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Abstract: The preparation of thin-film transistors (TFTs) with InGaZnO (IGZO) channels using sol–
gel technology has the advantages of simplicity in terms of process and weak substrate selectivity.
We prepared a series of TFT devices with a top contact and bottom gate structure, in which the
top contact was divided into rectangular and circular structures of drain/source electrodes. The
field-effect performance of TFT devices with circular pattern drain/source electrodes was better
than that with a traditional rectangular structure on both substrates. The uniform distribution of the
potential in the circular electrode structure was more conducive to the regulation of carriers under the
same channel length at different applied voltages. In addition, with the development of transparent
substrate devices, we also constructed a hafnium oxide (HfO2) insulation layer and an IGZO active
layer on an indium tin oxide conductive substrate, and explored the effect of circular drain/source
electrodes on field-effect properties of the semitransparent TFT device. The IGZO deposited on the
HfO2 dielectric layer by spin-coating can effectively reduce the surface roughness of the HfO2 layer
and optimize the scattering of carriers at the interface in TFT devices.

Keywords: thin-film transistor; metal oxide; InGaZnO channel; circular electrodes; solution-processed

1. Introduction

With the gradual upgrading of electronic devices, the performance of display com-
ponents should also meet the demand of the industry, among which thin-film transistors
(TFTs) are an important part of screen display with broad application prospects [1–3]. The
low-cost, highly reliable, and low-power-consumption TFTs in functional integrated circuits
have received increasing attention, and the material selection and structure design of each
functional layer in devices are further improved to enhance field-effect properties [4–8].
Metal oxides [9–14] and organic semiconductors [15–17] are two promising classes of
TFT channel materials that have made impressive progress in TFT devices compared to
traditional silicon. Organic active-layer TFTs offer potential use in large-area electronic
display devices [18,19]. However, inorganic channel layers can maintain good thermal and
electrical stability and avoid affecting the device performance caused by the degradation
of material itself during long operation cycles [20,21]. Moreover, metal oxide TFTs are
developed mainly for display driven applications, due to their advantages of stable material
properties, controllable element doping, and simple preparation process [22].

Among metal oxide semiconductors, the amorphous InGaZnO (IGZO) system is
especially promising for use as a high-performance TFT active material. Because the
indium as a doping cation affects the electronic configuration in channel layers, and the
stability of the gallium–oxygen bond suppresses the generation of oxygen vacancies, thus
decreasing the free electron concentration [9,23–25]. The traditional preparation method
of the metal oxide active layer relies on vacuum deposition technology [26]. Although
sputtering deposition is beneficial to the quality of films, it cannot meet the demand of the
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current device fabrication process simplification. Sol–gel technology has the advantages
of low cost, diversified choices of doping materials, and controllable component ratio in a
simple preparation process [27]. Moreover, the metal oxide films prepared by spin-coating
method have a wide selection of substrates [28]. The premise is to improve the wetting of
the precursor solution onto the target substrates [29].

Different types of TFTs were formed by spin-coating IGZO on a traditional Si/SiO2
substrate and a transparent substrate composed of an indium tin oxide (ITO) film and a
hafnium dioxide (HfO2) as the bottom gate and insulation layer. Transparent metal oxide
TFTs have been widely studied in wearable electronic devices and smart displays [30].
Moreover, with the improvement in the performance of TFT devices, the circular electrode
structure should be explored to break the traditional rectangular symmetrical structure in
TFTs. The circular electrode structure can solve the difference of electric field distribution
between electrode centers and electrode edges compared with a traditional rectangular
symmetrical structure. In this study, a spin-coating process that can prepare InGaZnO
channel and also reduce the roughness of the interface between the active and the dielectric
layer for TFTs was reported. A TFT structure with a bottom gate consisting of Si wafers or
ITO conductive glass and a top contact consisting of rectangular symmetrical and circular
drain/source electrodes was constructed to analyze the difference in electrical properties of
TFT devices. In addition, the introduction of circular drain/source electrodes to optimize
the uniformity of electric field distribution and the field-effect parameters was investigated.

2. Materials and Methods
2.1. Preparation of TFT Devices

In this paper, the commercial ITO conductive glass (HNXC Tech Co., Ltd., Shenzhen,
China) with transmittance of 86% and surface resistance of 11 ohm/sq was used as the
bottom electrode of TFTs. A hafnium dioxide (HfO2) layer as dielectric layer with a
thickness of ~170 nm was deposited on the ITO substrate by rf magnetron sputtering for
120 min in argon atmosphere. The growth conditions were set as growth pressure of 8
mTorr, sputtering power of 150 W, and distance between substrate and sputtering target of
100 mm. A Si wafer with a SiO2 thickness of 285 nm from HEFEI KEJING Materials Tech
Co., Ltd. (Hefei, China) as the bottom gate and insulation layer was used for contrast with
the transparent substrates. The colloidal precursors were prepared from indium nitrate
(99.99%), gallium nitrate (99.99%), and zinc acetate (99.99%) dissolved in 5 mL of methyl
glycol from Shanghai Aladdin Biochemical Technology Co. Ltd. (Shanghai, China) to
achieve IGZO solutions with indium, gallium, and zinc molar ratios of 2:1:7. The active
layers were prepared by the spin-coating method. The argon plasma was used to remove
adsorbed impurities on the substrate surface before a spin-coating process. The purpose
was to reduce the thickness of the active layer and form a shorter path for carrier migration.
The plasma processing conditions were set as power supply of 75 W and processing time
of 10 s. The spin-coating conditions were set as spin speed of 3000 r/min and duration
of 30 s. Then, the samples were placed on the hot plate and heated at 90 ◦C for 3 min to
cure the deposited colloid. The active layer was heated to 550 ◦C at a heating rate of 5 ◦C/s
with air atmosphere in a rapid annealing furnace and kept for 60 min. The thickness of
IGZO active layer after annealing treatment was 40 ± 5 nm. A schematic of structure of the
IGZO TFTs on the Si/SiO2 and ITO/HfO2 substrates with rectangular symmetrical and
circular drain/source electrodes is shown in Figure 1. The rectangular-patterned active
layer and drain/source electrodes were obtained by lithography. The circular electrode
structure was obtained by mask evaporation on the prepared IGZO channel layer using an
electron beam evaporation system. The rectangular and circular drain/source electrodes
were the evaporation layer of aluminum metal with a thickness of ~50 nm. The rectangular
channel pattern has a length of ~100 µm and a width of ~300 µm. The channel length of
circular pattern TFT devices is also about ~100 µm.
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Figure 1. Schematic illustrations of fabrication of an IGZO/SiO2/Si thin-film transistor (TFT) (a) and
an IGZO/HfO2/indium tin oxide (ITO) TFT (b). Microscope images of the rectangular and circular
channel patterns of an IGZO/SiO2/Si TFT (c) and an IGZO/HfO2/ITO TFT. I, II, III, and IV are four
parts of the circular channel pattern (d). The scale bar is 200 µm.

2.2. Characterization

The active layers were obtained by a spin-coater (SPS Spin150i, SPS Company, Bi-
enenbuttel, Germany). The microscope images of the rectangular and circular channel
patterns were obtained by a Zeiss microscope (AxioScope A1, Carl Zeiss AG). The IGZO
active layers were annealed in air atmospheres using a vacuum rapid annealing furnace
(RTP-100, UniTemp, Pfaffenhofen, Germany). The dielectric layers were prepared by rf
magnetron sputtering (PVD75, Kurt. J. Lesker Company, Jefferson Hills, PA, USA). The
rectangular patterned drain/source electrodes and ac-tive layers are graphically etched
with a photolithography system (ABM/6/350/NUV/DCCD/M, ABM, Inc., New York, NY,
USA). The surface morphology and roughness of active and dielectric layers were charac-
terized by an atomic force microscope (MFP-3D Origin+, Oxford Instruments, Abingdon,
UK). The field-effect parameters were measured by a semiconductor parameter measuring
instrument (B1500A, Keysight Technologies, Santa Rosa, CA, USA).

3. Results and Discussion

The IGZO channel layer was first deposited on Si/SiO2 substrates via a spin-coating
process using the IGZO precursor solution. The prepared IGZO film was then annealed at
550 ◦C, lithographed, and covered with aluminium electrodes to obtain a TFT device with
a rectangular channel pattern. The channel length and width of the IGZO/SiO2/Si TFT
were about 100 µm and 300 µm, respectively. The pristine IGZO channel layer needed to
be annealed to remove organic impurities and improve the film quality. The thickness of
the prepared IGZO channel layer was about 40 ± 5 nm. The drain current (ISD) vs. drain-
source voltage (VSD) output characteristics of TFTs with rectangular channel patterns at
gate voltages (VG) from 0 to 40 V is shown in Figure 2a. The curves show the typical n-type
TFT performance with the clear transition from linear to saturation behavior. The threshold
voltage (VT) was estimated by extrapolating the linear portion of the (ISD)1/2 vs. VG curves
at VSD = 20 V in the typical transfer curves of the TFT device with symmetrical rectangular
electrodes. The TFT with rectangular pattern channel on a Si/SiO2 substrate exhibited an
on/off ratio (Ion/Ioff) of 2.61 × 104 and a VT of 13.5 V. The value of field-effect mobility (µ)
can reflect the carrier migration ability of a semiconductor under different electric fields [31].
The µ in the saturation region was evaluated from the following relationship:

µ =
2L

WCi

(
∂
√

ISD

∂VG

)2

(1)
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where L and W are the channel length and width of the IGZO/SiO2/Si TFT with a rect-
angular channel pattern, respectively, and Ci is the capacitance per unit area of the SiO2
gate insulator with a thickness of about 285 nm. By substituting these parameters into
Equation (1), a µ value was obtained for the TFT with a rectangular channel pattern of
0.021 cm2/Vs.
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(a,b) and circular channel patterns (c,d) on the Si/SiO2 substrates.

In contrast, the IGZO/SiO2/Si TFT device with the circular drain/source electrodes
achieves higher ISD in the output characteristic curves, as shown in Figure 2c. The reason is
that the carrier injection with circular electrodes in the IGZO channel layers can effectively
solve the problem of uneven electric field distribution between the electrode center and
edge in traditional symmetrical rectangular structures. The uniform distribution of VSD is
more conducive to carrier injection and migration in the channel. The Ion/Ioff and the VT
estimated by extrapolating the linear portion of the (ISD)1/2 vs. VG curves at VSD = 20 V
in the transfer characteristics of the TFT device with circular channel patterns can be
calculated as shown in Figure 3d. It can be seen that the Ion/Ioff and VT of the TFT device
with circular channel patterns are significantly improved, and the values are 2.04 × 106

and 7.2 V, respectively. For circular drain/source electrodes (as shown in Figure 1c), R1
is the radius of the internal source electrode (~500 µm) and R2 is the sum of the radius of
the internal source electrode and the length of the IGZO channel (~500 + 100 µm) used to
calculate the channel width to length ratio (W/L) of TFTs with circular channel patterns, as
a function of the W/L change, according to [32]:

W/L =
2π

ln(R2/R1)
(2)

In addition, the value of µ of the IGZO/SiO2/Si TFT device with circular electrodes
was 0.104 cm2/Vs by substituting Equation (2) into Equation (1). The increase in µ can be
conducive to improving the switching speed of TFT devices.

With the rapid development of a transparent or translucent display field, the demand
for transparent TFTs has gradually increased, and the gate and dielectric layers as the
key points of the display driver industry have attracted more attention. In this paper, the
ITO transparent conductive films were used as bottom gate electrodes. In addition, the
HfO2 with high dielectric constant deposited by magnetron sputtering can be selected
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as the dielectric layer for TFT devices. Similarly, the TFT devices with IGZO channel
layers and rectangular and circular drain/source electrodes were prepared on ITO/HfO2
substrates, and the output and transfer characteristic curves of the TFTs were characterized
as shown in Figure 3. The transition from the linear to the saturation part and the good
regulation of the ISD are both obtained in the output characteristic curves of the TFTs
with rectangular and circular channel patterns under VG from 0 to 7 V, as shown in
Figure 3a,c. The curves show typical n-type transistor performance. However, due to the
high conductivity of ITO and the weak compactness of HfO2 grown by sputtering at room
temperature, a higher ISD and lower applied VSD of the IGZO/HfO2/ITO TFTs than those
on the traditional Si/SiO2 substrates were obtained. The slope value of the (ISD)1/2 vs. VG
curves at VSD = 8 V will be increased for the TFTs with ITO/HfO2 substrates, resulting in
an increase in estimated µ values. Figure 3b,d show the typical transfer curves ISD–VG
and (ISD)1/2–VG at VSD = 8 V of the IGZO/HfO2/ITO TFT device with rectangular and
circular channel patterns, respectively. The value of µ was derived from a linear fit to
the plot of the square root of ISD vs. VG. The TFT device with rectangular symmetric
drain/source electrodes on ITO/HfO2 substrates exhibited a VT of 4.4 V, an Ion/Ioff of
3.30 × 103, and a µ of 18.49 cm2/Vs. In contrast, a TFT device with the circular channel
patterns on the same substrate also showed better field-effect parameters, including a VT
of 4.1 V, an Ion/Ioff of 2.85 × 104, and a µ of 39.19 cm2/Vs. The mobility values reported
by different studies are summarized in Table 1. There is a gap between the performance
of IGZO TFTs with rectangular and circular channel patterns in this work compared with
typical TFTs, but we will improve the electrical properties and stability of the TFT devices
and the tolerance of TFTs on ITO substrates to high applied voltage from the perspective of
interface modification in the next work.
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In the above, we discussed the variation of electrical performance of IGZO TFT devices
on different substrates and with different patterns of drain/source electrodes. For the IGZO
channel layer deposited by a spin-coating method, besides the advantage of a simple
preparation process, the effect of the spin-coating on surface roughness of the channel
layers should also be investigated. In Figure 4, the variation of the IGZO and HfO2 surface
morphologies on different substrates was analyzed by atomic force microscope. As shown
in Figure 4a, the IGZO channel layer by spin-coating on a Si/SiO2 substrate has a relatively
flat surface with a roughness of 0.796 nm. The very low surface roughness benefited from
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the preparation of the channel layer from the precursor of the ionic solution. The HfO2
layer by magnetron sputtering on the ITO conductive glass has a rougher surface with a
roughness of 4.460 nm, as shown in Figure 4b. However, the roughness of the HfO2 layer
after coating the IGZO channel layer was reduced to 3.797 nm, as shown in Figure 4c. This is
because the IGZO precursor solution can be effectively filled into the surface micro-porous
structure of the HfO2 layer during spin-coating. Reducing the roughness of the surface
helps decrease the scattering of carriers at the interface and further improves the transport
capacity of carriers in the channel of TFT devices.

Table 1. Mobility values of the IGZO TFTs with different substrates and dielectric layers.

Type Mobility (cm2/Vs) Ref.

Solution-processed IGZO on Si/SiO2 substrates 6.41 [33]
Solution-processed IGZO on ITO substrates

(all-oxide transparent TFTs) 8 [34]

Solution-processed IGZO with
self-assembled nanodielectrics 19.4 [35]

Solution-processed IGZO on Si/SiO2 substrates with
circular channel patterns 0.104 Our result

Solution-processed IGZO on ITO substrates with
circular channel patterns 39.19 Our resultMicromachines 2022, 13, x FOR PEER REVIEW 7 of 9 
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4. Conclusions

The field-effect performance of the IGZO TFT device with symmetrical rectangular
and circular channel patterns on different substrates was investigated in this paper. The
electrical properties of TFT devices with circular drain/source electrodes were better
than those with a traditional rectangular structure on both substrates, due to the uniform
distribution of applied voltages between the electrode center and edge. The uniform
distribution of the applied voltage was more conducive to carrier injection and migration in
the channel. The TFT with rectangular and circular channel patterns on the Si/SiO2 showed
a VT value of 13.5 V and 7.2 V, an Ion/Ioff value of 2.61 × 104 and 2.04 × 106, and a µ value
of 0.021 cm2/Vs and 0.104 cm2/Vs, respectively. A high dielectric constant HfO2 layer on
an ITO transparent conductive film was used as the bottom gate and dielectric layer in
IGZO TFT devices. The surface roughness of the HfO2 layer by sputtering deposition on
the ITO can be effectively reduced by spin-coating the IGZO channel layer. This improved
interface contact quality will effectively decrease the scattering of carriers at the interface.
The TFT with rectangular and circular channel patterns on the ITO/HfO2 showed a VT
value of 4.4 V and 4.1 V, an Ion/Ioff value of 3.30 × 103 and 2.85 × 104, and a µ value of
18.49 cm2/Vs and 39.19 cm2/Vs, respectively. In the next work, we plan to use transparent
metal oxides or metal grids as the drain/source electrodes to solve the problem of full
transparency of TFT devices.
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