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Abstract: Gintonin is a kind of ginseng-derived glycolipoprotein that acts as an exogenous LPA
receptor ligand. Gintonin has in vitro and in vivo neuroprotective effects; however, little is known
about the cellular mechanisms underlying the neuroprotection. In the present study, we aimed
to clarify how gintonin attenuates iodoacetic acid (IAA)-induced oxidative stress. The mouse
hippocampal cell line HT22 was used. Gintonin treatment significantly attenuated IAA-induced
reactive oxygen species (ROS) overproduction, ATP depletion, and cell death. However, treatment
with Ki16425, an LPA1/3 receptor antagonist, suppressed the neuroprotective effects of gintonin.
Gintonin elicited [Ca2+]i transients in HT22 cells. Gintonin-mediated [Ca2+]i transients through
the LPA1 receptor-PLC-IP3 signaling pathway were coupled to increase both the expression and
release of BDNF. The released BDNF activated the TrkB receptor. Induction of TrkB phosphory-
lation was further linked to Akt activation. Phosphorylated Akt reduced IAA-induced oxidative
stress and increased cell survival. Our results indicate that gintonin attenuated IAA-induced ox-
idative stress in neuronal cells by activating the LPA1 receptor-BDNF-TrkB-Akt signaling pathway.
One of the gintonin-mediated neuroprotective effects may be achieved via anti-oxidative stress in
nervous systems.
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1. Introduction

Ginseng, the root of Panax ginseng Meyer, is a well-known folk medicine used in
traditional herbal medicine in Korea. Panax ginseng has been used as a tonic for many
centuries [1]. Ginseng contains ginsenosides, ginseng polysaccharides, fatty acids, lipids,
and other minor components [2]. Ginsenosides (called ginseng saponins) are one of the
representative bioactive components of ginseng and have anti-inflammatory, anticancer,
anti-fatigue, antioxidant, and neuroprotective effects [3]. Ginseng polysaccharides exhibit
immunostimulatory activity through macrophage stimulation [4]. However, the identified
components of ginseng do not fully explain the molecular mechanisms of diverse ginseng
pharmacology [2].

Recent studies have demonstrated that ginseng, including ginseng root, leaf, and
stem, contains gintonin, which is a non-saponin and non-polysaccharide [5]. The main
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functional ingredients of gintonin are lysophosphatidic acids (LPAs), such as LPA C18:2,
LPA C16:0, and LPA C18:1, in which LPA C18:2 is more abundant [6]. Gintonin is a ligand
for the GTP-binding protein-coupled lysophosphatidic acid (LPA) receptor and activates
the LPA receptors, which induces [Ca2+]i transients from the endoplasmic reticulum [7].
Gintonin mainly activates Gαq/11 and Gα12/13 and initiates downstream signaling through
phospholipase C (PLC) and Rho kinase activation [8]. Gintonin-mediated [Ca2+]i transients
stimulate the release of neurotransmitters, such as acetylcholine, dopamine, and glutamate,
to facilitate synaptic transmission via the LPA receptor regulations [9]. The gintonin-LPA
receptor signaling pathway further improves cognitive functions and is effective in aging-
related neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease
(PD), and Huntington’s disease [10].

Oxidative stress is caused by increased reactive oxygen species (ROS) production.
Endogenous antioxidant activity in the hippocampus is reduced because of aging, resulting
in ischemia and neurodegenerative diseases [11]. In contrast, iodoacetic acid (IAA) is
an irreversible inhibitor of the glycolytic enzyme glyceraldehyde 3-phosphate dehydro-
genase (GAPDH). IAA can lower cellular glycolytic activity, which leads to decreased
ATP production, increased ROS levels, loss of membrane potential, and mitochondrial
dysfunction, finally leading to neuronal cell death [12]. These changes following treatment
with IAA in neuronal cells are similar to those observed in experimental animal models
of ischemic stroke [13]. Therefore, IAA is used as a model compound to mimic in vitro
hypoxic/ischemia conditions in neurons [14].

In previous in vivo studies, we demonstrated that oral administration of gintonin
or gintonin-enriched fraction increased the expression of proteins involved in learning
and memory and that of genes that affect cognitive function via anti-neurodegenerative
activities [15]. However, relatively little is known about the neuroprotective effects of
gintonin against oxidative stress in neuronal cells. In the present study, we studied the neu-
roprotective effect of gintonin on IAA-induced HT22 cell, a hippocampal cell line, oxidative
stress and its molecular mechanism of action. Finally, gintonin showed neuroprotective
effects via the LPA1 receptor/PLC/IP3-dependent BDNF/TrkB/Akt signaling pathway in
HT22 cells.

2. Results
2.1. Gintonin Attenuates IAA-Induced Cell Damages in HT22 Cells

To determine the in vitro cytotoxicity of IAA, HT22 cells were treated with IAA at vari-
ous concentrations. IAA induced cell damages in a dose-dependent manner
(p < 0.01, compared to the control group, Figure 1A). IAA was used at 5 µM for 2 h,
as this concentration is suitable for the following experiments. Gintonin prevented IAA-
induced cell damages in a dose-dependent manner and showed a peak effect in HT22 cells
at 3 µg/mL (Figure 1B). In a time-dependent study, gintonin-mediated neuroprotective
effects of gintonin against IAA were observed after 24 h (Figure 1C). However, pretreat-
ment with 10 µM Ki16425, an LPA1/3 receptor antagonist, blocked gintonin-mediated
attenuation of IAA-induced cell death (Figure 1D). These results indicate that gintonin
significantly attenuates IAA-induced cytotoxicity through LPA1/3 receptors.
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Time-dependent effect of gintonin on cell viability against IAA-mediated cell apoptosis. After treating with 5 μM IAA for 

2 h, HT22 cells were exposed to gintonin (3 μg/mL) at various times (2, 4, 8, 12, and 24 h). (D) Involvement of LPA1/3 

receptors in gintonin-mediated cell protection against IAA. After treating with 5 μM IAA for 2 h, HT22 cells were pre-

treated with Ki16425 (final concentration 10 μM), an LPA1/3 receptor antagonist, for 30 min and then co-treated with 3 

μg/mL gintonin for 24 h. Cell viability was estimated with the XTT assay kit. The data are represented as the mean ± 

standard error of the mean (SEM; n = 5). Statistical significances were determined by either one-way ANOVA (A–C) or 

three-way ANOVA (D). # p < 0.05 and ## p < 0.01 compared to the control group; * p < 0.05 and ** p < 0.01 compared to the 

IAA-treated group; + p < 0.01 compared to the GT + IAA group. 

Figure 1. Effects of gintonin on cell viability against iodoacetic acid (IAA)-mediated HT22 cell death. (A) IAA-induced
cell death in a dose-dependent manner in HT22 cells treated with multiple concentrations of IAA (1, 3, 5, 10, 15, and
20 µM) for 2 h. (B) Dose-dependent effect of gintonin on cell viability against IAA-mediated cell apoptosis. After treating
with 5 µM IAA for 2 h, HT22 cells were exposed to various concentrations of gintonin (0.1, 0.3, 1, 3, and 10 µg/mL) for
24 h. (C) Time-dependent effect of gintonin on cell viability against IAA-mediated cell apoptosis. After treating with 5 µM
IAA for 2 h, HT22 cells were exposed to gintonin (3 µg/mL) at various times (2, 4, 8, 12, and 24 h). (D) Involvement of
LPA1/3 receptors in gintonin-mediated cell protection against IAA. After treating with 5 µM IAA for 2 h, HT22 cells were
pretreated with Ki16425 (final concentration 10 µM), an LPA1/3 receptor antagonist, for 30 min and then co-treated with
3 µg/mL gintonin for 24 h. Cell viability was estimated with the XTT assay kit. The data are represented as the mean ±
standard error of the mean (SEM; n = 5). Statistical significances were determined by either one-way ANOVA (A–C) or
three-way ANOVA (D). # p < 0.05 and ## p < 0.01 compared to the control group; * p < 0.05 and ** p < 0.01 compared to the
IAA-treated group; + p < 0.01 compared to the GT + IAA group.

2.2. Gintonin Suppresses IAA-Induced ROS Production

Since IAA induces cell death due to the overproduction of ROS [14], CM-H2DCFDA,
an oxidant-sensitive dye, was used to determine whether gintonin could decrease IAA-
induced intracellular ROS formation. As shown in Figure 2A,B, IAA treatment significantly
increased intracellular ROS production compared to that in the control group, but gintonin
treatment significantly reduced IAA-induced ROS production to near the control level.
These results show that gintonin-mediated neuronal cell protection after IAA treatment is
due to a reduction in IAA-induced ROS production (Figure 2).
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Figure 2. Effect of gintonin on IAA-mediated ROS accumulation in HT22 cells. (A) Representative images of CM-H2DCFDA
staining. HT22 cells were pretreated with or without gintonin (3 µg/mL) for 1 h, washed, and treated with 5 µM IAA for
another 2 h. The cells were exposed to CM-H2DCFDA (10 µM) for 30 min. Microscopy images were captured at the same
magnification, scale bar = 100 µm. (B) Quantitative analysis of the images obtained from fluorescence microscopy. The
data are represented as the mean ± standard error of the mean (SEM; n = 4). # p < 0.01 compared to the control group;
* p < 0.01 compared to the IAA alone-treated group.

2.3. Gintonin Prevents against IAA-Induced ATP Depletion

To determine whether the neuroprotective effect of gintonin against IAA-induced
cell death is due to the restoration of cellular ATP content, intracellular ATP levels were
measured in the presence of IAA. IAA treatment (5 µM, 2 h) of HT22 cells significantly
reduced intracellular ATP concentration by 40% compared to that in control cells. Gin-
tonin treatment prevented ATP reduction in IAA-treated HT22 cells. Gintonin-mediated
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ATP restoration from IAA damage was also inhibited by Ki16425, an LPA1/3 receptor
antagonist. Moreover, gintonin alone increased the ATP content. Thus, these results in-
dicate that gintonin restores intracellular ATP levels via the LPA1 receptor (Figure S1,
Supplementary Materials).

2.4. Gintonin Increases BDNF Expression under IAA Insult

BDNF, a typical brain neurotrophic factor, plays a critical role in maintaining brain
homeostasis, including neuronal survival under insults of ROS [16]. Next, the effect of
IAA on BDNF expression and level was examined. As shown in Figure S2A, Supple-
mentary Materials, IAA treatment (5 µM, 2 h) reduced cytoplasmic BDNF expression
compared to the control group, as determined by immunocytochemical analysis. However,
co-treatment of gintonin with IAA restored cytosolic BDNF expression, and treatment
with gintonin alone also increased BDNF expression (Figure S2B, Supplementary Mate-
rials). In Western blot analysis, although IAA alone treatment decreased BDNF protein
expression, co-treatment of cells with 3 µg/mL gintonin in the presence of IAA increased
BDNF levels (Figure 3A,B). According to immunocytochemical staining and Western blot
results, gintonin restored the IAA-induced attenuation of BDNF expression (Figure 3 and
Figure S2, Supplementary Materials), indicating the involvement of BDNF in gintonin-
mediated attenuation of IAA-induced neuronal cell damage.
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Figure 3. Changes in brain-derived neurotrophic factor (BDNF) protein expression induced by
gintonin in IAA-treated HT22 cells. (A) BDNF expression levels were detected by Western blot
analysis using β-actin as a loading control. HT22 cells were treated with 5 µM IAA for 2 h, followed
by gintonin treatment with different concentrations (0.1–10 µg/mL) for 24 h in the absence or presence
of IAA. (B) BDNF/β-actin ratio at each dose. The data are represented as the mean ± standard
error of the mean (SEM; n = 4). # p < 0.01 compared to the control group; * p < 0.01 compared to the
IAA-treated group.

2.5. Gintonin Induces [Ca2+]i Transients and Its Signal Transduction Pathway

In a previous study, we have shown that gintonin induces cellular responses, includ-
ing cell proliferation and neurotransmitter release through [Ca2+]i transients [2]. Gin-
tonin treatment also induced [Ca2+]i transients in a concentration-dependent manner
in HT22 cells (Figure S3A, Supplementary Materials). The presence of IAA attenuated
gintonin-mediated [Ca2+]i transients compared to treatment with gintonin alone, although
gintonin still increased [Ca2+]i transients in a dose-dependent manner (Figure S3B,C,
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Supplementary Materials). Gintonin-mediated [Ca2+]i transients were significantly atten-
uated by the LPA1/3 receptor antagonist, Ki16425, and the phospholipase C inhibitor,
U73122. Gintonin-mediated [Ca2+]i transients were completely blocked by the inositol
1,4,5-triphosphate (IP3) receptor antagonist, 2-APB, and the intracellular Ca2+ chelator,
BAPTA-AM (Figure S3D,E, Supplementary Materials). Thus, these results indicate that gin-
tonin induces [Ca2+]i transients through activation of the LPA1/3 receptor-phospholipase
C-IP3 receptor-[Ca2+]i transient signaling transduction pathway.

2.6. Gintonin Ameliorates IAA-Induced Inhibition of BDNF Release

Since co-treatment of gintonin with IAA restored BDNF expression in immunocyto-
chemical and Western blotting analyses, gintonin effects on BDNF release in the absence
or presence of IAA were quantified. Gintonin alone (3 µg/mL, 24 h) increased BDNF
release in a concentration- and time-dependent manner. Gintonin-induced BDNF release
was blocked by Ki16425, an LPA1/3 receptor antagonist, and BAPTA-AM, an intracellular
calcium chelator (Figure 4A,B). This indicates the involvement of the LPA1 receptor and
[Ca2+]i transients in gintonin-mediated BDNF release. Next, IAA treatment inhibited
BDNF release in cells, but co-treatment with gintonin and IAA restored BDNF release to
the control level (Figure 4C), showing that gintonin might help to overcome IAA-induced
inhibition of BDNF expression and release.
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Figure 4. Effect of gintonin on the amount of BDNF release under IAA insult in HT22 cells. (A) The levels of BDNF released
from HT22 cells treated with the indicated concentrations (0.1–10 µg/mL) of gintonin for 24 h or with gintonin (3 µg/mL)
in the presence of Ki16425 (Ki) (10 µM, 30 min) and BAPTA-AM (50 µM, 30 min). (B) HT22 cells were exposed to 3 µg/mL
gintonin at various times (1, 4, 12, 24, and 48 h). (C) Effects of gintonin (3 µg/mL, 24 h) on BDNF release in the presence
of IAA (5 µM, 2 h). The data are represented as the mean ± standard error of the mean (SEM; n = 4). # p < 0.05 and
## p < 0.01 compared to control group; * p < 0.05 compared to IAA-treated group; ++ p < 0.01 compared to the gintonin-treated
group.

2.7. Gintonin Stimulates the TrkB/Akt Signaling Pathway through BDNF Release

To determine whether the gintonin-induced release of BDNF reduced IAA-induced
oxidative stress through the TrkB/Akt signaling pathway, HT22 cells were treated with
gintonin after IAA exposure. Immunocytochemistry and phospho-TrkB ELISA kit showed
that TrkB phosphorylation decreased in IAA-treated HT22 cells, compared to that in the
control group (Figure 5A,B). However, gintonin treatment ameliorated the decrease in TrkB
phosphorylation in IAA-treated HT22 cells. Gintonin increased the phosphorylation of
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TrkB to a level similar to that of BDNF treatment (30 ng/mL) used as a positive control
(Figure 5C). Immunochemistry and Western blot analyses results showed that IAA treat-
ment also decreased Akt phosphorylation compared to that in the control group. Treatment
with gintonin restored Akt phosphorylation in Western blotting, which was reduced by
IAA treatment (Figure 6A–D). Taken together, these results indicate that BDNF released by
gintonin activates the TrkB/Akt signaling pathway to reduce the oxidative stress induced
by IAA (Figure 7).
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Figure 5. Effect of gintonin on the activation of TrkB receptors in IAA-treated HT22 cells. (A) Representative microscopy
images of TrkB phosphorylation. HT22 cells were exposed to IAA (5 µM, 2 h) and treated with gintonin (3 µg/mL,
24 h) or BDNF (30 ng/mL, 24 h). Phosphorylated TrkB is dyed green. Microscopy images were captured at the same
magnification, scale bar = 100 µm. (B) Quantitative analysis of the images obtained from fluorescence microscopy. (C)
The level of phosphorylation of TrkB receptors measured using a phosphor-TrkB ELISA kit. The data are expressed as the
mean± standard error of the mean (SEM; n = 4). # p < 0.05 and ## p < 0.01 compared to the control group; ** p < 0.01 compared
to the IAA-treated group.
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Figure 6. Effect of gintonin on Akt phosphorylation in the presence of IAA in HT22 cells. (A) Representative microscopy
images of Akt phosphorylation. The phosphorylation of Akt was detected using immunochemistry staining. HT22 cells
were treated with IAA (5 µM, 2 h), followed by exposure to gintonin (3 µg/mL, 24 h). Phosphorylated TrkB is dyed green,
and nuclei are dyed blue using DAPI. Microscopic images were captured at the same magnification, scale bar = 100 µm.
(B) Quantitative analysis of the images obtained from fluorescence microscopy. (C) The expression of p-Akt and t-Akt
proteins was detected by Western blot analysis using β-actin as a loading control. (D) p-Akt/t-Akt ratio at each dose.
The data are represented as the mean ± SEM (n = 4). # p < 0.05 and ## p < 0.01 compared to control group; * p < 0.05 and
** p < 0.01 compared to the IAA-treated group.
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Figure 7. Schematic diagram of gintonin-mediated neuroprotective activity via LPA1 receptor activation under insults of
oxidative stressor, IAA, in HT22 cells. Gintonin reduces reactive oxygen species (ROS) levels produced by IAA and has
neuroprotective effects via LPA1 receptor-BDNF-TrkB-Akt signaling pathway.

3. Discussion

HT22 cells are sub-cloned cell line from HT-4 cells, which are immortalized primary
hippocampal neurons [17–19]. Various studies including antidepressant and other natural
products was performed using HT22 cells [18,20,21]. The LPA1 receptor is highly expressed
in HT22 hippocampal cells and is a key receptor for serum-deprivation induced cell
death [18]. Thus, HT22 cell is suitable as a neuronal model cell for identifying molecular
mechanisms associated with the neuroprotective effect of gintonin. However, relatively
little is known about the neuroprotective effects of gintonin on in vitro oxidative stress in
HT22 cells. In the present study, we demonstrated that gintonin attenuated IAA-induced
in vitro oxidative stress via the LPA1/3 receptor/PLC/IP3-dependent BDNF/TrkB/Akt
signaling pathway in HT22 cells.

Mitochondria are the main organelles that play a key role in cellular energy metabolism,
including ATP production [22]. ATP is supplied through glycolysis or oxidative phospho-
rylation to maintain cellular homeostasis by inhibition of ROS accumulation [23]. IAA
induces chemical hypoxia by blocking GAPDH, inhibits glycolysis, and damages mito-
chondria by inhibiting mitochondrial ATP production [24]. Mitochondria impaired by
IAA produce less ATP, but more ROS [22]. Thus, oxidative stress induced by ROS over-
production is an important risk factor for pathological progression of neurodegenerative
diseases, such as AD and PD [25]. Changes, such as mitochondrial damage, ATP loss,
and increased ROS production, trigger cell death and neurodegenerative diseases [22].
A compound that has neuroprotective effects against the aforementioned deteriorating
conditions by IAA could be a target for new drug development for these diseases. In the
present study, the neuroprotective effects of gintonin on oxidative stress were investigated
using IAA-treated HT22 cells. Gintonin treatment could provide neuronal cell protection
against IAA-induced hippocampal cell death, ROS increase, and ATP reduction through
the LPA1 receptor (Figures 1 and 2 and Figure S1, Supplementary Materials). In addition,
gintonin itself also showed proliferative effects of HT22 cells even in the absence of IAA.
This effect was also observed in previous reports in neuronal and non-neuronal cells [26,27]
and might be due to innate properties of LPA receptors [28].

The molecular mechanisms of gintonin-mediated neuroprotective effects against IAA-
induced oxidative stress remain unclear. In the present study, gintonin might exhibit neuro-
protective effects through a three-step process. First, gintonin stimulates BDNF release and
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increases BDNF level through [Ca2+]i transients after activation of the LPA1/3 receptor
signaling pathway (Figures 3 and 4 and Figures S2 and S3, Supplementary Materials).
Previous studies have demonstrated that gintonin-induced [Ca2+]i transients regulate the
release of neurotransmitters, such as acetylcholine, dopamine, glutamate, and VEGF, in
neurons and astrocytes, through the LPA1 receptor [2]. The released acetylcholine and glu-
tamate affect the hippocampal cholinergic system and hippocampal synaptic transmission,
respectively, showing the molecular basis of the pharmacological effects of gintonin on
cognitive and neuroprotective functions [2]. Similarly, gintonin treatment stimulated BDNF
release and synthesis (Figures 3 and 4). BDNF is a neurotrophic factor that is essential
for brain homeostasis (i.e., neurogenesis, neuronal survival, and cognitive impairment
from various insults such as ROS) in the hippocampus [29]. BDNF is highly expressed in
the hippocampus, which is also related to learning, memory, and cognitive functions [30].
Furthermore, BDNF protects neuronal cells from oxidative stress [31]. To increase neu-
ronal survival, GTP-binding protein-coupled receptor (GPCR)-mediated [Ca2+]i transients
phosphorylate CREB through phosphorylation of several kinases, including calmodulin-
dependent protein kinase (CaMK), and stimulate BDNF transcription [30]. Thus, gintonin-
mediated BDNF release and synthesis via LPA receptors in HT22 cell may contribute to the
anti-ROS activity.

Second, BDNF released by gintonin-induced [Ca2+]i transients might bind and activate
TrkB to phosphorylate TrkB (Figures 5 and 6). BDNF binding to TrkB is coupled with the
attenuation of oxidative stress-induced cell death [32]. Gintonin-induced BDNF/TrkB
signaling pathway is linked to Akt phosphorylation (Figures 6 and 7). Thus, the last
proposal is that activated Akt also might stimulate the expressions of Nrf2/HO1 protein to
attenuate IAA-induced oxidative stress, supporting this notion that in previous reports we
showed that gintonin increased the Nrf2/HO1 expressions under oxidative stress [33–35].
Additionally, phosphorylated Akt regulates other essential cellular responses, such as
cell growth, proliferation, survival under mitochondrial dysfunctions, and attenuation
of cell death [36]. Thus, the BDNF/TrkB/Akt axis protects against ROS-induced cell
death [36,37]. However, PKC pathway is not involved in gintonin rescue against IAA
(data not shown). The BDNF released by gintonin activates the Akt signaling pathway to
enhance mitochondrial function and neuronal cell survival in HT22 cells (Figure 7).

Although IAA used in the present study can be assumable as an experimental model, it
has several limitations as a ROS model system. Thus, IAA also inhibits several enzymes in
many cells and biological pathways, since it is an inhibitor of cysteine-dependent enzymes
at the active site [38]. In addition to glycolysis and specific GAPDH inhibition, it also
induces in vivo toxicity [39]. In future, it might require further proof on gintonin effects
against ROS using another model system.

In summary, we showed that gintonin treatment attenuated IAA-induced HT22 cell
death. Gintonin treatment increases the expression and amount of BDNF release by
inducing [Ca2+]i transients from the endoplasmic reticulum through the LPA1/3 receptor-
PLC-IP3 signaling pathway. The released BDNF binds to TrkB to phosphorylate TrkB and
then phosphorylates Akt. Phosphorylated Akt affects BDNF synthesis and improves mito-
chondrial function. Thus, gintonin exhibits neuroprotective effects against IAA-induced
oxidative stress, which may serve as a molecular basis for treatment against in vivo neu-
rodegenerative diseases.

4. Materials and Methods
4.1. Gintonin Preparation from Ginseng

Gintonin (GT) was prepared from Panax ginseng according to a previously described
method [5].

4.2. Cell Culture

HT22 cells were purchased from Sigma-Aldrich (St. Louis, MO, USA). HT22 cells
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
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heat-inactivated fetal bovine serum (FBS), 100 µg/mL streptomycin, and 100 units/mL
penicillin at 37 ◦C with 5% CO2.

4.3. Measurement of Cell Viability

Cell viability was measured using a WST-8-(2-(2-methoxy-4-nitrophenyl)-3-(4-
nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) (XTT) assay accord-
ing to the manufacturer’s protocol. Briefly, HT22 cells were seeded at 5 × 103 cells/well/
100 µL into 96-well plates and incubated overnight at 37 ◦C. The next day, the cells were
washed with serum-free DMEM and treated with 5 µM iodoacetic acid (IAA). After 2 h of
incubation, the medium containing IAA was removed and replaced with fresh medium in
the presence or absence of gintonin for 24 h. Cells were pretreated with Ki16425, an LPA
1/3 receptor antagonist, 30 min before gintonin treatment and co-treated with gintonin for
24 h. The medium was changed with 90 µL of serum-free DMEM without phenol red and
10 µL of XTT reaction solution. After 2 h of incubation, the absorbance was measured at
450 nm using a microplate reader (Molecular Devices, San Jose, CA, USA).

4.4. Measurement of Intracellular ROS Levels

To measure intracellular ROS in HT22 cells, the non-fluorescent compound CM-
H2DCFDA (Invitrogen, Carlsbad, CA, USA) was used. CM-H2DCFDA is an ROS indicator
that permeates the cell membrane and exhibits fluorescence when the acetate groups are
removed by intracellular esterase or upon cellular oxidation. HT22 cells were seeded at
2 × 105 cells/mL on 10 mm glass coverslips coated with poly-L-lysine (PLL). The next
day, the cells were pretreated with 3 µg/mL gintonin for 1 h. Then, the cells were washed
with serum-free DMEM and treated with 5 µM IAA. After 2 h, the medium was aspirated
and replaced with 10 µM CM-H2DCFDA in serum-free DMEM without phenol red for
30 min at 37 ◦C in the dark. Then, the cells were washed with PBS three times and
fixed in 4% paraformaldehyde in PBS for 20 min at room temperature in the dark. After
three washes with PBS, the cells were stained for nuclei and mounted with Vectashield
Mounting Media (Vector Laboratories, Burlingame, CA, USA) containing 4′,6-diamidino-
2-phenylindole (DAPI). The fluorescent images were captured with an Axio200 inverted
fluorescence microscope (Carl Zeiss, Oberkochen, Baden-Württemberg, Germany) using a
green fluorescence filter.

4.5. Measurement of Brain-Derived Neurotrophic Factor (BDNF) Release Concentration from
HT22 Cells

To measure the concentration of BDNF released from HT22 cells, HT22 cells were
seeded at 5 × 105 cells/mL in 60 mm dishes and incubated overnight. The next day, the
cells were treated with 5 µM IAA for 2 h and replaced with a medium containing 3 µg/mL
gintonin for 24 h. The cells were treated with Ki16425, an LPA 1/3 receptor antagonist,
or BAPTA-AM, a Ca2+ chelator, 30 min before gintonin treatment and co-treated with
3 µg/mL gintonin for 24 h. The medium was collected to prepare a sample and centrifuged
(14,000 rpm, 5 min) to remove cell debris. The concentration of BDNF released was
measured using a human BDNF pre-coated ELISA kit (PeproTech, Rocky Hill, NJ, USA),
according to the company’s instructions. Absorbance was recorded at 450 nm using a
microplate reader (Molecular Devices, San Jose, CA, USA).

4.6. Measurement of Phosphorylation of TrkB Receptors in HT22 Cells

To measure the phosphorylation of TrkB receptors using an experimental assay, the
HT22 cells were seeded at 5 × 105 cells/mL in 60-mm dishes and incubated overnight.
Before this assay, the cell culture medium was replaced with serum-free DMEM for 4 h,
and the cells were treated with the replaced medium in the presence or absence of 3 µg/mL
gintonin or 30 ng/mL BDNF for 24 h at 37 ◦C. The level of TrkB receptor phosphorylation
in cells was measured using the PathScan® Phospho-TrkB ELISA Kit (Cell Signaling Tech-
nology, Beverly, MA, USA), according to the manufacturer’s instructions. All samples were
subjected to Western blot analysis after protein quantification.
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4.7. Western Blot Analysis

After drug treatment of HT22 cells grown in 60-mm dishes, the cells were washed with
ice-cold PBS and lysed with 100 µL of radioimmunoprecipitation assay (RIPA) lysis buffer
(150 mM NaCl, 0.25% sodium deoxycholate, 1 mM EGTA, 1% NP-40, and 50 mM Tris-HCl,
pH 8.0). Lysates were incubated for 1 h on ice and then centrifuged at 14,000 rpm for 20 min.
The supernatants were collected, and the protein concentration was determined using
a BCA Protein Assay Kit (Thermo Fisher Scientific Korea, Gangnam-gu, Seoul, Korea).
Twenty-five micrograms of protein were electrophoresed on a 10–12% SDS-PAGE gel
and then transferred electrophoretically onto a 0.45 µm hydrophobic PVDF membrane
(Millipore, MA, USA). The membranes were quenched with 5% BSA in TTBS for 1 h
at room temperature on a shaker and incubated overnight at 4 ◦C with the following
primary antibodies: primary anti-BDNF antibody (1:1000; Abcam, Cambridge, UK) and
phospho-Akt (1:1000; Cell Signaling Technology, Danvers, MA, USA). The next day, after
washing four times with TTBS, the membrane was incubated with a secondary antibody
(HRP-conjugated anti-lgG antibody, anti-rabbit, GeneTax, Irvine, CA, USA) at a dilution
of 1:1000 at room temperature for 2 h and exposed using Clarity Western ECL Substrate
(Bio-Rad, Hercules, CA, USA).

4.8. Statistical Analysis

All experiments were repeated at least three times. Data are expressed as the
mean ± standard error of mean (SEM). The mean values except BDNF level experiments
were normalized as % of control. Differences among the groups were analyzed using one-
or three-way analysis of variance, followed by a Dunnett’s test, and statistical significance
was set at p < 0.05.

Supplementary Materials: Figure S1: Effect of gintonin on ATP content in IAA-treated HT22 cells,
Figure S2: Effect of gintonin on IAA-induced reduction in BDNF amount in HT22 cells, Figure S3:
Effects of gintonin on [Ca2+]i transients in HT22 cells.
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