Artificial Models of Biological Membranes—2nd Edition

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Biological Membrane Dynamics and Computation".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 5103

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory for Biophysics and Medical Physics, Department of Medical Physics and Biophysics, University of Split School of Medicine, Split, Croatia
Interests: artificial biological membranes; fiber cell plasma membranes; cholesterol; cholesterol bilayer domain; discrimination of lipid domains; biophysical methods
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Artificial membranes are used extensively as models that mimic cell membranes. In this research area, a great deal of evidence suggests that high cholesterol levels in some membranes (eye lens) have positive functions, while serving as a sign of pathology in other membranes (e.g. atherosclerosis). Improving the methodology for the formation of model membrane bilayers, especially those with a high cholesterol content, is desirable and significant.

This Special Issue aims to provide improved protocols for preparing artificial membranes that can be used as models for studying the structure, dynamics, and properties of biological membranes using different fluorescent and microscopy methods, electron paramagnetic or nuclear magnetic resonance, calorimetry, X-ray diffraction, etc.

In this Special Issue we invite you to submit your research articles and reviews. Research areas may include (but are not limited to) the following topics related to artificial membranes:

  • The development and testing methods for the preparation of artificial membranes with different cholesterol contents (e.g. giant unilamellar vesicles or supported single membrane bilayers);
  • The investigation of the lateral organization and dynamics of lipids in artificial and biological membranes, paying special attention to domain formation;
  • Interactions and assemblies of molecules in the membrane, such as cholesterol, phospholipids, sphingolipids, and proteins.

We look forward to receiving and publishing your contributions.

Dr. Marija Raguz
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phospholipids
  • sphingolipids
  • cholesterol
  • lipid composition
  • rafts
  • cholesterol bilayer domain
  • artificial membranes
  • membrane domains
  • biophysical methods

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1674 KiB  
Article
Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films with a Focus on Vesicles with High Cholesterol Content
by Ivan Mardešić, Zvonimir Boban and Marija Raguz
Membranes 2024, 14(4), 79; https://doi.org/10.3390/membranes14040079 - 27 Mar 2024
Viewed by 591
Abstract
Giant unilamellar vesicles (GUVs) are membrane models used to study membrane properties. Electroformation is one of the methods used to produce GUVs. During electroformation protocol, dry lipid film is formed. The drying of the lipid film induces the cholesterol (Chol) demixing artifact, in [...] Read more.
Giant unilamellar vesicles (GUVs) are membrane models used to study membrane properties. Electroformation is one of the methods used to produce GUVs. During electroformation protocol, dry lipid film is formed. The drying of the lipid film induces the cholesterol (Chol) demixing artifact, in which Chol forms anhydrous crystals which do not participate in the formation of vesicles. This leads to a lower Chol concentration in the vesicle bilayers compared to the Chol concentration in the initial lipid solution. To address this problem, we propose a novel electroformation protocol that includes rapid solvent exchange (RSE), plasma cleaning, and spin-coating methods to produce GUVs. We tested the protocol, focusing on vesicles with a high Chol content using different spin-coating durations and vesicle type deposition. Additionally, we compared the novel protocol using completely dry lipid film. The optimal spin-coating duration for vesicles created from the phosphatidylcholine/Chol mixture was 30 s. Multilamellar vesicles (MLVs), large unilamellar vesicles (LUVs) obtained by the extrusion of MLVs through 100 nm membrane pores and LUVs obtained by extrusion of previously obtained LUVs through 50 nm membrane pores, were deposited on an electrode for 1.5/1 Chol/phosphatidylcholine (POPC) lipid mixture, and the results were compared. Electroformation using all three deposited vesicle types resulted in a high GUV yield, but the deposition of LUVs obtained by the extrusion of MLVs through 100 nm membrane pores provided the most reproducible results. Using the deposition of these LUVs, we produced high yield GUVs for six different Chol concentrations (from 0% to 71.4%). Using a protocol that included dry lipid film GUVs resulted in lower yields and induced the Chol demixing artifact, proving that the lipid film should never be subjected to drying when the Chol content is high. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes—2nd Edition)
Show Figures

Figure 1

13 pages, 1611 KiB  
Article
Membrane Tubulation with a Biomembrane Force Probe
by Lancelot Pincet and Frédéric Pincet
Membranes 2023, 13(12), 910; https://doi.org/10.3390/membranes13120910 - 18 Dec 2023
Viewed by 1340
Abstract
Tubulation is a common cellular process involving the formation of membrane tubes ranging from 50 nm to 1 µm in diameter. These tubes facilitate intercompartmental connections, material transport within cells and content exchange between cells. The high curvature of these tubes makes them [...] Read more.
Tubulation is a common cellular process involving the formation of membrane tubes ranging from 50 nm to 1 µm in diameter. These tubes facilitate intercompartmental connections, material transport within cells and content exchange between cells. The high curvature of these tubes makes them specific targets for proteins that sense local geometry. In vitro, similar tubes have been created by pulling on the membranes of giant unilamellar vesicles. Optical tweezers and micromanipulation are typically used in these experiments, involving the manipulation of a GUV with a micropipette and a streptavidin-coated bead trapped in optical tweezers. The interaction forms streptavidin/biotin bonds, leading to tube formation. Here, we propose a cost-effective alternative using only micromanipulation techniques, replacing optical tweezers with a Biomembrane Force Probe (BFP). The BFP, employing a biotinylated erythrocyte as a nanospring, allows for the controlled measurement of forces ranging from 1 pN to 1 nN. The BFP has been widely used to study molecular interactions in cellular processes, extending beyond its original purpose. We outline the experimental setup, tube formation and characterization of tube dimensions and energetics, and discuss the advantages and limitations of this approach in studying membrane tubulation. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes—2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 3267 KiB  
Review
Electrometric and Electron Paramagnetic Resonance Measurements of a Difference in the Transmembrane Electrochemical Potential: Photosynthetic Subcellular Structures and Isolated Pigment–Protein Complexes
by Alexey Yu. Semenov and Alexander N. Tikhonov
Membranes 2023, 13(11), 866; https://doi.org/10.3390/membranes13110866 - 01 Nov 2023
Viewed by 1482
Abstract
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall Δμ [...] Read more.
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall ΔμH+ value depend on the nature and lipid composition of the energy-coupling membrane. In this review, we briefly consider several of the most common instrumental (electrometric and EPR) methods for numerical estimations of Δψ and ΔpH. In particular, the kinetics of the flash-induced electrometrical measurements of Δψ in bacterial chromatophores, isolated bacterial reaction centers, and Photosystems I and II of the oxygenic photosynthesis, as well as the use of pH-sensitive molecular indicators and kinetic data regarding pH-dependent electron transport in chloroplasts, have been reviewed. Further perspectives on the application of these methods to solve some fundamental and practical problems of membrane bioenergetics are discussed. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes—2nd Edition)
Show Figures

Graphical abstract

20 pages, 1939 KiB  
Review
Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration
by Hanning Wu, Jiawen Chen, Pengxiang Zhao, Mengyu Liu, Fei Xie and Xuemei Ma
Membranes 2023, 13(9), 802; https://doi.org/10.3390/membranes13090802 - 18 Sep 2023
Viewed by 1301
Abstract
For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in [...] Read more.
For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing and real-time monitoring technologies have enabled the creation of tissue-like membranes and the provision of an appropriate microenvironment. Using tissue engineering methods incorporating 3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor the recovery of the wound process in different aspects, and some may spontaneously give feedback to the wound sites by releasing biological factors. The combination of the detection of smart sensors and individualized membrane design in the healing process shows enormous potential for wound dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials, and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in various fields, including the modeling of disease, organ-on-a-chip, and drug development. Full article
(This article belongs to the Special Issue Artificial Models of Biological Membranes—2nd Edition)
Show Figures

Figure 1

Back to TopTop