materials-logo

Journal Browser

Journal Browser

Advances in Multicomponent Catalytic Materials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Catalytic Materials".

Deadline for manuscript submissions: 20 August 2024 | Viewed by 991

Special Issue Editor


E-Mail Website
Guest Editor
Department of Materials Science, Fudan University, Shanghai 200438, China
Interests: polyelemental nanosystems; nanomaterials genome; catalysis

Special Issue Information

Dear Colleagues,

Multicomponent catalysts are promising catalytic materials that combine multiple elements, phases, or microstructures. The controlled combination of different components in a material can integrate the functionalities associated with each component, allowing the material to catalyze complex reactions that involve multiple steps. In addition, the synergistic electronic interaction between the constituent components has shown the potential to improve the catalyst activity as well as the reaction selectivity. All these characteristics provide rich avenues to tune the chemisorption behavior and catalytic properties of multicomponent materials. Notably, recent developments in the synthetic methodologies of multicomponent nanomaterials, such as phase-separated heterostructures and high-entropy alloys, have enabled tremendous new combinations as well as new possibilities, which have led to an outbreak in the study of multicomponent nanocatalysts.

In this Special Issue, we will bring together the latest advances related to multicomponent catalytic materials. The topics include, but are not limited to, the design, synthesis, characterization, and modeling of multicomponent materials and their applications in thermal catalysis, electrocatalysis, photocatalysis, and other catalytic processes. Original research articles and communications within the theme of this Special Issue are all welcome.

Dr. Pengcheng Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • catalytic materials
  • multicomponent catalysts
  • nanocatalysts
  • thermal catalysis
  • photocatalysis
  • electrocatalysis
  • catalyst synthesis
  • catalyst characterization
  • catalyst modeling

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 5089 KiB  
Article
Co and Co3O4 in the Hydrolysis of Boron-Containing Hydrides: H2O Activation on the Metal and Oxide Active Centers
by Vladislav R. Butenko, Oksana V. Komova, Valentina I. Simagina, Inna L. Lipatnikova, Anna M. Ozerova, Natalya A. Danilova, Vladimir A. Rogov, Galina V. Odegova, Olga A. Bulavchenko, Yuriy A. Chesalov and Olga V. Netskina
Materials 2024, 17(8), 1794; https://doi.org/10.3390/ma17081794 - 13 Apr 2024
Viewed by 310
Abstract
This work focuses on the comparison of H2 evolution in the hydrolysis of boron-containing hydrides (NaBH4, NH3BH3, and (CH2NH2BH3)2) over the Co metal catalyst and the Co3 [...] Read more.
This work focuses on the comparison of H2 evolution in the hydrolysis of boron-containing hydrides (NaBH4, NH3BH3, and (CH2NH2BH3)2) over the Co metal catalyst and the Co3O4-based catalysts. The Co3O4 catalysts were activated in the reaction medium, and a small amount of CuO was added to activate Co3O4 under the action of weaker reducers (NH3BH3, (CH2NH2BH3)2). The high activity of Co3O4 has been previously associated with its reduced states (nanosized CoBn). The performed DFT modeling shows that activating water on the metal-like surface requires overcoming a higher energy barrier compared to hydride activation. The novelty of this study lies in its focus on understanding the impact of the remaining cobalt oxide phase. The XRD, TPR H2, TEM, Raman, and ATR FTIR confirm the formation of oxygen vacancies in the Co3O4 structure in the reaction medium, which increases the amount of adsorbed water. The kinetic isotopic effect measurements in D2O, as well as DFT modeling, reveal differences in water activation between Co and Co3O4-based catalysts. It can be assumed that the oxide phase serves not only as a precursor and support for the reduced nanosized cobalt active component but also as a key catalyst component that improves water activation. Full article
(This article belongs to the Special Issue Advances in Multicomponent Catalytic Materials)
Show Figures

Figure 1

11 pages, 1786 KiB  
Article
Rapid Plasma Electrolytic Oxidation Synthesis of Intermetallic PtBi/MgO/Mg Monolithic Catalyst for Efficient Removal of Organic Pollutants
by Jiayi Rong, Mengyang Li, Feng Cao, Qianwei Wang, Mingran Wang, Yang Cao, Jun Zhou and Gaowu Qin
Materials 2024, 17(3), 605; https://doi.org/10.3390/ma17030605 - 26 Jan 2024
Viewed by 500
Abstract
The intermetallic PtBi/MgO/Mg monolithic catalyst was first prepared using non-equilibrium plasma electrolytic oxidation (PEO) technology. Spherical aberration-corrected transmission electron microscope (ACTEM) observation confirms the successful synthesis of the PtBi intermetallic structure. The efficiency of PtBi/Mg/MgO catalysts in catalyzing the reduction of 4-nitrophenol (4-NP) [...] Read more.
The intermetallic PtBi/MgO/Mg monolithic catalyst was first prepared using non-equilibrium plasma electrolytic oxidation (PEO) technology. Spherical aberration-corrected transmission electron microscope (ACTEM) observation confirms the successful synthesis of the PtBi intermetallic structure. The efficiency of PtBi/Mg/MgO catalysts in catalyzing the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 was demonstrated. The activity factor for the catalyst is 31.8 s−1 g−1, which is much higher than reported values. In addition, the resultant catalyst also exhibits excellent catalytic activity in the organic pollutant reaction of p-nitrobenzoic acid (p-NBA) and methyl orange (MO). Moreover, benefiting from ordered atomic structures and the half-embedded PtBi nanoparticles (NPs), the catalyst demonstrates excellent stability and reproducibility in the degradation of 4-NP. This study provides an example of a simple method for the preparation of intermetallic structures as catalysts for organic pollutant degradation. Full article
(This article belongs to the Special Issue Advances in Multicomponent Catalytic Materials)
Show Figures

Graphical abstract

Back to TopTop