May 2021
Cited by 7 | Viewed by 2905
Abstract
Despite progress achieved, there is limited available information about the antibacterial activity of constituents of essential oils (EOs) from different medicinal-aromatic plants (MAPs) against fish pathogens and the complex interactions of blended EOs thereof. The present study aimed to investigate possible synergistic antimicrobial [...] Read more.
Despite progress achieved, there is limited available information about the antibacterial activity of constituents of essential oils (EOs) from different medicinal-aromatic plants (MAPs) against fish pathogens and the complex interactions of blended EOs thereof. The present study aimed to investigate possible synergistic antimicrobial effects of EOs from seven Greek MAPs with strong potential against Aeromonas veronii bv. sobria, a fish pathogen associated with aquaculture disease outbreaks. The main objective was to evaluate whether blending of these EOs can lead to increased antimicrobial activity against the specific microorganism. A total of 127 combinations of EOs were prepared and their effect on A. veronii bv. sobria growth was tested in vitro. We examined both the inhibitory and bactericidal activities of the individual EOs and compared them to those of the blended EOs. The vast majority of the investigated combinations exhibited significant synergistic and additive effects, while antagonistic effects were evident only in a few cases, such as the mixtures containing EOs from rosemary, lemon balm and pennyroyal. The combination of EOs from Greek oregano and wild carrot, as well as the combinations of those two with Spanish oregano or savoury were the most promising ones. Overall, Greek oregano, savoury and Spanish oregano EOs were the most effective ones when applied either in pure form or blended with other EOs. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

8 pages, 2262 KiB  
Communication
8-O-(E-p-methoxycinnamoyl)harpagide Inhibits Influenza A Virus Infection by Suppressing Intracellular Calcium
by Eun-Bin Kwon, Hye-Jin Yang, Young-Soo Kim, Wei Li and Jang-Gi Choi
Molecules 2021, 26(4), 1029; https://doi.org/10.3390/molecules26041029 - 15 Feb 2021
Cited by 3 | Viewed by 1956
Abstract
Calcium (Ca2+) dependent signaling circuit plays a critical role in influenza A virus (IAV) infection. The 8-O-(E-p-methoxycinnamoyl)harpagide (MCH) exhibits pharmacological activities that exert neuroprotective, hepatoprotective, anti-inflammatory and other biological effects. However, not have reports of [...] Read more.
Calcium (Ca2+) dependent signaling circuit plays a critical role in influenza A virus (IAV) infection. The 8-O-(E-p-methoxycinnamoyl)harpagide (MCH) exhibits pharmacological activities that exert neuroprotective, hepatoprotective, anti-inflammatory and other biological effects. However, not have reports of antiviral effects. To investigate the antiviral activity of MCH on IAV-infected human lung cells mediated by calcium regulation. We examined the inhibitory effect of MCH on IAV infections and measured the level of viral proteins upon MCH treatment using Western blotting. We also performed molecular docking simulation with MCH and IAV M2 protein. Finally, we analyzed MCH’s suppression of intracellular calcium and ROS (reactive oxygen species) in IAV-infected human lung cells using a flow cytometer. The results shown that MCH inhibited the infection of IAV and increased the survival of the infected human lung cells. The levels of IAV protein M1, M2, NS1 and PA were inhibited in MCH-treated human lung cells compared to that in infected and untreated cells. Also, docking simulation suggest that MCH interacted with M2 on its hydrophobic wall (L40 and I42) and polar amino acids (D44 and R45), which formed intermolecular contacts and were a crucial part of the channel gate along with W41. Lastly, MCH inhibited IAV infection by reducing intracellular calcium and mitochondrial Ca2+/ROS levels in infected human lung cells. Taken together, these data suggest that MCH inhibits IAV infection and increases the survival of infected human lung cells by suppressing calcium levels. These results indicate that MCH is useful for developing IAV treatments. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Graphical abstract

14 pages, 1105 KiB  
Article
Synergism and Subadditivity of Verbascoside-Lignans and -Iridoids Binary Mixtures Isolated from Castilleja tenuiflora Benth. on NF-κB/AP-1 Inhibition Activity
by Luis David Arango-De la Pava, Alejandro Zamilpa, José Luis Trejo-Espino, Blanca Eda Domínguez-Mendoza, Enrique Jiménez-Ferrer, Leonor Pérez-Martínez and Gabriela Trejo-Tapia
Molecules 2021, 26(3), 547; https://doi.org/10.3390/molecules26030547 - 21 Jan 2021
Cited by 11 | Viewed by 2447
Abstract
Pharmacodynamic interactions between plant isolated compounds are important to understand the mode of action of an herbal extract to formulate or create better standardized extracts, phytomedicines, or phytopharmaceuticals. In this work, we propose binary mixtures using a leader compound to found pharmacodynamic interactions [...] Read more.
Pharmacodynamic interactions between plant isolated compounds are important to understand the mode of action of an herbal extract to formulate or create better standardized extracts, phytomedicines, or phytopharmaceuticals. In this work, we propose binary mixtures using a leader compound to found pharmacodynamic interactions in inhibition of the NF-κB/AP-1 pathway using RAW-Blue™ cells. Eight compounds were isolated from Castilleja tenuiflora, four were new furofuran-type lignans for the species magnolin, eudesmin, sesamin, and kobusin. Magnolin (60.97%) was the most effective lignan inhibiting the NF-κB/AP-1 pathway, followed by eudesmin (56.82%), tenuifloroside (52.91%), sesamin (52.63%), and kobusin (45.45%). Verbascoside, a major compound contained in wild C. tenuiflora showed an inhibitory effect on NF-κB/AP-1. This polyphenol was chosen as a leader compound for binary mixtures. Verbacoside-aucubin and verbascoside-kobusin produced synergism, while verbascoside-tenuifloroside had subadditivity in all concentrations. Verbascoside-kobusin is a promising mixture to use on NF-κB/AP-1 related diseases and anti-inflammatory C. tenuiflora-based phytomedicines. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Graphical abstract

Review

Jump to: Research

34 pages, 1370 KiB  
Review
A Comprehensive Review of Andrographis paniculata (Burm. f.) Nees and Its Constituents as Potential Lead Compounds for COVID-19 Drug Discovery
by Aekkhaluck Intharuksa, Warunya Arunotayanun, Wipawadee Yooin and Panee Sirisa-ard
Molecules 2022, 27(14), 4479; https://doi.org/10.3390/molecules27144479 - 13 Jul 2022
Cited by 28 | Viewed by 8347
Abstract
The COVID-19 pandemic has intensively disrupted global health, economics, and well-being. Andrographis paniculata (Burm. f.) Nees has been used as a complementary treatment for COVID-19 in several Asian countries. This review aimed to summarize the information available regarding A. paniculata and its constituents, [...] Read more.
The COVID-19 pandemic has intensively disrupted global health, economics, and well-being. Andrographis paniculata (Burm. f.) Nees has been used as a complementary treatment for COVID-19 in several Asian countries. This review aimed to summarize the information available regarding A. paniculata and its constituents, to provide critical points relating to its pharmacological properties, safety, and efficacy, revealing its potential to serve as a source of lead compounds for COVID-19 drug discovery. A. paniculata and its active compounds possess favorable antiviral, anti-inflammatory, immunomodulatory, and antipyretic activities that could be beneficial for COVID-19 treatment. Interestingly, recent in silico and in vitro studies have revealed that the active ingredients in A. paniculata showed promising activities against 3CLpro and its virus-specific target protein, human hACE2 protein; they also inhibit infectious virion production. Moreover, existing publications regarding randomized controlled trials demonstrated that the use of A. paniculata alone or in combination was superior to the placebo in reducing the severity of upper respiratory tract infection (URTI) manifestations, especially as part of early treatment, without serious side effects. Taken together, its chemical and biological properties, especially its antiviral activities against SARS-CoV-2, clinical trials on URTI, and the safety of A. paniculata, as discussed in this review, support the argument that A. paniculata is a promising natural source for drug discovery regarding COVID-19 post-infectious treatment, rather than prophylaxis. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

22 pages, 2231 KiB  
Review
Genistein—Opportunities Related to an Interesting Molecule of Natural Origin
by Ewa Garbiec, Judyta Cielecka-Piontek, Magdalena Kowalówka, Magdalena Hołubiec and Przemysław Zalewski
Molecules 2022, 27(3), 815; https://doi.org/10.3390/molecules27030815 - 26 Jan 2022
Cited by 18 | Viewed by 3518
Abstract
Nowadays, increasingly more attention is being paid to a holistic approach to health, in which diet contributes to disease prevention. There is growing interest in functional food that not only provides basic nutrition but has also been demonstrated to be an opportunity for [...] Read more.
Nowadays, increasingly more attention is being paid to a holistic approach to health, in which diet contributes to disease prevention. There is growing interest in functional food that not only provides basic nutrition but has also been demonstrated to be an opportunity for the prevention of disorders. A promising functional food is soybean, which is the richest source of the isoflavone, genistein. Genistein may be useful in the prevention and treatment of such disorders as psoriasis, cataracts, cystic fibrosis, non-alcoholic fatty liver disease and type 2 diabetes. However, achievable concentrations of genistein in humans are low, and the use of soybean as a functional food is not devoid of concerns, which are related to genistein’s potential side effects resulting from its estrogenic and goitrogenic effects. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

49 pages, 3091 KiB  
Review
Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases
by Ramla Muhammad Kamal, Ahmad Faizal Abdull Razis, Nurul Syafuhah Mohd Sukri, Enoch Kumar Perimal, Hafandi Ahmad, Rollin Patrick, Florence Djedaini-Pilard, Emanuela Mazzon and Sébastien Rigaud
Molecules 2022, 27(3), 624; https://doi.org/10.3390/molecules27030624 - 19 Jan 2022
Cited by 32 | Viewed by 5816
Abstract
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables [...] Read more.
Neurodegenerative diseases (NDDs) and cardiovascular diseases (CVDs) are illnesses that affect the nervous system and heart, all of which are vital to the human body. To maintain health of the human body, vegetable diets serve as a preventive approach and particularly Brassica vegetables have been associated with lower risks of chronic diseases, especially NDDs and CVDs. Interestingly, glucosinolates (GLs) and isothiocyanates (ITCs) are phytochemicals that are mostly found in the Cruciferae family and they have been largely documented as antioxidants contributing to both cardio- and neuroprotective effects. The hydrolytic breakdown of GLs into ITCs such as sulforaphane (SFN), phenylethyl ITC (PEITC), moringin (MG), erucin (ER), and allyl ITC (AITC) has been recognized to exert significant effects with regards to cardio- and neuroprotection. From past in vivo and/or in vitro studies, those phytochemicals have displayed the ability to mitigate the adverse effects of reactive oxidation species (ROS), inflammation, and apoptosis, which are the primary causes of CVDs and NDDs. This review focuses on the protective effects of those GL-derived ITCs, featuring their beneficial effects and the mechanisms behind those effects in CVDs and NDDs. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

25 pages, 2135 KiB  
Review
Review of Functional and Pharmacological Activities of Berries
by Oksana Golovinskaia and Chin-Kun Wang
Molecules 2021, 26(13), 3904; https://doi.org/10.3390/molecules26133904 - 25 Jun 2021
Cited by 71 | Viewed by 7702
Abstract
Functional plant-based foods (such as fruits, vegetables, and berries) can improve health, have a preventive effect, and diminish the risk of different chronic diseases during in vivo and in vitro studies. Berries contain many phytochemicals, fibers, vitamins, and minerals. The primary phytochemicals in [...] Read more.
Functional plant-based foods (such as fruits, vegetables, and berries) can improve health, have a preventive effect, and diminish the risk of different chronic diseases during in vivo and in vitro studies. Berries contain many phytochemicals, fibers, vitamins, and minerals. The primary phytochemicals in berry fruits are phenolic compounds including flavonoids (anthocyanins, flavonols, flavones, flavanols, flavanones, and isoflavonoids), tannins, and phenolic acids. Since berries have a high concentration of polyphenols, it is possible to use them for treating various diseases pharmacologically by acting on oxidative stress and inflammation, which are often the leading causes of diabetes, neurological, cardiovascular diseases, and cancer. This review examines commonly consumed berries: blackberries, blackcurrants, blueberries, cranberries, raspberries, black raspberries, and strawberries and their polyphenols as potential medicinal foods (due to the presence of pharmacologically active compounds) in the treatment of diabetes, cardiovascular problems, and other diseases. Moreover, much attention is paid to the bioavailability of active berry components. Hence, this comprehensive review shows that berries and their bioactive compounds possess medicinal properties and have therapeutic potential. Nevertheless, future clinical trials are required to study and improve the bioavailability of berries’ phenolic compounds and extend the evidence that the active compounds of berries can be used as medicinal foods against various diseases. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

22 pages, 3563 KiB  
Review
Review of the Traditional Uses, Phytochemistry, and Pharmacological Activities of Rhoicissus Species (Vitaceae)
by Nondumiso P. Dube, Xavier Siwe-Noundou, Rui W. M. Krause, Douglas Kemboi, Vuyelwa Jacqueline Tembu and Amanda-Lee Manicum
Molecules 2021, 26(8), 2306; https://doi.org/10.3390/molecules26082306 - 16 Apr 2021
Cited by 7 | Viewed by 3035
Abstract
Species within the genus Rhoicissus (Vitaceae) are commonly used in South African traditional medicine. The current review discusses the occurrence, distribution, traditional uses, phytochemistry, and pharmacological properties of Rhoicissus species covering the period 1981–2020. The data reported were systematically collected, read, and analysed [...] Read more.
Species within the genus Rhoicissus (Vitaceae) are commonly used in South African traditional medicine. The current review discusses the occurrence, distribution, traditional uses, phytochemistry, and pharmacological properties of Rhoicissus species covering the period 1981–2020. The data reported were systematically collected, read, and analysed from scientific electronic databases including Scopus, Scifinder, Pubmed, and Google Scholar. Reported evidence indicates that species in this genus are used for the treatment of gastrointestinal complaints, sexually transmitted infections (STIs), and infertility, as well as to tone the uterus during pregnancy and to facilitate delivery. Pharmacological studies have further shown that members of the Rhoicissus genus display antidiabetic, uterotonic, ascaricidal, hepatoprotective, antioxidant, antimicrobial, anticancer, and anti-inflammatory properties. They are linked to the presence of bioactive compounds isolated from the genus. Hence, Rhoicissus species can potentially be an alternative therapeutic strategy to treat diseases and develop safer and more potent drugs to combat diseases. Plant species of this genus have valuable medicinal benefits due to their significant pharmacological potential. However, scientific investigation and information of the therapeutic potential of Rhoicissus remain limited as most of the species in the genus have not been fully exploited. Therefore, there is a need for further investigations to exploit the therapeutic potential of the genus Rhoicissus. Future studies should evaluate the phytochemical, pharmacological, and toxicological activities, as well as the mode of action, of Rhoicissus crude extracts and secondary compounds isolated from the species. Full article
(This article belongs to the Special Issue The Functional Applications of Medicinal Plants)
Show Figures

Figure 1

Back to TopTop