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Abstract: For decades, tissue regeneration has been a challenging issue in scientific modeling and
human practices. Although many conventional therapies are already used to treat burns, muscle
injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing
effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing
and real-time monitoring technologies have enabled the creation of tissue-like membranes and the
provision of an appropriate microenvironment. Using tissue engineering methods incorporating
3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds
can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart
sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor
the recovery of the wound process in different aspects, and some may spontaneously give feedback
to the wound sites by releasing biological factors. The combination of the detection of smart sensors
and individualized membrane design in the healing process shows enormous potential for wound
dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies
in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials,
and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting
their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in
various fields, including the modeling of disease, organ-on-a-chip, and drug development.
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1. Introduction

Over the past decade, tissue regeneration has remained an important challenge to
overcome. Tissue injuries, especially those of the skin and its appendages, muscles, and
bones, are prevalent insults that disrupt homeostasis and give rise to common problems
in clinical practice [1–4]. The defection of these tissues can severely affect the quality of
human life, resulting in various inconveniences and social burdens [5]. Skin diseases,
bone defects, and muscle abnormalities are all associated with chronic, recurrent processes
that urgently require novel, efficient treatments [6,7]. Despite the development of some
regenerative wound therapeutic strategies, including skin substitutes, hair transplantation,
non-steroidal anti-inflammatory drugs, and traditional tissue engineering, these techniques
remain unable to effectively deal with complex injuries, such as chronic wounds, severe
burns, or the creation of full-thickness grafts [5,8–12]. In addition, some traditional regen-
erative therapies for inner tissues (e.g., bones and muscles), such as hydrogel dressings
and bone graft surgery, have shown reduced superiority in terms of inherited muscle
defects and new bone formation [13–15]. Moreover, the shortage of suitable organ donors,
religious beliefs, and other factors make organ donation (e.g., heart and kidney donation)
in short supply, placing pressure on organ repair and giving rise to a greater need for
organ regeneration [16,17]. Hence, tissue engineering represents an ideal strategy to con-
struct biological tissue substitutes, which can be used to regenerate or restore tissue defects
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or can be used as an in vitro device to temporarily replace organ functions and improve the
quality of life [18,19]. Tissue engineering methods for tissue regeneration include three key
elements: scaffolds, cells, and growth factors [20,21]. Tissue engineering scaffolds are the
most basic structure of tissue engineering, and without these biological support materials,
cells and growth factors cannot be placed, and tissues or organs cannot be generated.
Various production techniques have been developed to develop a more stabilized and func-
tionalized scaffold for tissue regeneration; these include electrospinning, phase separation,
gas foaming, the porogen method, polymerization in solution, self-assembly, membrane
lamination, freeze drying, and 3D printing [22]. Among these methods, 3D printing can
effectively solve the plights of spatial positioning and structure scanning in constructing
reliable and standardized tissue scaffolds [23–27]. Moreover, a series of electronic elements
are integrated with tissue regenerative scaffolds to elicit and monitor the behavior of the
regeneration process, and thus, promote the intelligence and responsiveness of 3D scaf-
folds [28–30]. These types of 3D scaffolds and other membrane-like artificial smart tissues
for tissue regeneration are termed “3D regenerative membranes”. The concept map of the
3D regenerative membrane is shown in Figure 1.
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Figure 1. A concept map of sensor-binding 3D membranes. By optimizing 3D membrane with smart
sensors, it may induce a better regeneration effect in various tissues. Created with BioRender.com
(accessed on 21 August 2023).

This review describes tissue regeneration using sensor-binding 3D membranes, as well
as the challenges in their clinical application. We also summarize the perspectives of 3D
bioengineered membranes in various fields, including disease modeling [31,32], electronic
skin [33], organ-on-a-chip [34], and drug development [35].

2. 3D Printing

3D printing, also known as additive manufacturing, uses computer-aided manufac-
turing (CAM) to build up the printing inks layer-by-layer per the data obtained from 3D
digital models [36,37]. The process involves three core elements: a 3D printer, printing inks,
and a computer-aided design (CAD)/CAM system. Recent developments have made it
possible to use 3D printing in tissue engineering and regenerative medicine [38]. Compared
with conventional methods, 3D printing provides benefits such as an individualized design,
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the integrated production of functionalized scaffolds, and the rapid creation of complex
structures [39,40]. Advanced manufacturing of 3D membrane and sensors can use 3D
printing in clinical research. In this section, we introduce several 3D printing methods
as well as printing inks (especially biomaterials) and discuss the usages of 3D printing in
the context of 3D membrane construction and the limitations of 3D membranes without
sensors.

2.1. Approaches of 3D Printing

Based on existing research, common 3D printing technologies can be roughly di-
vided into four categories: extrusion-based 3D printing (Figure 2a) [41–45], droplet-
based 3D printing (Figure 2b) [46–48], laser-assisted 3D printing (Figure 2c) [49–52], and
stereolithography-based 3D printing (Figure 2d) [53,54]. Although each 3D printing tech-
nology has its advantages and limitations, they all contribute to the individualization and
intelligent manufacturing of 3D membranes and sensors.
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2.1.1. Extrusion-Based 3D Printing

Extrusion-based 3D printing, as shown in Figure 2a, uses a pneumatic, piston, or
screw to extrude the printing inks under constant pressure. By adjusting the environmental
conditions, the printing inks form continuous microfilaments, which are then deposited
layer-by-layer onto the printing platform [41]. This type of 3D printing technology is
currently the most widely used and is suitable for printing large-scale complex structures
as well as high-viscosity materials. However, as a disadvantage, this method has low
accuracy (resolution > 100 µm) [44]. Therefore, extrusion-based 3D printing is suitable
to obtain 3D membranes and sensors with large size and low accuracy requirements
(resolution > 100 µm), rather than nano-precision sensors.

2.1.2. Droplet-Based 3D printing

Droplet-based 3D printing, as shown in Figure 2b, generates microbubbles at the nozzle
tip via piezoelectric or thermal energy, which in turn drives the printing inks’ droplets to
be ejected and deposited layer-by-layer on the printing platform [46]. This technology has
high printing accuracy, fast printing speed, and low printing cost. However, the prominent
disadvantage of this technology is that the printing inks have low viscosity, and it is difficult
to form complex 3D structures due to the challenges in obtaining the desired shapes [55].
Therefore, droplet-based 3D printing is suitable to obtain high-precision and small-sized
sensors with multilayer high-precision 3D membranes. Zhang et al. [56] used droplet-
based 3D printing to spray graphene oxide (GO) on the substrate to form a nano-precision,
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soft, ultra-thin, flexible, conductive, and biocompatible nano-heart patch for myocardial
infarction (MI) repair. Similar to this research, it is an advanced application of droplet-based
3D printing to construct the nano-sensor module by printing highly conductive materials
(e.g., GO and liquid metal).

2.1.3. Laser-Assisted 3D Printing

Laser-assisted 3D printing, as shown in Figure 2c, uses laser pulses to create microbub-
bles in the printing inks’ layer; the printing inks’ droplets are propelled to be ejected
and deposited layer-by-layer on the printing platform [40]. This method can avoid direct
contact between the material and the nozzle, resulting in high viscosity of the printed
material. However, the main disadvantage of this technology is the high cost [49]. There-
fore, laser-assisted 3D printing is suitable for the molding of some printing inks with high
requirements for the molding environment to expand the application of bioinks (containing
viable cells) and some ink with harsh molding conditions in 3D membranes and sensor
manufacturing.

2.1.4. Stereolithography-Based 3D Printing

Stereolithography-based 3D printing, as shown in Figure 2d, is suitable for use with
photo-crosslinking printing inks, in which selective curing is achieved by controlling visible
or ultraviolet light. This technology has high printing accuracy, fast printing speed, and
good quality on the vertical surface. However, laser irradiation and photoinitiator toxicity
can cause damage to the cells. Moreover, the selection of the type of printing inks is lim-
ited [53]. In recent years, two-photon polymerization (TPP) [57] and microscale computed
axial lithography (micro-CAL) [58] were developed on the basis of stereolithography-
based 3D printing, which have provided new ideas for the rapid, refined, and integrated
manufacturing of nano-scale sensors and high-precision 3D membranes.

2.2. Printing Inks

Printing inks, typically composed of biomaterials, are an important component of 3D
printing for 3D regenerative membranes. Suitable printing inks allow the 3D regenerative
membranes to better satisfy the design requirements of tissue engineering. The existing bio-
materials used in printing inks can be divided into animal-sourced natural ECM materials,
non-animal-derived natural hydrogels, and synthetic hydrogels [59]. Table 1 summarizes
the crosslinking characteristics and the applicable 3D printing methods of the various types
of biomaterials [60–63].

Table 1. Common types of biomaterials used in printing inks.

Type Biomaterials Crosslinking 3D Printing Methods Refs.

Animal-sourced natural ECM
materials

Collagen Thermal Extrusion-based,
droplet-based, laser-assisted [64–66]

Fibrinogen Enzymatic Extrusion-based,
droplet-based [67]

Hyaluronan Photic, enzymatic Extrusion-based [68]
Decellularized extracellular

matrix (dECM) Photic, thermal, pH Extrusion-based,
droplet-based [69]

Gelatin Photic, thermal, enzymatic, ionic
Extrusion-based,

droplet-based,
stereolithography-based

[70]

Non-animal-derived natural
hydrogels

Cellulose Photic, thermal, enzymatic, ionic, pH Extrusion-based,
droplet-based [71,72]

Alginate Photic, thermal, ionic Extrusion-based,
droplet-based, laser-assisted [73]

Chitosan Thermal, enzymatic, ionic, pH Extrusion-based [74]

Agarose Thermal Extrusion-based,
droplet-based [59,75]

Carrageenan Photic, thermal, ionic Extrusion-based [76,77]
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Table 1. Cont.

Type Biomaterials Crosslinking 3D Printing Methods Refs.

Synthetic hydrogels

Polyethylene glycol (PEG) Photic
Extrusion-based,

droplet-based,
stereolithography-based

[59,78]

Polyurethane (PU) Thermal Extrusion-based [79,80]
Polyvinyl alcohol (PVA) Chemic, ionic Extrusion-based [81,82]

Polylactic acid (PLA) Thermal Extrusion-based [83]
Pluronic F127 (PF127) Thermal Extrusion-based [84]

2.3. 3D Membranes in Different Tissues and Organs

Many 3D membranes are constructed using 3D printing owing to its suitability for
manufacturing complex structures with multiple layers. Common regenerative 3D printing
membranes in different tissues and organs include skin membranes, serosal membranes,
tubular tissue membranes, and connective tissue membranes [85]. A summary of the
3D printing manufacturing processes for various types of membranes is provided in the
following text.

2.3.1. Skin Membranes

Skin membranes [86,87] are suitable for problems with tissue regeneration related to
skin and its appendages, such as acute or chronic wound healing. The constructed skin
membrane often has a multilayered structure, including an epidermal layer, a dermal layer,
a subcutaneous tissue layer, and a skin appendage layer [88]. Currently, to construct a fully
functional skin membrane, multiple printing inks are commonly used for composite inkjet
printing and are combined with “bio-paper” for layer-by-layer printing. The construction
of a clinically applicable multilayered and complex skin membrane has always been a
challenge for 3D skin membrane technology. Miguel et al. [89] constructed an asymmetry
multilayered asymmetric skin membrane, which is more suitable for treating patients with
skin injuries, using composite 3D printing technology and electrospinning technology.
Therefore, to create a skin membrane that meets practical needs, multiple manufacturing
technologies need to be combined to produce complex membrane structures that meet the
required specifications.

2.3.2. Serosal Membranes

Serosal membranes include peritoneum, pleura, amniotic membrane, and pericardium [90].
According to the difficulty with producing this type of membrane outside the body and then
implanting it, they are often produced inside the body. In situ 3D printing is a promising
approach to address this challenge. Zhao et al. [91] proposed a new manufacturing strategy
using in situ 3D printing technology during minimally invasive surgery assisted by seven-axis
robots to achieve small-scale in situ 3D printing of amniotic membranes. They demonstrated
the feasibility of this approach via animal experiments, providing a new solution for the in situ
manufacturing of internal membranes.

2.3.3. Tubular Tissue Membranes

Tubular tissue membranes include the cardiovascular membrane [92], esophageal
membrane [93], tracheal membrane, intestinal membrane, and urethral membrane. These
membranes are commonly used for tubular tissue regeneration [94], as well as pharma-
cological and toxicological studies [95]. The difficulty in building these membranes lies
in constructing large-sized, multilayered, hollow tubular structures; hence, some addi-
tional support measures tend to be adopted in the process [96]. For example, some com-
monly used support measures include hydrogel-assisted suspension printing and sacrificial
material-assisted printing [97].
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2.3.4. Connective Tissue Membranes

Connective tissue membranes include the periosteum [98], fascia, and synovium
membrane. This type of membrane is closely related to the induction of bone [99,100],
cartilage tissue [101], and muscle tissue [102] regeneration. A major challenge with this
type of membrane is to maintain the original mechanical properties of the tissue after
implantation. Larson et al. [103] modified the structure of the microextrusion printing
nozzle to achieve the printing of multi-material helical structures with high toughness and
elasticity, which were highly matched to muscle tissue function. Wang et al. [104] achieved
a type of biomimetic stretchable nanofiber yarn scaffold, which was implanted into mouse
tendon tissue and found to help the mouse perform moderate exercise following the repair
of tendon defects. The above two examples demonstrate that the mechanical properties of
3D membrane structures can be improved by changing the morphology of the extruded
microfilament in microextrusion 3D printing, thereby maintaining the original mechanical
properties of the tissue after implantation.

2.3.5. Other Tissue Membranes

Tympanic membranes [105], corneas [106], retinas [107], and other membranes can
also be personalized and manufactured using multilayered 3D printing with various
biomaterials to meet the clinical demand for tissue regeneration.

2.4. Limitations of 3D Printing

The existing 3D printing technology can achieve complex structural construction and
the personalized design of various tissue membranes, but its application in more complex
membrane structures is limited by issues such as printing precision, multi-material printing,
and composite printing.

Additionally, the existing 3D printing membranes lack feedback mechanisms from
biological signals, making it difficult for physicians to detect the repair status of the defective
site in real time and to dynamically develop treatment strategies for patients. However, the
recent development of sensors has brought possibilities for the construction of intelligent
3D membranes.

3. Sensors

A sensor is defined as an entity that retrieves the state of the sensed object and then
pushes the collected data to one central processing and/or storage unit. Sensors can be
divided into physical or virtual sensors [108]. However, 3D membrane-binding sensors
are a type of sensor that combines the functions of physical and virtual sensors and may
provide regenerative signals and feedforward spontaneous signals to respond to wounded
tissues and organs. It is composed of molecular recognition elements (living animal and
plant slices), corresponding signal conversion elements, and responsive elements. Figure 3
shows the common working principle of 3D membrane-binding sensors.
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progressions. Created with BioRender.com (accessed on 21 August 2023).
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Over the past decades, integrated with 3D regenerative membranes, the functions of
3D membrane-binding sensors have varied from time to time. Traditional sensors monitor
wound conditions but are usually passive to signals they capture, while novel sensors are a
type of sensor that may generate an active response to the wound sites. Moreover, binding
with artificial skin, sensor-binding regenerative 3D membranes enable large-area tactile-
sensitive skin production of a possible substrate of tissue regeneration and provides chronic
wound care management [12,109–111]. In cardiac tissues, constructing a tissue-sensor
platform with 3D printing technology can provide real-time and continuous monitoring
of the physiological condition of the heart, so as to assist tissue regeneration [112]. In the
human nervous system, the use of electrical signals as 3D membrane-binding sensors for re-
pairing impaired neural tissue open up a new avenue of thinking about nerve regeneration
therapy [113]. Figure 4 shows the various uses of 3D membrane-binding sensors.
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Figure 4. Examples of 3D membrane-binding sensors. (a) Fully implantable vascular membranes with
printed soft sensors [114]. (b) Smart flexible electronic-integrated wound membranes for real-time
monitoring and on-demand treatment of infected wounds [115]. (c) pH-responsive nanocompos-
ite wound dressings [116]. (d) Smart contact lenses for continual glucose detection [117]. (e) 3D
membrane-binding sensors for respiratory rate (RR) and heart rate (HR) monitoring [118]. (f) Artificial
skin integrating transducers [110]. Created with BioRender.com (accessed on 21 August 2023).

3.1. Traditional Sensors for 3D Membranes

3D membrane-binding sensors can aid in monitoring and controlling wound infections.
After using 3D printing technology to construct the scaffold, shortening the treatment
time and providing solutions to control the progression and healing of wounds are very
important [119]. With the development of a 3D wound-measuring camera to provide
information on the wound area and the phase of wound healing, more attention has been
paid to 3D membrane-binding sensors due to their provision of deeper and more detailed
information on regenerative progression [120].

Former studies have shown that 3D-printed wound dressings contain a variety of
microelectronic sensors for the real-time monitoring of the wound environment, which can
send out signals to the clinician to report information such as graft failure or complications.
These types of traditional regenerative smart 3D membranes incorporate pH, temperature,
and oxygen sensors. Most of these traditional sensors are passive, with limited active
responses in wound healing.

BioRender.com
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3.1.1. Traditional Sensors for Regenerative Skin Membranes

pH-sensing 3D membranes: The pH of intact and non-infected skin is slightly acidic
and typically varies between 4 and 6, while that of chronic wounds is typically in the range
of 7 to 9. Hence, enclosing pH sensors into wound dressings has the potential to provide
an assessment of the wound status, facilitating the detection of early-stage infections [121].
New studies are focusing on optimizing the sensitivity and response time of such sensors.

Temperature Sensor—Integrated Artificial Membranes: Injuries independently and
interactively influence deep body temperature [122]. Upon the integration with hydrogel
membranes, temperature sensors can continuously collect wound temperatures and detect
bacterial infection, transmitting to the smart phone in real time and providing effective
treatment based on clinical needs [115]. The trend of change in the wound temperature
clearly provides doctors with the alteration in the wound stage, giving them a convinced
clue of the wound recovery condition.

Oxygen—Sensing Membranes: Oxygen is a critical component in many biological
processes and is essential for wound healing. Chronic wounds are typically characterized
as being hypoxic in that the partial pressure of oxygen (pO2) in the center of the wound is
often below a critical threshold that is necessary to fully support the enzymatic processes
necessary for tissue repair, stressing the importance of real-time monitoring of the oxygen
concentration in wound areas [123]. Regarding the wound healing models, Roussakis
et al. [124] developed a collagen–dextran oxygen-sensing bio-composite scaffold membrane
in which a phosphorescent oxygen sensor was incorporated to monitor the physiological
oxygen consumption in vivo and provide an assessment of tissue oxygenation during
wound healing.

Protein—Sensing Membranes: Protein concentrations in wounds have been used as
an indicator of the state of the wound stages due to the stability of protein concentrations
toward the active external environment surrounding the exudate [125]. El Saboni et al. [126]
designed a flexible textile-based protein sensor that was embedded in wound dressings and
was able to detect bovine serum albumin at concentrations ranging from 30 to 0.3 mg/mL,
with a sensitivity of 0.0026 µA/M. Currently, to provide stressing indicators in wound
healing, 3D membrane-binding sensors are being developed to integrate several detection
indicators (e.g., pH, temperature, pO2, and protein concentrations) into one.

Metabolism Disease—Sensing Membranes: A regenerative sensor-binding 3D mem-
brane may continuously monitor prevalent chronic metabolic disease. The traditional finger
piercing glucose tests of diabetes incur incentive pain during detection, representing one of
the main barriers to daily blood glucose monitoring. Skin pricking at alternate sites that
have fewer nerve endings than fingertips has been suggested as a means to increase blood
glucose monitoring compliance at home [127,128]. Cui et al. [129] developed a microneedle
biosensing device manufactured with 3D printing technology to monitor diabetes. Inserted
into the dermis layer of the mouse skin, this 3D membrane showed an accurate sensing
performance for monitoring subcutaneous glucose levels in normal and diabetic mice. This
study revealed that 3D printing can be applied to accelerate the recovery of chronic disease.
New achievements may be used in regenerative 3D membrane-coupled sensors to monitor
other diseases associated with tissue regeneration, and thus, promote the development of
disease detection techniques.

3.1.2. Traditional Sensors for Other Usages

Blood Pressure—Sensing Membranes: Sensors also play an important role in the
regeneration of other tissues and organs in vivo. Indeed, a previous study showed that
a battery-less pressure sensor based on an LC circuit and coupled with a 3D-printed
biodegradable polymeric smart stent could be integrated into a 3D-printed polymeric stent
to provide the wireless monitoring of the pressure in a blood vessel to follow disease
progression and treatment [114,130].

Other Special Organ—Sensing Membranes: 3D membrane-binding sensors also play
an important role in the regeneration process of the heart, blood vessels, and bones. A
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previous study showed that a battery-less pressure sensor based on an LC circuit and
coupled with a 3D-printed biodegradable polymeric smart stent could be integrated into a
3D-printed polymeric stent to provide the wireless monitoring of the pressure in a blood
vessel to follow disease progression and treatment [114,130]. Polley et al. [131] developed a
3D-printed piezoelectric barium titanate-hydroxyapatite scaffold, which combined smart
and additionally electrically active biomaterials to display piezoelectric values, and thus,
improve bone regeneration.

3.2. Novel Sensors for 3D Membranes

Wound healing is a highly dynamic process that may take years to recover. Incorporat-
ing three overlapping phases encompassing inflammation, proliferation, and remodeling, it
means that any disruption of the three phases may lead to abnormal wound healing [132].
Meticulous curation by physicians is unrealistic, especially in this long-term healing process;
hence, as mentioned previously, integrating therapeutic molecules and electrotherapy with
3D membranes represent an effective strategy to resolve this issue [133]. Some novel 3D
membrane-binding sensors that are integrated into wound dressings and artificial tissues
or organs have the ability not only to sense and detect the wound environment conditions
but also to give spontaneous feedback to wound sites, serving to keep the patient informed
about their condition and reduce physician intervention to some extent [116,120,126,134].
Wound pH-responding sensors, flexible bioelectronic sensors, and flexible bio-implanted
sensors are new types of 3D membrane-binding sensors that provide ideal integrations with
the soft, curvilinear, and elastic tissues and the unique capability of multimodal functions,
enabling the better monitoring of the wound healing status, as well as providing advanced
wound care and a spontaneous stimulation to accelerate the healing status [134,135]. Most
of these 3D membrane-binding sensors are active or partially active in responding.

3.2.1. Novel Sensors for Regenerative Skin Membranes

pH—Responding 3D membranes: Based on the sensing function of pH sensors, recent
studies have shown that those pH-responding membranes may release drugs at the wound
site via the feedback of pH sensors. Akbari et al. [116] developed a multifunctional hydrogel-
based wound dressing by mapping the pH of the wound using an array of printed sensors,
which initiates the delivery of a drug-releasing scaffold to release antibacterial agents at
the wound site. Moreover, a user-friendly interface was designed to display the results
and record the pH values for the continuous monitoring of the wound condition. The data
were uploaded on a secure cloud storage drive, which allowed medical personnel to access
the patient data and monitor the wound condition in real time [136]. Mirani et al. [137]
demonstrated the high regenerative efficacy of wound dressing by monitoring the infection
and supporting wound healing via antibiotic and growth factor delivery investigations
in mouse models. With the development of electronic information and image processing
technology, binding pH sensors into regenerative 3D-printed membranes serves to elevate
the treatment monitoring of wounded skin, which provides early detection of deteriorative
chronic diseases and the release of regenerative drugs in real time [121]. By monitoring and
providing effective responses to the healing stages, pH-responding sensors potentially give
direct access to the wound status without disturbing the wound bed.

Electrotherapy Binding Sensors: Additionally, a wireless closed-loop smart bandage
with integrated sensors and simulators can be used to enhance the incorporation of both
the sensors and simulators of the current smart bandage by activating a spontaneous
intervention to promote the healing of chronic wounds, as well as to reduce the chance
of detachment of existing adhesive dressings, which may damage the delicate adhesions
of natural tissues. To ensure an intimate skin interface and robust electrical communi-
cation between the circuit and skin, these sensors work through a soft layer of hydrogel
(a substance similar to the 3D membrane). This type of conductive hydrogel electrode
may mediate tissue adhesion and detachment by adjusting temperature changes. As an
appendage of 3D regenerative membranes, this type of integrated multimodal sensor and
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simulator for real-time monitoring and active wound care treatment could be attributed to
the activation of bioregenerative genes in the monocyte and macrophage cell populations,
thus considerably minimizing the need for physician intervention [134].

Bioresorbable Inflammatory Controlling Sensors: In terms of more spontaneous
stimulation-provided sensors, W. Song et al. [133] provided a new bioresorbable, wireless,
and battery-free system, with the ability to track inflammatory responses by mimicking a
naturally occurring stimulation process of endogenous electric fields to promote healing by
applying electric fields to restore endogenous wound currents and recapitulate the natural
healing mechanism. Evidence of the reduction in cytokines and interleukin-6 demonstrated
the success of this sensor-based system. Notably, this system can transmit real-time moni-
toring by sending signals to smartphones. In addition, after the healing process is complete,
bandages and electronics can dissolve harmlessly in the body. Unfortunately, this kind of
sensor-based system is not yet integrated with 3D-printed wound scaffolds; nevertheless, it
provides a viable way in which to accelerate the tissue regeneration process. Prior to this,
Yin et al. [138] developed a 3D-printed microheater sensor-integrated drug-encapsulated
microneedle patch system for pain management, providing a possible pathway to integrate
bioresorbable sensors with 3D imprinting controlling systems.

3.2.2. Novel Sensors for Regenerating Other Tissues and Organs

Wearable Sensors: Beyond implanted regenerative 3D membrane-binding electronic
sensors, smart wearable sensors interconnected with advanced wound dressing bandages
seem to provide a substitute or alternative solution for hard-to-heal wounds by minimizing
the risk of disease infection [111]. Indeed, wearable sensors have been successfully applied
in continuous glucose monitoring and neural network detection. 3D printing can be used
in contact lenses [117], where, in combination with 3D membrane-binding sensors, it may
be used to monitor tear glucose levels for diabetic diagnosis, as well as to trigger the
release of drugs from reservoirs for treating diabetic retinopathy [139]. Additionally, a
flexible artificial intelligence-guiding wearable sensor can be operated with a deep artificial
neural network algorithm for chronic wound monitoring via a wound dressing-integrated
bandage [111]. Flexible sensors are also core components of intelligent wearable technology
in vitro, which can convert stress and strain into electrical signals, and thus, accurately
monitor human body indicators in real time [140–142].

Printed Sensors: Some of the latest research on sensor development shows that sensors
themselves can be 3D printed to integrate with artificial tissues built outside the body.
Based on 3D printing technology and plasma processing, highly sensitive strain sensors
have a wide application in tissue regeneration, including the ability to be attached to skin,
muscles, heart, and other organs to monitor wrist pulses, muscle movements, and other
human motions [143]. Some of the other 3D-printed sensors are based on fiber Bragg
grating technology (FBG) for respiratory rate and heart rate monitoring, which make the
regenerative vitro 3D membrane more intelligent and easier to produce [118]. Due to the
simpleness, inexpensiveness, and high reproducibility of the sensor, it may acquire wider
application in constructing alternative vitro 3D membranes. These types of FBG sensors or
transductors may be applied in soft electronic skin for sensitizing large areas of robot bodies
and enable human–robot cooperation with the combination of artificial intelligence [110].
Bernasconi et al. [144] developed a layer-by-layer fabrication of hydrogel microsystems for
controlling drug delivery. Such sensors use steerable microrobots to facilitate the diffusion
of chemicals from the hydrogel layers to the external environment, leading to a promising
wound care.

3.3. Development and Applications of 3D Membrane-Binding Sensors
3.3.1. Development of 3D Membrane-Binding Sensors

The Accuracy of 3D Membrane-Binding Sensors: Calibration is important for sensors,
as it ensures the reliability of the detected data. The internal components of the sensor
and the external environment will both affect the accuracy of its detection results, so the
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calibration of the sensor is quite crucial [145]. By measuring the artificial wound fluids with
different pH values and comparing the results with a commercial pH meter, it may reduce
the internal errors of sensors, and thus, improve the accuracy of membrane-binding pH
sensors [12]. However, how to maintain the accuracy of the sensors upon transplantation
is still a tough question. Researchers suggests that developing a particular algorithm to
automatically adjust the collected signals may reduce these false reads [146]. In addition,
for some wearable sensors, if they are based on a single sensing mechanism, their accuracy
is quite susceptible to interference from environmental factors when contacting with other
fluids, such as nonlinear friction and electrical disturbances. Therefore, the perception and
measurement accuracy of these sensors are limited to some extent. Hence, the integration
of multifunctional sensing schemes to achieve precise object discrimination has been added
to address these problems [147]. Moreover, using deep learning algorithms to evaluate and
calibrate wearable sensors during human activity may further improve the accuracy of
sensors [110].

4D Printing: Responsive electronic sensors are considered to have value in realizing
the bottleneck of 3D printing in detecting and responding to dynamic changes in tissue con-
formation during recovery, where responsive electronic sensors come into being [148,149].
This type of regenerative method can dynamically reshape in response to tissue regener-
ation in real time [150]. Adding the dimension of “time” to 3D printing, the concept of
four-dimensional printing (4D printing) was first proposed by Skylar Tibbits. 4D printing
is often defined as a fundamental application that explores both autonomic and non-
autonomic systems with different stimuli, such as temperature, current, moisture, light, and
sound, to facilitate the fabrication of complex functional biological architectures [151,152].
4D printing has two main development directions in tissue regeneration fields; one is
programing the codes of components and structures to create controllable changes, and
the other is using shape memory materials via 3D printing manufacturing [153,154]. The
former corresponds to the sensor-responsive 3D membrane technology mentioned in this
review, while the latter, just as Lai et al. [155] investigated, provides a strategy for fabri-
cating porous scaffolds to facilitate the self-folding ability and the controlled release of
growth factors in scaffold applications. Miao et al. [156] concluded that 4D printing is a
good candidate that may significantly advance the development of biomedical scaffolds
with advanced 3D fabrication techniques.

In conclusion, 4D-printed membranes show great potential in adapting to the dynamic
structure of human tissues as well as in responding to specific external or physiological
conditions. 4D printing for biomedical applications is an emerging research field that
has already demonstrated its outstanding potential for the future development of the
next-generation technique of the construction of regenerative and responsive 3D mem-
branes [104].

3.3.2. Applications in Skin

Sensor-binding 3D regenerative membranes are widely used in clinical research. Skin
contributes critically to health via its role as a barrier tissue against a multitude of exter-
nal pathogens [157]. Hence, the demand for skin biofabrication is still rising with great
speed. In this section, we discuss various types of novel applications incorporating disease
modeling, electronic skin, organ-on-a-chip, and drug development.

Disease Modeling: The construction of 3D membranes enables the production of
multicellular tissue models as assay platforms for drug screening. Liu et al. [158] developed
an artificial atopic dermatitis (AD) disease-like tissue using a 3D membrane, fabricating skin
equivalent tissues of varying physiological complexity, including human epidermis and
non-vascularized and vascularized full-thickness skin tissue equivalents, in a multi-well
platform to enable drug screening. Additionally, as mentioned previously, the integration
of smart sensors based on excellent simulated disease engineering scaffolds facilitates
the detection of disease simulation effects and provides real-time feedback on disease
regeneration progression. The detectable 3D membrane is helpful to judge the quality of
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the disease model, while the responsive 3D membrane is conducive to the development of
treatment methods for the self-treatment of diseases, representing an important contribution
to the intelligence of future medical treatment.

Drug Development: With the appeal of banning animal testing for cosmetic purposes
and the intention to reduce animal testing in clinical research, 3D membranes may serve
as an animal substitute due to their similarity to human skin and organs. Therefore,
3D membranes may be considered an appropriate platform to perform the assessment
and screening of cosmetic and pharmaceutical formulations [31]. Moreover, constructing
artificial 3D membranes is often cheaper and more representative of the physiology or
structure of human skin in modeling skin wounds, taking the place of animal models in
demonstrating the pharmacological effects of a drug [159,160]. Lukács et al. [161] developed
microfluidics for artificial 3D membranes, a “skin-on-a-chip model”, which was integrated
with microfabricated sensors and aimed to develop proper drug formulations and optimize
the delivery of their active ingredients via the dermal barrier.

3.3.3. Applications in Other Tissues and Organs

Organ-on-a-Chip: Microfluidics technology may also be used in cardiovascular, kidney,
and brain organoids. Organoids are the in vitro miniaturized and simplified model systems
of organs. Due to their exceptional ability to recreate precise cellular organizations, 3D
organotypic models facilitate the investigation of the interactions between different sub-
tissue level components by providing physiologically relevant microenvironments for cells
in vitro [158,162]. Using sensor-binding 3D membranes, the “organ-on-a-chip” system
can integrate 3D membranes and organotypic culture. This type of sensor-binding 3D
membrane is termed a “microfluidic membrane”; with the application of the microfluidic
membrane, organ-on-a-chip system modeling may allow for the recreation of the tumor
microenvironment (cancer-on-a-chip) and the modeling of immune organs (bone marrow-
on-a-chip), enhancing the success rate of drug development [163].

4. Conclusions and Perspectives
4.1. Advantages and Limitations

Due to the 3D printing technique, 3D regenerative membranes provide a repeatable
method in tissue regeneration to some extent; however, there remain some limitations in
sensor-binding 3D regenerative membranes, as listed in Table 2.

Table 2. Advantages and limitations of regenerative 3D membrane-binding sensors.

Advantages Limitations

High individualization, flexibility, and
repeatability in manufacturing Difficulty in selecting biocompatible materials

BN provides real-time monitoring and active
wound care treatment with minimal physician

intervention at wound sites
Biosafety: ethical issues and electronic reagents

Better regenerative effects High costs and long healing times

Enables large-scale fabrication Difficulty in remodeling blood vessels and
nerve tissues

Therefore, these limitations should be fully considered when designing 3D sensor-
binding membranes. Using biodegradable and biocompatible materials (e.g., zinc, molybde-
num, and biomaterials) to obtain a 3D sensor-binding membrane is a crucial factor to avoid
rejection, inflammation, and tissue dysfunction in vivo [164]. To apply 3D sensor-binding
membranes in actual clinical use, they may meet strict regulations set by governments. Ac-
cording to the Food and Drug Administration’s regulations, 3D sensor-binding membranes
are Class III devices. Therefore, it is necessary to verify the stability, safety, and reliability
of functionality before clinical use, so as to meet the application standards.
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4.2. Conclusions and Prospectives

With the development of 3D printing and sensor technologies, 3D membrane-binding
sensors for various tissues have become increasingly mature and suitable for clinical
practice. Regenerative multilayered 3D membranes can be produced by combining multi-
suitable printing inks with various 3D printing methods. Moreover, 3D membranes can
be printed in situ within the body by using surgical robots and appropriate 3D printing
technologies. Additionally, by manipulating the shape of the extrusion nozzle, unique fiber
deposits can improve the mechanical performance of the 3D membrane while also helping
to induce tissue regeneration and restore tissue function to a certain extent. These recent ad-
vances in 3D membrane biomanufacturing enable future 3D membranes to be constructed
in situ within the body to improve tissue function while ensuring the retention of material
tissue regeneration induction properties. However, these manufactured membranes still
lack signal response mechanisms and cannot adapt to the changes in the patient’s internal
environment and the tissue regeneration process. As a result, incorporating sensors into
3D membranes has become a great prospect for future development.

Currently, sensor technology has been used in 3D membranes optimizing the proce-
dure of wound regeneration. Sensors capture signals from their recognition elements to
collect changes in biological signals such as pH, temperature, oxygen pressure, and muscle
movement. Traditional sensors may meet the needs of monitoring wound conditions,
while novel sensors provide spontaneous feedback signals and adjust treatment plans
accordingly. Alternatively, feedback to the internal response section of the 3D membrane
system can achieve the self-intelligent adjustment of the 3D membrane system. Internal
response mechanisms for 3D membrane systems currently include controlling changes
in membrane properties, controlling sensing robots, and foldable systems or biological
factor sustained-release systems fabricated via 4D printing, all of which achieve smart
integration after incorporating the sensors into 3D membranes. Hence, integrated with
3D membrane-binding sensors, 3D membranes acquired the ability of monitoring tissue
regeneration as well as inducing tissue regeneration.

Relevant studies have shown that molecules with multiple slow-release properties
(e.g., hydrogen) can greatly promote the regeneration of skin and other tissues [165]. In the
future, 3D scaffolds using hydrogen molecules as slow-release materials may be used to
improve the functionality of 3D membranes. We believe that 3D membrane technology can
achieve greater flexibility to regenerate more tissues and organs. Indeed, 3D membrane
technology developments are becoming more in-depth and detailed, allowing for the
better stimulation of nerves and blood vessels in tissues to promote regeneration. In the
future, research should focus on making these microelectronic sensors more miniaturized,
intelligent, and degradable, so that the combination of 3D membranes and electronic
components can be more closely attached. Despite the difficulties in construction, the
further development of 3D membranes is likely to lead to their extensive use in the clinic,
as well as in disease modeling and drug developments, ultimately becoming an integral
component of human medical treatment.
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Abbreviations

3D Three dimensional
4D Four dimensional
dECM Decellularized extracellular matrix
micro-CAL Microscale computed axial lithography
pO2 Partial pressure of oxygen
AD Atopic dermatitis
CAD Computer-aided manufacturing
CAM Computer-aided design
DMD Digital micromirror device
ECM Extracellular matrix
FBG Fiber Bragg grating technology
GO Graphene oxide
MI Myocardial infarction
PEG Polyethylene glyco
PF127 Pluronic F127
PLA Polylactic acid
PU Polyurethane
PVA Polyvinyl alcohol
TPP Two-photon polymerization
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