materials-logo

Journal Browser

Journal Browser

Advanced Manufacturing Technologies of Thermoplastic Composites

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Composites".

Deadline for manuscript submissions: 15 August 2024 | Viewed by 7660

Special Issue Editor

Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
Interests: thermoplastic composites; 3D printing; welding techniques; structural design

Special Issue Information

Dear Colleagues,

Thermoplastic composites are increasingly being applied to aerospace and automotive engineering owing to their versatile properties, such as excellent fracture toughness and impact resistance, cycling possibility, infinite shelf life, etc. One of the most attractive properties of thermoplastic composites is that they can be fabricated using out-of-autoclave (OOA) techniques such as thermal forming, welding, 3D printing, etc., which provides them with super cost-effective manufacturing processes. Based on the driving force from the continuous increase of the demand in aircraft and automotive industries combined with the requirement to lower the environmental impacts of aviation emissions, the thermoplastic composite market is expected to show an exponential increase in the coming decades. However, there are still numerous scientific and technical knowledge gaps in their manufacturing processes which suppress the readiness levels and hence limit their current applications. Therefore, this Special Issue aims to gain deeper insights into the physical evolution mechanisms of the advanced manufacturing techniques of thermoplastic composites, thus laying a solid foundation for their further industrial application. We welcome submissions covering but not limited to the following topics which list in the keywords.

Dr. Tian Zhao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thermoplastic composites
  • thermoplastic resins
  • manufacturing techniques
  • physical mechanisms
  • processing modeling
  • mechanical evaluation
  • functional design

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 6505 KiB  
Article
Interfacial Enhancement and Composite Manufacturing of Continuous Carbon-Fiber-Reinforced PA6T Composites via PrePA6T Ultrafine Powder
by Jiahong Yao, Zhao Wang, Jiacao Yang, Xiaojun Wang and Jie Yang
Materials 2024, 17(7), 1557; https://doi.org/10.3390/ma17071557 - 28 Mar 2024
Viewed by 428
Abstract
Semi-aromatic poly (hexamethylene terephthalamide) (PA6T) oligomer (prePA6T) ultrafine powder, with a diameter of <5 μm, was prepared as an emulsion sizing agent to improve the impregnation performance of CF/PA6T composites. The prePA6T hyperfine powder was acquired via the dissolution and precipitation “phase conversion” [...] Read more.
Semi-aromatic poly (hexamethylene terephthalamide) (PA6T) oligomer (prePA6T) ultrafine powder, with a diameter of <5 μm, was prepared as an emulsion sizing agent to improve the impregnation performance of CF/PA6T composites. The prePA6T hyperfine powder was acquired via the dissolution and precipitation “phase conversion” method, and the prePA6T emulsion sizing agent was acquired to continuously coat the CF bundle. The sized CF unidirectional tape was knitted into a fabric using the plain weave method, while the CF/PA6T laminated composites were obtained by laminating the plain weave fabrics with PA6T films. The interfacial shear strength (IFSS), tensile strength (TS), and interlaminar shear strength (ILSS) of prePA6T-modified CF/PA6T composites improved by 54.9%, 125.3%, and 120.9%, respectively. Compared with the commercial polyamide sizing agent product PA845H, the prePA6T sizing agent showed better interfacial properties at elevated temperatures, especially no TS loss at 75 °C. The SEM observations also indicated that the prePA6T emulsion has an excellent impregnation effect on CF, and the fracture mechanism shifted from adhesive failure mode to cohesive failure mode. In summary, a facile, heat-resistant, undamaged-to-fiber environmental coating process is proposed to continuously manufacture high-performance thermoplastic composites, which is quite promising in mass production. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Graphical abstract

14 pages, 3258 KiB  
Article
Innovative CF/PVC Foam Applicated for Automotive Synthetic Leather with High-Performance and Reduced VOC Emissions
by Hongfu Li, Ying Wu, Lingyan Wu, Changwei Cui and Kangmin Niu
Materials 2024, 17(5), 1076; https://doi.org/10.3390/ma17051076 - 26 Feb 2024
Viewed by 668
Abstract
Polyvinyl chloride (PVC) foam, valued for its mechanical and thermal properties along with cost-effectiveness, is extensively utilized across diverse industries. However, its high volatile organic compound (VOC) emissions hinder its adoption in eco-friendly synthetic leather. This study proposes a solution by optimizing the [...] Read more.
Polyvinyl chloride (PVC) foam, valued for its mechanical and thermal properties along with cost-effectiveness, is extensively utilized across diverse industries. However, its high volatile organic compound (VOC) emissions hinder its adoption in eco-friendly synthetic leather. This study proposes a solution by optimizing the formulation design and foaming processes and achieving mechanical property enhancement via carbon-fiber-reinforced PVC composite foam (CF/PVC). The aim is to reduce PVC usage via enhancing its intrinsic properties. Systematic investigations were carried out on the impact of foaming raw materials, foaming processes, fiber content, and fiber length on the foaming performance, mechanical properties, and VOC emissions. The material formulation and process parameters were successfully optimized. Further assessment of various indicators such as the density, mechanical properties, and tear resistance of synthetic leather samples confirmed that the innovative CF/PVC foam developed in this study meets the requirements for automotive interior applications. Notably, the tensile strength and tear resistance of CF/PVC composite synthetic leather increased by 50% and 29%, respectively, compared to pure PVC, while VOC emissions decreased by 28%. It is anticipated that a more pronounced reduction in VOC emissions will be achieved in practical automotive interior leather applications when further considering the reinforcing effect of fibers, which leads to a reduction in PVC usage. The findings present a technical reference for innovative applications, aiming to enhance PVC foam performance and minimize emissions. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Figure 1

18 pages, 4932 KiB  
Article
The Influence of Thermal Parameters on the Self-Nucleation Behavior of Polyphenylene Sulfide (PPS) during Secondary Thermoforming
by Yi Ren, Zhouyang Li, Xinguo Li, Jiayu Su, Yue Li, Yu Gao, Jianfeng Zhou, Chengchang Ji, Shu Zhu and Muhuo Yu
Materials 2024, 17(4), 890; https://doi.org/10.3390/ma17040890 - 15 Feb 2024
Viewed by 490
Abstract
During the secondary thermoforming of carbon fiber-reinforced polyphenylene sulfide (CF/PPS) composites, a vital material for the aerospace field, varied thermal parameters profoundly influence the crystallization behavior of the PPS matrix. Notably, PPS exhibits a distinctive self-nucleation (SN) behavior during repeated thermal cycles. This [...] Read more.
During the secondary thermoforming of carbon fiber-reinforced polyphenylene sulfide (CF/PPS) composites, a vital material for the aerospace field, varied thermal parameters profoundly influence the crystallization behavior of the PPS matrix. Notably, PPS exhibits a distinctive self-nucleation (SN) behavior during repeated thermal cycles. This behavior not only affects its crystallization but also impacts the processing and mechanical properties of PPS and CF/PPS composites. In this article, the effects of various parameters on the SN and non-isothermal crystallization behavior of PPS during two thermal cycles were systematically investigated by differential scanning calorimetry. It was found that the SN behavior was not affected by the cooling rate in the second thermal cycle. Furthermore, the lamellar annealing resulting from the heating process in both thermal cycles affected the temperature range for forming the special SN domain, because of the refined lamellar structure, and expelled various defects. Finally, this study indicated that to control the strong melt memory effect in the first thermal cycle, both the heating rate and processing melt temperature need to be controlled simultaneously. This work reveals that through collaborative control of these parameters, the crystalline morphology, crystallization temperature and crystallization rate in two thermal cycles are controlled. Furthermore, it presents a new perspective for controlling the crystallization behavior of the thermoplastic composite matrix during the secondary thermoforming process. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Graphical abstract

17 pages, 9160 KiB  
Article
Effect of Process Parameters on Joint Performance in Hot Pressure Welding of 6061 Aluminum Alloy to CF/PA66
by Haipeng Zhou, Yang Li, Weidong Liu, Yan Luo, Sansan Ao and Zhen Luo
Materials 2024, 17(2), 329; https://doi.org/10.3390/ma17020329 - 09 Jan 2024
Viewed by 629
Abstract
Polymer–metal hybrid structures combine the merits of polymer and metal materials, making them widely applicable in fields such as aerospace and automotive industries. However, the main challenge lies in achieving efficient and strong connections between the metal and polymer components. This paper uses [...] Read more.
Polymer–metal hybrid structures combine the merits of polymer and metal materials, making them widely applicable in fields such as aerospace and automotive industries. However, the main challenge lies in achieving efficient and strong connections between the metal and polymer components. This paper uses the jet electrochemical machining (Jet-ECM) method to customize the surface morphologies on 6061 aluminum alloy (AA6061) sheets. The connection between AA6061 and carbon fiber-reinforced PA66 (CF/PA66) is then achieved through hot pressure welding (HPW). The effects of aluminum alloy surface morphology, welding force, and welding time on the mechanical properties and microstructure of the joint are investigated. The optimal process parameters are determined by the design of the experiment. The results show that the aluminum alloy surface morphology has the greatest impact on the mechanical property of the welded joint. The optimal process parameters are surface morphology with wider, shallower, and sparsely distributed grooves on the aluminum alloy surface, the welding force is 720 N, the welding time is 12 s, the welding temperature is 360 °C, the cooling time is 16 s, and the optimal peak load of the joint is 6690 N. Under the optimal parameters, the fracture morphology in the AA6061 side is almost entirely covered with CF/PA66. The joint experiences cohesive failure in most areas and fiber-matrix debonding in a small area. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Figure 1

16 pages, 13592 KiB  
Article
Evolution of Manufacturing Defects of 3D-Printed Thermoplastic Composites with Processing Parameters: A Micro-CT Analysis
by Hantai Wu, Xinyu Chen, Shuaiheng Xu and Tian Zhao
Materials 2023, 16(19), 6521; https://doi.org/10.3390/ma16196521 - 30 Sep 2023
Cited by 1 | Viewed by 998
Abstract
Owing to the melting and healing properties of thermoplastic resin, additive manufacturing or 3D printing is considered one of the most promising technologies for fiber-reinforced thermoplastic composites. However, manufacturing defects are still the main concern, which significantly limits the application of 3D-printed composite [...] Read more.
Owing to the melting and healing properties of thermoplastic resin, additive manufacturing or 3D printing is considered one of the most promising technologies for fiber-reinforced thermoplastic composites. However, manufacturing defects are still the main concern, which significantly limits the application of 3D-printed composite structures. To gain an insight into the effects of different processing parameters on the typical manufacturing defects, a micro-scale analysis was carried out via Micro-CT technology on the 3D-printed continuous carbon fiber-reinforced polylactic acid (PLA) composite specimens. The bias distribution of the fiber in the deposited filament was found. Moreover, when the feed rate of the filament was reduced from 100% to 50%, the a/b value was closer to 3.33, but the porosity increased from 7.077% to 25.352%. When the layer thickness was 0.2 mm, the increased nozzle pressure reduced the porosity but also increased the risk of fiber bundle breakage. The research provides an effective approach for analyzing the micro-structure of 3D printed composite structures and thus offers guidance for the processing control. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Figure 1

16 pages, 5555 KiB  
Article
Automated Fiber Placement Path Planning and Analysis of Pressure Vessels
by Bo Wang, Lihua Wen, Jinyou Xiao, Shiyu Wang, Ping Ren, Liqiang Wang, Lei Zu and Xiao Hou
Materials 2023, 16(18), 6187; https://doi.org/10.3390/ma16186187 - 13 Sep 2023
Cited by 1 | Viewed by 1067
Abstract
The automated fiber placement (AFP) process faces a crucial challenge: the emergence of out-of-plane buckling in thermoplastic prepreg tows during steering, significantly impeding the quality of composite layup. In response, this study introduces a novel approach: the development of equations for wrinkle-free fiber [...] Read more.
The automated fiber placement (AFP) process faces a crucial challenge: the emergence of out-of-plane buckling in thermoplastic prepreg tows during steering, significantly impeding the quality of composite layup. In response, this study introduces a novel approach: the development of equations for wrinkle-free fiber placement within composite pressure vessels. The investigation encompasses a detailed analysis of prepreg trajectories in relation to shell geometry, accompanied by an in-depth understanding of the underlying causes of wrinkling on dome surfaces. Moreover, a comprehensive model for shell coverage, grounded in placement parameters, is meticulously established. To validate the approach, a simulation tool is devised to calculate press roller motions, ensuring the uniform fiber dispersion on the mandrel and achieving flawless coverage of the shell without wrinkles. This innovative strategy not only optimizes the AFP process for composite layup but also remarkably enhances the overall quality of composite shells. As such, this research carries significant implications for the advancement of composite manufacturing techniques and the concurrent improvement in material performance. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Figure 1

17 pages, 8827 KiB  
Article
Study on the Overmolding Process of Carbon-Fiber-Reinforced Poly (Aryl Ether Ketone) (PAEK)/Poly (Ether Ether Ketone) (PEEK) Thermoplastic Composites
by Ziyue Zhao, Jindong Zhang, Ran Bi, Chunhai Chen, Jianan Yao and Gang Liu
Materials 2023, 16(12), 4456; https://doi.org/10.3390/ma16124456 - 18 Jun 2023
Cited by 2 | Viewed by 1453
Abstract
This paper used poly (aryl ether ketone) (PAEK) resin with a low melting temperature to prepare laminate via the compression-molding process for continuous-carbon-fiber-reinforced composites (CCF-PAEK). Then, poly (ether ether ketone) (PEEK), or a short-carbon-fiber-reinforced poly (ether ether ketone) (SCF-PEEK) with a high melting [...] Read more.
This paper used poly (aryl ether ketone) (PAEK) resin with a low melting temperature to prepare laminate via the compression-molding process for continuous-carbon-fiber-reinforced composites (CCF-PAEK). Then, poly (ether ether ketone) (PEEK), or a short-carbon-fiber-reinforced poly (ether ether ketone) (SCF-PEEK) with a high melting temperature, was injected to prepare the overmolding composites. The shear strength of short beams was used to characterize the interface bonding strength of composites. The results showed that the interface properties of the composite were affected by the interface temperature, which was adjusted by mold temperature. PAEK and PEEK formed a better interfacial bonding at higher interface temperatures. The shear strength of the SCF-PEEK/CCF-PAEK short beam was 77 MPa when the mold temperature was 220 °C and 85 MPa when the mold temperature was raised to 260 °C. The melting temperature did not significantly affect the shear strength of SCF-PEEK/CCF-PAEK short beams. For the melting temperature increasing from 380 °C to 420 °C, the shear strength of the SCF-PEEK/CCF-PAEK short beam ranged from 83 MPa to 87 MPa. The microstructure and failure morphology of the composite was observed using an optical microscope. A molecular dynamics model was established to simulate the adhesion of PAEK and PEEK at different mold temperatures. The interfacial bonding energy and diffusion coefficient agreed with the experimental results. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Graphical abstract

13 pages, 6114 KiB  
Communication
Parametric Investigation into the Shear Strength of Adhesively Bonded Single-Lap Joints
by Quanlong Chen, Bing Du, Xiaodong Zhang, Hai Zhong, Conggang Ning, Huimin Bai, Qian Li, Ruqing Pan, Baocheng Zhou and Hanjie Hu
Materials 2022, 15(22), 8013; https://doi.org/10.3390/ma15228013 - 13 Nov 2022
Cited by 3 | Viewed by 1166
Abstract
In this paper, the shear strength of adhesively bonded single-lap joints were experimentally and numerically investigated. Based on the validated simulation, the effects of lap length, adhesive layer thickness, adhesive layer shape, adhesive layer overflow length, and laminate lay-up on the shear strength [...] Read more.
In this paper, the shear strength of adhesively bonded single-lap joints were experimentally and numerically investigated. Based on the validated simulation, the effects of lap length, adhesive layer thickness, adhesive layer shape, adhesive layer overflow length, and laminate lay-up on the shear strength of adhesively bonded single-lap joints were studied. The load-displacement curves and shear strength under different parameters were compared. It was shown that the shear strength of single-lap joints gradually decreases with the increase of lap length and adhesive layer thickness, which were 53.83% and 16.15%, respectively. Considering the potential condition in fabrication, the adhesive layer shape and adhesive layer overflow length were also investigated. The adhesive with normal and triangle shape owned the comparable shear strength, which was higher than the arc one. The shear strength increased by 19.37% from 18.43 MPa to 22.00 MPa with increasing the adhesive layer overflow length to 50% of lap length. It was beneficial for shear strength to increase the adhesive layer overflow length to 50% of lap length. Among the selected four lay-ups, [0]16s had the highest shear strength, which was nearly 3 times greater than the one of [90]16s. In the real process preparation, increasing the number of 0° layers, selecting the appropriate lap length and thickness of the adhesive layer, and controlling the shape and length of the adhesive layer overflow are of great help to improve the tensile shear strength of the single-lap glue joint. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technologies of Thermoplastic Composites)
Show Figures

Figure 1

Back to TopTop