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Reagents for synthesis of NH3BH3 and (CH2NH2BH3)2 
The reagents used were sodium borohydride—NaBH4 (98%, CAS 16940-66-2, Chem-

ical Line, Sankt-Peterburg, Russia); ammonium sulfate—(NH4)2SO4 (GOST 3769-78, Vec-
ton, Sankt-Peterburg, Russia); tetrahydrofuran—C4H8O (CAS 109-99-9, Vecton, Sankt-Pe-
terburg, Russia); diethyl ether—(C2H5)2O (TU 2600-001-43852015-10, Kuzbassorghim, Ke-
merovo, Russia); and ethylenediamine—NH2(CH2)2NH2 (99.9 %, CAS RN 107-15-3, 
Chemical Line, Sankt-Peterburg, Russia). Prior to use, diethyl ether (DE) and tetrahydro-
furane (TGF) were purified from impurities and water. 

Synthesis of NH3BH3 
The synthesis of ammonia borane (NH3BH3, AB) is described in the Supplementary 

Material of our previous work [1]. In a typical procedure, 450 mL of C4H8O, 4.4 g of 
(NH4)2SO4, and 2.5 g of NaBH4 were placed into a three-neck flask and intense stirred for 
6 h at 40 °С under a flow of Ar. The solution was filtered using a glass porous filter at a 
reduced pressure, and then the solvent was removed on a rotary evaporator with subse-
quent drying of the solid sample in a vacuum box without heating. The weight of the 
obtained hydride raw was 2 g.  

Prior to the experiments, the raw sample was purified by its redissolution in DE, fol-
lowed by filtration, evaporation, and drying. In our experiment, 1 g of AB was dissolved 
in 200 mL of DE. The resulting solution was stirred in a closed flask for 2 h. The nondis-
solved impurities were separated on a glass porous filter at a reduced pressure, and all of 
the solvent was evaporated on a rotary evaporator at 25 °С. Then, the solid AB was dried 
in a vacuum box. The yield was 80%.  

To determine the ammonia borane purity, the process of its catalytic hydrolysis was 
carried out. The purity of the final product was 97%. The characterization of the hydride 
sample by XRD and ATR FTIR was shown in [2].  

Synthesis of (CH2NH2BH3)2 
For the synthesis of ethylene bisborane (BH3NH2(CH2)2NH2BH3, EDBB), a mixture of 

3.4 g of AB (0.110 mol), 3.45 g of ethylenediamine (EDA, 0.052 mol) and 80 mL of TGF was 
heated in a 100 ml flask equipped with a condenser at 50 °C. Total dissolution of AB and 
ammonia gas evolution were observed. After 5 h, the temperature of the reaction mixture 
was slowly increased before the start of TGF boiling (66 °C). The mixture was boiled for 
0.5 h; then the heating was stopped, and the hot mixture was filtered on a glass porous 
filter at a reduced pressure. Clouding of the solution was already observed during cooling 
to room temperature. TGF was evaporated with a rotary evaporator at the temperature of 
the bath at 40 °C. The precipitate was dried in a vacuum box without heating. The yield 
of EDBB raw was about 70%. 

A water–isopropanol solution (50 %: 50 % by volume) was prepared and cooled to −6 
°C. To clean the EDBB, 20 mL of water–isopropanol solution and 2.89 g of raw hydride 
sample were intensively stirred in a flask and put in an ice bath for 2 h. Further, the mix-
ture was filtered through a glass porous filter at reduced pressure, and the precipitate was 
additionally washed with 30 mL of cooled water–isopropanol solution, then by 70 mL of 
hexane and dried in the vacuum box at room temperature. The yield of EDBB was 77%. 
The purity of EDBB was 96% pure according to its catalytic hydrolysis. The resulting ATR 
FTIR spectrum fully corresponds to the EDBB spectrum described in [3,4]. 
  



 

 

Table S1. Kinetic isotope effect (KIE) in AB hydrolysis when replacing H2O by D2O. 

Catalyst KIE Reference 
Co/carbon nanotubes 2.2 [5] 
Co/Activated carbon 2.1 [5] 
Cu0.5–(CoO)0.5/TiO2 5.5 [6] 

Ni2Pt@ZIF-8 4.95 [7] 
Rh nanoparticles 2.85 [8] 
Pt nanoparticles 2.32 [8] 
Rh nanoparticles 2.3 [9] 

RuNP@NH2-PIILS * 2.31 [10] 
Au1Ru1@dendrimer 2.25 [11] 

Rh0.25%Co3%/TiO2 3.00 [12]  
Ru0.25%Co3%/TiO2 2.79 [12]  

Rh0.25%/TiO2 3.60 [12]  
Ru0.25%/TiO2 3.14 [12]  

NiNPs/ZIF-8 2.49 [13]  
Ni2P 2.9 [14] 

Ni12P5 2.8 [14] 
Ni3P 2.4 [14] 

Pd@Ni12.5P40/rGO 3.1 [15] 
Pd/O-CoP2 3.7 [16] 

Pd/CoP2 3.6 [16] 
Pt/ carbon nanotubes 1.9 [17] 

Pt0.25%Co3%/TiO2 2.79 [12] 
Pt0.25%/TiO2 3.38 [12] 

Pt/Co nanoparticles 2.46 [18] 
Ru/ carbon nanotubes 3.15 [19] 

* NaBH4 hydrolysis. 
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Figure S1. SEM images of studied catalytic materials: (a–c) Co3O4, (d–f) 10 %CuO-90 %Co3O4, and 
(g–i) Co0. 
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Figure S2. Example of optimized structures of initial and final states for dissociative adsorption of 
(a,b) NH3BH3 (4) and (c,d) H2O (5) on 111 Сo0. The atoms of Co are pink, B are peach, N are blue, H 
are grey, and O are red. 
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Figure S3. For metals (a) and oxides (b), comparison of the energetic parameters (Ea, Eads) calculated 
by DFT in this work with the literature data [12,19,20–28]. 

  



 

 

 
Figure S4. Experimental curves of H2 evolution for hydrolysis of NaBH4, NH3BH3, and 
(CH2NH2BH3)2 measured at replacement of H2O by D2O over 10 % CuO-90 % Co3O4 catalyst at 40 
°C. 

The obtained data could not be described within one formal kinetics. The kH/kD esti-
mation was based on the assumption that substituting H2O for D2O would not change the 
reaction mechanism. Therefore, kH/kD may be estimated from the ratio of the reaction time, 
where the same hydride conversion was achieved, i.e., the same amount of hydrogen was 
released. Note that regardless of the hydride nature, the initial concentration of B-H bonds 
in the reaction medium was the same. The kH/kD values were averaged within the conver-
sion of 10–80 % in 10 mL of H2 increments. 
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