materials-logo

Journal Browser

Journal Browser

Special Issue "Concrete in Structural Engineering: Fabrication and Mechanical Behavior ‖"

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Construction and Building Materials".

Deadline for manuscript submissions: 20 February 2024 | Viewed by 2992

Special Issue Editors

Department of Civil and Environmental Engineering, Inha Technical College, Incheon, Republic of Korea
Interests: concrete and composite materials; fracture mechanics; finite element analysis; reinforced concrete design; seismic qualification
Special Issues, Collections and Topics in MDPI journals
Department of Civil and Environmental Engineering, Incheon National University, Incheon 22012, Republic of Korea
Interests: seismic design; smart structures; concrete materials; reinforced concrete; structural experiments; performance evaluation; finite element analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to publish papers that advance the field of concrete materials and structures through the approach of numerical analyses and experimental tests. The proposed approaches should include new or enhanced insights into constructions for reinforced concrete, pre-stressed concrete, cementitious material fabrication, and the mechanical behavior of concrete members.

Given the comprehensiveness of the suggested topic, we encourage you to send manuscripts containing scientific findings within the broad field of concrete research, which can be combined into the following topics: material effects, material behaviors, structural analysis, seismic design, earthquake engineering, structural monitoring, composite structures, lab and field testing, hazard reduction systems, and smart structures. Both theoretical and practice-oriented papers, including case studies and reviews, are also encouraged.

Prof. Dr. Seong Tae Yi
Prof. Dr. Jong Wan Hu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nano concrete
  • FRP concrete
  • self-healing concrete
  • multi-functional concrete
  • reinforced concrete
  • pre-stressed concrete
  • composite materials
  • cementitious materials
  • concrete fabrication
  • mechanical behavior
  • concrete design
  • concrete test
  • fracture mechanics
  • concrete frame (building)

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Experimental and Numerical Study of Concrete Fracture Behavior with Multiple Cracks Based on the Meso-Model
Materials 2023, 16(18), 6311; https://doi.org/10.3390/ma16186311 - 20 Sep 2023
Viewed by 180
Abstract
In this paper, a series of experimental and numerical studies were carried out to investigate the effect of multiple cracks on concrete fracture behavior. Seven groups of double-crack concrete three-point bending (TPB) experiments with different crack lengths and different crack distances were carried [...] Read more.
In this paper, a series of experimental and numerical studies were carried out to investigate the effect of multiple cracks on concrete fracture behavior. Seven groups of double-crack concrete three-point bending (TPB) experiments with different crack lengths and different crack distances were carried out. The experimental results showed that the bearing capacity of double-crack specimens was slightly larger than the standard specimen with one central crack. Additionally, with an increase in the second crack length or with a crack distance reduction, the concrete’s bearing capacity increased correspondingly. Based on the experiments, a numerical meso-model was developed based on applying cohesive elements. The aggregate, mortar, interface transition zone (ITZ), and potential fracture surfaces were explicitly considered in the model. In particular, cohesive elements were used to characterize the mechanical behavior of the ITZ and potential fracture surfaces. A modified constitutive concrete model was developed by considering the potential fracture surfaces’ damage relation and friction effect. The accuracy of the developed meso-model was validated through a comparison between simulation and experiments. Based on meso-models, the influence of multiple cracks on the concrete bearing capacity was investigated by analyzing the energy evolution. The analysis results showed that the bearing capacity has a linear relation with the proportion of mode II energy consumption during the fracture process, which explains why specimens with multiple cracks have a slightly larger bearing capacity than the standard specimens. In summary, this study has found that in three-point bending fracture tests primarily characterized by mode I fractures, the presence of multiple cracks near the main crack slightly enhances the load-bearing capacity of the specimens. This is attributed to a slight increase in internal energy dissipation associated with the presence of these multiple cracks. Full article
Show Figures

Figure 1

Article
An Innovative Absorption Propagation System Hollow Block Made of Concrete Modified with Styrene–Butadiene Rubber and Polyethylene Terephthalate Flakes to Reduce the Propagation of Mechanical Vibrations in Walls
Materials 2023, 16(14), 5028; https://doi.org/10.3390/ma16145028 - 16 Jul 2023
Viewed by 406
Abstract
This paper discusses an innovative APS hollow block wall with a frame made of concrete modified with recycled materials. The technical data of the hollow block, the percentages of the recycled materials, including SBR rubber granules and PET flakes in the modified concrete, [...] Read more.
This paper discusses an innovative APS hollow block wall with a frame made of concrete modified with recycled materials. The technical data of the hollow block, the percentages of the recycled materials, including SBR rubber granules and PET flakes in the modified concrete, and the composition of the concrete modified with this mixture of recycled additives, are presented. To demonstrate the effectiveness of the solution in reducing mechanical vibrations, the effect of the interaction of different frequencies of the mechanical wave on reducing these vibrations was evaluated for APS blocks and Alpha comparison blocks. The test was carried out on a developed test stand dedicated to dynamic measurements for sixteen frequencies in the range from 8 to 5000 Hz, forcing a sinusoidal course of vibrations. The results are presented graphically and show that the new type of APS hollow block wall was much more effective in reducing mechanical vibrations. This efficiency was in the range from 10 to 51% for 12 out of the tested 16 frequencies. For the frequencies of 8, 16, 128, and 2000 Hz, the values were obtained with a difference of 3.58% in favor of the APS hollow block. In addition, the study of the damping effectiveness of the APS hollow blocks, in relation to the vibrations generated by an M-400 impact mill, showed that the APS block wall had a higher damping efficiency of 16.87% compared to the Alpha hollow block for the signal reading on the floor next to the mill, and 18.68% for the signal reading on the mill body. The modified concrete used in the production of the APS hollow blocks enabled the effective use of two recycled materials, SBR rubber and polyethylene terephthalate, in the form of PET flakes. Full article
Show Figures

Figure 1

Article
Evaluation of a Hydrophobic Coating Agent Based on Cellulose Nanofiber and Alkyl Ketone Dimer
Materials 2023, 16(12), 4216; https://doi.org/10.3390/ma16124216 - 07 Jun 2023
Viewed by 654
Abstract
In this study, we report on the development and testing of hydrophobic coatings using cellulose fibers. The developed hydrophobic coating agent secured hydrophobic performance over 120°. In addition, a pencil hardness test, rapid chloride ion penetration test, and carbonation test were conducted, and [...] Read more.
In this study, we report on the development and testing of hydrophobic coatings using cellulose fibers. The developed hydrophobic coating agent secured hydrophobic performance over 120°. In addition, a pencil hardness test, rapid chloride ion penetration test, and carbonation test were conducted, and it was confirmed that concrete durability could be improved. We believe that this study will promote the research and development of hydrophobic coatings in the future. Full article
Show Figures

Figure 1

Article
Numerical Analysis of Low-Velocity Impact Behaviour of Protective Concrete-Filled Steel Plates Composite Wall
Materials 2023, 16(11), 4130; https://doi.org/10.3390/ma16114130 - 01 Jun 2023
Viewed by 542
Abstract
In this research, a protective concrete-filled steel plate composite wall (PSC) is developed, consisting of a core concrete-filled bilateral steel plate composite shear wall and two lateral replaceable surface steel plates with energy-absorbing layers. The PSC wall is characterised by high in-plane seismic [...] Read more.
In this research, a protective concrete-filled steel plate composite wall (PSC) is developed, consisting of a core concrete-filled bilateral steel plate composite shear wall and two lateral replaceable surface steel plates with energy-absorbing layers. The PSC wall is characterised by high in-plane seismic performance as well as out-of-plane impact performance. Therefore, it could be employed primarily in high-rise constructions, civil defence initiatives, and buildings with stringent structural safety criteria. To investigate the out-of-plane low-velocity impact behaviour of the PSC wall, fine finite element models are validated and developed. Then, the influence of geometrical and dynamic loading parameters on its impact behaviour is investigated. The results show that the replaceable energy-absorbing layer could significantly decrease the out-of-plane displacement and plastic displacement of the PSC wall due to its large plastic deformation, which could absorb a significantly large amount of impact energy. Meanwhile, the PSC wall could maintain high in-plane seismic performance when subjected to impact load. The plastic yield-line theoretical model is proposed and utilised to predict the out-of-plane displacement of the PSC wall, and the calculated results agree very well with the simulated results. Full article
Show Figures

Figure 1

Article
Influence of Mechanical Screened Recycled Coarse Aggregates on Properties of Self-Compacting Concrete
Materials 2023, 16(4), 1483; https://doi.org/10.3390/ma16041483 - 10 Feb 2023
Cited by 2 | Viewed by 870
Abstract
The use of recycled coarse aggregates (RA) in concrete is a sustainable alternative to non-renewable natural aggregate (NA) to fabricate concrete products using in concrete structures. However, the adhered mortar on the surface of RA would considerably impact the qualities of concrete products. [...] Read more.
The use of recycled coarse aggregates (RA) in concrete is a sustainable alternative to non-renewable natural aggregate (NA) to fabricate concrete products using in concrete structures. However, the adhered mortar on the surface of RA would considerably impact the qualities of concrete products. As a practical treatment procedure, mechanical screening can remove the adhered mortar. This research aims to study the influence of mechanical screening on the fundamental properties of RA and the resulting self-compacting concrete (SCC). The RA were mechanically screened up to four times, and their physical properties including particle size distribution, water absorption, and crushing value were investigated. The properties of RA-SCC including workability, density, compressive and tensile strengths, modulus of elasticity, and microstructure were also examined. The results demonstrated that screening reduced the water absorption of RA from 6.26% to 5.33% and consequently enhanced the workability of RA-SCC. Furthermore, it was shown that increasing the screening up to twice improved the mechanical properties of concrete. In particular, screening increased the compressive strength of concrete by 15–35% compared to the concrete with unscreened RA. Similar improvements were found in tensile strength as well as the elastic modulus results. The microstructure of screened RA-SCC was comparable to that of the control concrete, showing minimal porosity and cracks along the interfacial transition zone. In conclusion, once or twice screening is recommended to the recycling facility plant to remove adequate amount of adhered mortar and fines while preventing damages to the RA. Improving the quality of RA via mechanical screening is one of the promising approaches to increase their potential for use in concrete, thereby reducing extraction of natural resources and promoting a circular economy. Full article
Show Figures

Figure 1

Back to TopTop