Advances in Micro- and Nanomaterials: Synthesis and Applications

A special issue of Micro (ISSN 2673-8023). This special issue belongs to the section "Microscale Materials Science".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 1139

Special Issue Editor

Air Force Research Laboratory, Materials and Manufacturing Directorate, Dayton, OH 45433-7728, USA
Interests: nano materials; heterostructure; nanomaterials interface; nano materials design; modeling and simulation; nano and micro scale metrology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Future materials are expected to perform in a disparate and dynamic environment with enhanced performance efficiency. In this pursuit, efficient materials often exhibit simultaneous multifunctionality (structural, electrical, thermal, optical, dielectric, etc.), even in very dynamic environments. Towards boosting materials performance or work efficiency, a compelling approach is to extract the same amount of work at every point of the materials volume, even in the gradient field. This may require placing different materials selectively at different locations (i.e., materials hybridization) to extract almost the same amount of work, whose effectiveness improves significantly if we can take such selectivity in a smaller (micron or atomic) scale—hence the importance of microscale or nanoscale materials science. Science-related materials selection and design at the micro- or nanoatomic scale materials hybridization (such as materials interface optimization and its validation) is still evolving and offers unprecedented opportunities in expanding the materials design and performance space.

In this Special Issue, we solicit foundational work in materials processing, innovative materials characterization techniques, metrology, and materials modeling approaches towards advancing micro- or nanoscale materials science. We invite original research work in the broad materials application space (structural, thermal, electrical, magnetic, dielectric, and more), discovering innovative micro- or nanoscale materials science issues.

Dr. Ajit Roy
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micro is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • materials processing
  • innovative materials
  • micro- or nanoscale materials science
  • materials application
  • materials hybridization

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 6836 KiB  
Article
An Investigation into the Effect of Length Scale of Reinforcement on the Cryogenic Response of a Mg/2wt.%CeO2 Composite
by Shwetabh Gupta, Michael Johanes, Gururaj Parande and Manoj Gupta
Micro 2024, 4(1), 170-184; https://doi.org/10.3390/micro4010012 - 14 Mar 2024
Viewed by 359
Abstract
The present study attempted for the first time an investigation on the effect of deep cryogenic treatment in liquid nitrogen (LN) on magnesium–cerium oxide (Mg/2wt.%CeO2) composites containing equal amounts of different length scales (micron and nanosize) cerium oxide (CeO2) [...] Read more.
The present study attempted for the first time an investigation on the effect of deep cryogenic treatment in liquid nitrogen (LN) on magnesium–cerium oxide (Mg/2wt.%CeO2) composites containing equal amounts of different length scales (micron and nanosize) cerium oxide (CeO2) particles. The disintegrated melt deposition method was used to synthesize Mg-2CeO2 micro- and nanocomposites, followed by hot extrusion as the secondary processing. Further liquid nitrogen treatment was performed at a cryogenic temperature of −196 °C. The combined effects of cryogenic treatment and reinforcement length scale on physical, mechanical, and thermal behaviors were studied. The results indicate that LN-treated micro- and nanocomposite samples exhibit, in common, a reduction in porosity, similar grain size, and a limited effect on the original texture of the matrix. However, microhardness, 0.2% Compressive Yield Strength (CYS), failure strain, and energy absorbed increased for both micro- and nanocomposite samples. Overall, results clearly indicate the capability of deep cryogenic treatment with LN to positively diversify the properties of both micro- and nanocomposite samples. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

Review

Jump to: Research

52 pages, 6842 KiB  
Review
Porous Inorganic Nanomaterials: Their Evolution towards Hierarchical Porous Nanostructures
by Anitta Jose, Tom Mathew, Nora Fernández-Navas and Christine Joy Querebillo
Micro 2024, 4(2), 229-280; https://doi.org/10.3390/micro4020016 - 18 Apr 2024
Viewed by 537
Abstract
The advancement of both porous materials and nanomaterials has brought about porous nanomaterials. These new materials present advantages both due to their porosity and nano-size: small size apt for micro/nano device integration or in vivo transport, large surface area for guest/target molecule adsorption [...] Read more.
The advancement of both porous materials and nanomaterials has brought about porous nanomaterials. These new materials present advantages both due to their porosity and nano-size: small size apt for micro/nano device integration or in vivo transport, large surface area for guest/target molecule adsorption and interaction, porous channels providing accessibility to active/surface sites, and exposed reactive surface/active sites induced by uncoordinated bonds. These properties prove useful for the development of different porous composition types (metal oxides, silica, zeolites, amorphous oxides, nanoarrays, precious metals, non-precious metals, MOFs, carbon nanostructures, MXenes, and others) through different synthetic procedures—templating, colloidal synthesis, hydrothermal approach, sol-gel route, self-assembly, dealloying, galvanostatic replacement, and so—for different applications, such as catalysis (water-splitting, etc.), biosensing, energy storage (batteries, supercapacitors), actuators, SERS, and bio applications. Here, these are presented according to different material types showing the evolution of the structure design and development towards the formation of hierarchical porous structures, emphasizing that the formation of porous nanostructures came about out of the desire and need to form hierarchical porous nanostructures. Common trends observed across these different composition types include similar (aforementioned) applications and the use of porous nanomaterials as templates/precursors to create novel ones. Towards the end, a discussion on the link between technological advancements and the development of porous nanomaterials paves the way to present future perspectives on these nanomaterials and their hierarchical porous architectures. Together with a summary, these are given in the conclusion. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

Back to TopTop