Recent Advances in Thin Film Transistors

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "D1: Semiconductor Devices".

Deadline for manuscript submissions: closed (20 October 2022) | Viewed by 9522

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Microelectronics, Peking University, Beijing 100871, China
Interests: novel semiconductor materials and devices; thin film transistor

Special Issue Information

Dear Colleagues,

The thin film transistor is a hot research topic in the field of displays. It has very important research significance and extensive market application prospects. At present, the key technical problems are mainly that the mobility is not high enough, the reliability is not good enough, the preparation temperature is not low enough, and the manufacturing cost is not low enough. These technical problems have seriously hindered the extensive use of the industry. At present, it is necessary to develop new thin film transistor technology and improve the performance of thin film transistors for the application of thin film transistors in new displays. Original research papers and review articles are invited for this Special Issue.

Dr. Dedong Han
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thin film transistor
  • micro and nano processing technology

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

8 pages, 1456 KiB  
Communication
Fabrication and Properties of InGaZnO Thin-Film Transistors Based on a Sol–Gel Method with Different Electrode Patterns
by Xingzhen Yan, Bo Li, Kaian Song, Yiqiang Zhang, Yanjie Wang, Fan Yang, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2022, 13(12), 2207; https://doi.org/10.3390/mi13122207 - 13 Dec 2022
Cited by 5 | Viewed by 1342
Abstract
The preparation of thin-film transistors (TFTs) with InGaZnO (IGZO) channels using sol–gel technology has the advantages of simplicity in terms of process and weak substrate selectivity. We prepared a series of TFT devices with a top contact and bottom gate structure, in which [...] Read more.
The preparation of thin-film transistors (TFTs) with InGaZnO (IGZO) channels using sol–gel technology has the advantages of simplicity in terms of process and weak substrate selectivity. We prepared a series of TFT devices with a top contact and bottom gate structure, in which the top contact was divided into rectangular and circular structures of drain/source electrodes. The field-effect performance of TFT devices with circular pattern drain/source electrodes was better than that with a traditional rectangular structure on both substrates. The uniform distribution of the potential in the circular electrode structure was more conducive to the regulation of carriers under the same channel length at different applied voltages. In addition, with the development of transparent substrate devices, we also constructed a hafnium oxide (HfO2) insulation layer and an IGZO active layer on an indium tin oxide conductive substrate, and explored the effect of circular drain/source electrodes on field-effect properties of the semitransparent TFT device. The IGZO deposited on the HfO2 dielectric layer by spin-coating can effectively reduce the surface roughness of the HfO2 layer and optimize the scattering of carriers at the interface in TFT devices. Full article
(This article belongs to the Special Issue Recent Advances in Thin Film Transistors)
Show Figures

Figure 1

8 pages, 1555 KiB  
Communication
Performance Enhancement for Indium-Free Metal Oxide Thin-Film Transistors with Double-Active-Layers by Magnetron Sputtering at Room Temperature
by Xingzhen Yan, Kaian Song, Bo Li, Yiqiang Zhang, Fan Yang, Yanjie Wang, Chao Wang, Yaodan Chi and Xiaotian Yang
Micromachines 2022, 13(11), 2024; https://doi.org/10.3390/mi13112024 - 19 Nov 2022
Cited by 1 | Viewed by 1341
Abstract
We prepared an indium-free metal oxide thin-film transistor (TFT) using a double-active-layers structure at room temperature. We changed the growth sequence of Al-doped zinc oxide (AZO) and zinc oxide (ZnO) double-active-layers on Si/SiO2 substrates by magnetron sputtering deposition to regulate the field-effect [...] Read more.
We prepared an indium-free metal oxide thin-film transistor (TFT) using a double-active-layers structure at room temperature. We changed the growth sequence of Al-doped zinc oxide (AZO) and zinc oxide (ZnO) double-active-layers on Si/SiO2 substrates by magnetron sputtering deposition to regulate the field-effect performance of TFTs. According to the analysis of field-effect properties before and after annealing in different atmospheres, the performance of TFT devices with ZnO/AZO/SiO2/Si double-active-layers was obviously better than that with single AZO or ZnO active layer and inverted AZO/ZnO/SiO2/Si double-active-layers in the device structure. The active layer with higher carrier concentration (AZO in this case) was closer to the dielectric layer, which was more favorable for carrier regulation in TFT devices. In addition, the annealed device had a lower on/off ratio (Ion/Ioff), easier-to-reach on-state, and higher mobility. Furthermore, the performance of the devices annealed under vacuum condition was obviously better than that annealed under air atmosphere. The Ion/Ioff could reach 6.8 × 105 and the threshold voltage was only 2.9 V. Full article
(This article belongs to the Special Issue Recent Advances in Thin Film Transistors)
Show Figures

Figure 1

10 pages, 9044 KiB  
Article
Effects of Source/Drain Electrodes on the Performance of InSnO Thin-Film Transistors
by Qi Li, Dedong Han, Junchen Dong, Dengqin Xu, Yue Li, Yi Wang and Xing Zhang
Micromachines 2022, 13(11), 1896; https://doi.org/10.3390/mi13111896 - 02 Nov 2022
Cited by 3 | Viewed by 1842
Abstract
Oxide thin-film transistors (TFTs) are of increasing interest in the field of advanced displays. In this work, we explore Al, InSnO (ITO), Ti, and Mo as source/drain electrodes of ITO TFTs. A comparison study is conducted on the electrical properties of ITO TFTs [...] Read more.
Oxide thin-film transistors (TFTs) are of increasing interest in the field of advanced displays. In this work, we explore Al, InSnO (ITO), Ti, and Mo as source/drain electrodes of ITO TFTs. A comparison study is conducted on the electrical properties of ITO TFTs with the four categories of source/drain electrodes. Interestingly, the ITO TFT with an Al source/drain electrode exhibits better device performance, such as a field-effect mobility (μFE) of 26.45 cm2/Vs, a reasonable turn-on voltage (VON) of 2.7 V, and a steep subthreshold swing (SS) of 201.50 mV/decade. The contact properties of ITO TFTs are further analyzed, and the results show that the device with an Al electrode exhibits lower contact resistance than the other devices. However, the devices with the four electrode materials all reveal excellent stability under negative bias illumination stress (NBIS) with |ΔVTH| < 1 V. This work paves the way for the practical applications of ITO TFTs in next-generation displays. Full article
(This article belongs to the Special Issue Recent Advances in Thin Film Transistors)
Show Figures

Figure 1

9 pages, 7103 KiB  
Article
Investigation of the Combined Effect of Total Ionizing Dose and Time-Dependent Dielectric Breakdown on PDSOI Devices
by Jianye Yang, Hongxia Liu and Kun Yang
Micromachines 2022, 13(9), 1432; https://doi.org/10.3390/mi13091432 - 30 Aug 2022
Viewed by 1410
Abstract
The combined effect of total ionization dose (TID) and time-dependent dielectric breakdown (TDDB) of partially depleted silicon-on-insulator (PDSOI) NMOSFET is investigated. First, the effect of TDDB on the parameter degradation of the devices was investigated by accelerated stress tests. It is found that [...] Read more.
The combined effect of total ionization dose (TID) and time-dependent dielectric breakdown (TDDB) of partially depleted silicon-on-insulator (PDSOI) NMOSFET is investigated. First, the effect of TDDB on the parameter degradation of the devices was investigated by accelerated stress tests. It is found that TDDB stress leads to a decrease in off-state current, a positive drift in threshold voltage, and a reduction of maximum transconductance. Next, the degradation patterns of TID effect on the devices are obtained. The results show that the parameter degradation due to gamma radiation is opposite to the TDDB stress. Finally, the combined effect of TID and TDDB is investigated. It is found that the drift of the devices’ sensitive parameters due to TDDB stress decreases in a total dose of gamma radiation environment. The TDDB lifetime is shortened, but the pattern of gate current change remains unchanged. The failure mechanism of the gate oxide layer under TDDB stress is not changed after irradiation. Full article
(This article belongs to the Special Issue Recent Advances in Thin Film Transistors)
Show Figures

Figure 1

8 pages, 2641 KiB  
Article
Compact Integration of Hydrogen–Resistant a–InGaZnO and Poly–Si Thin–Film Transistors
by Yunping Wang, Yuheng Zhou, Zhihe Xia, Wei Zhou, Meng Zhang, Fion Sze Yan Yeung, Man Wong, Hoi Sing Kwok, Shengdong Zhang and Lei Lu
Micromachines 2022, 13(6), 839; https://doi.org/10.3390/mi13060839 - 27 May 2022
Cited by 5 | Viewed by 3008
Abstract
The low–temperature poly–Si oxide (LTPO) backplane is realized by monolithically integrating low–temperature poly–Si (LTPS) and amorphous oxide semiconductor (AOS) thin–film transistors (TFTs) in the same display backplane. The LTPO–enabled dynamic refreshing rate can significantly reduce the display’s power consumption. However, the essential hydrogenation [...] Read more.
The low–temperature poly–Si oxide (LTPO) backplane is realized by monolithically integrating low–temperature poly–Si (LTPS) and amorphous oxide semiconductor (AOS) thin–film transistors (TFTs) in the same display backplane. The LTPO–enabled dynamic refreshing rate can significantly reduce the display’s power consumption. However, the essential hydrogenation of LTPS would seriously deteriorate AOS TFTs by increasing the population of channel defects and carriers. Hydrogen (H) diffusion barriers were comparatively investigated to reduce the H content in amorphous indium–gallium–zinc oxide (a–IGZO). Moreover, the intrinsic H–resistance of a–IGZO was impressively enhanced by plasma treatments, such as fluorine and nitrous oxide. Enabled by the suppressed H conflict, a novel AOS/LTPS integration structure was tested by directly stacking the H–resistant a–IGZO on poly–Si TFT, dubbed metal–oxide–on–Si (MOOS). The noticeably shrunken layout footprint could support much higher resolution and pixel density for next–generation displays, especially AR and VR displays. Compared to the conventional LTPO circuits, the more compact MOOS circuits exhibited similar characteristics. Full article
(This article belongs to the Special Issue Recent Advances in Thin Film Transistors)
Show Figures

Figure 1

Back to TopTop