Researches in High-Value Algal Products: From Extraction to Application

A special issue of Marine Drugs (ISSN 1660-3397).

Deadline for manuscript submissions: closed (30 September 2023) | Viewed by 11471

Special Issue Editor


E-Mail Website
Guest Editor
Nantes Université, Institut des Substances et Organismes de la Mer, ISOMER, UR 2160, F-44000 Nantes, France
Interests: seaweed protein extraction using enzymatic bioprocess optimisation; seaweed proteinic pigment characterisation and purification; seaweed in aquaculture systems for feed and food; seaweed chemical ecology, associated marine fungi
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Marine algae are increasingly studied, exploited and cultivated. These marine organisms are important from both an application and a fundamental point of view. Indeed, research over the last few decades has shown the great potential of the very high value products contained in algae. Processes for the extraction, purification and formulation of these target compounds are the major research challenges today.

Marine Drugs has organised the present Special Issue, “High-Value Algal Products: From Extraction to Application”, which will focus on the identification, extraction, purification and formulation/stabilisation of algal products. Considered products could be derived from algae (extract, organ, etc.), a class of molecules (enzymes, proteins, polysaccharides, lipids, pigments, polyphenols, etc.) or a specific molecule.

Prof. Dr. Justine Dumay
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • seaweed
  • microalgae
  • product extraction
  • purification
  • marine product application
  • marine proteins
  • marine polysaccharides
  • marine lipids

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 1656 KiB  
Article
Optimization of R-Phycoerythrin Extraction by Ultrasound-Assisted Enzymatic Hydrolysis: A Comprehensive Study on the Wet Seaweed Grateloupia turuturu
by Cécile Le Guillard, Jean-Pascal Bergé, Claire Donnay-Moreno, Josiane Cornet, Jean-Yves Ragon, Joël Fleurence and Justine Dumay
Mar. Drugs 2023, 21(4), 213; https://doi.org/10.3390/md21040213 - 28 Mar 2023
Cited by 2 | Viewed by 1484
Abstract
Enzyme-assisted extraction (EAE) and ultrasound-assisted extraction (UAE) are both recognized as sustainable processes, but little has been done on the combined process known as ultrasound-assisted enzymatic hydrolysis (UAEH), and even less on seaweed. The present study aimed to optimize the UAEH of the [...] Read more.
Enzyme-assisted extraction (EAE) and ultrasound-assisted extraction (UAE) are both recognized as sustainable processes, but little has been done on the combined process known as ultrasound-assisted enzymatic hydrolysis (UAEH), and even less on seaweed. The present study aimed to optimize the UAEH of the red seaweed Grateloupia turuturu for the extraction of R-phycoerythrin (R-PE) directly from the wet biomass by applying a response surface methodology based on a central composite design. Three parameters were studied: the power of ultrasound, the temperature and the flow rate in the experimental system. Data analysis demonstrated that only the temperature had a significant and negative effect on the R-PE extraction yield. Under the optimized conditions, the R-PE kinetic yield reached a plateau between 90 and 210 min, with a yield of 4.28 ± 0.09 mg·g−1 dry weight (dw) at 180 min, corresponding to a yield 2.3 times higher than with the conventional phosphate buffer extraction on freeze-dried G. turuturu. Furthermore, the increased release of R-PE, carbohydrates, carbon and nitrogen can be associated with the degradation of G. turuturu constitutive polysaccharides, as their average molecular weights had been divided by 2.2 in 210 min. Our results thus demonstrated that an optimized UAEH is an efficient method to extract R-PE from wet G. turuturu without the need for expensive pre-treatment steps found in the conventional extraction. UAEH represents a promising and sustainable approach that should be investigated on biomasses where the recovery of added-value compounds needs to be improved. Full article
Show Figures

Figure 1

18 pages, 1812 KiB  
Article
Characterization and Cytotoxic Activity of Microwave-Assisted Extracted Crude Fucoidans from Different Brown Seaweeds
by Ahmed Zayed, Doris Finkelmeier, Thomas Hahn, Lisa Rebers, Anusriha Shanmugam, Anke Burger-Kentischer and Roland Ulber
Mar. Drugs 2023, 21(1), 48; https://doi.org/10.3390/md21010048 - 11 Jan 2023
Cited by 6 | Viewed by 2090
Abstract
Microwave-assisted extraction (MAE) is recognized as a green method for extraction of natural products. The current research aimed to explore the MAE for fucoidans extraction from different brown seaweeds, including Fucus vesiculosus, F. spiralis, and Laminaria saccharina. Following several solvent-extraction [...] Read more.
Microwave-assisted extraction (MAE) is recognized as a green method for extraction of natural products. The current research aimed to explore the MAE for fucoidans extraction from different brown seaweeds, including Fucus vesiculosus, F. spiralis, and Laminaria saccharina. Following several solvent-extraction pre-treatment steps and MAE optimization, the algal biomasses were extracted in a ratio of 1:25 in 0.1 M HCl containing 2 M CaCl2 for 1.0 min. The results showed that L. saccharina’s extract was different from the others, regarding the highest sugar content reached 0.47 mg glucose equivalent/mg extract being confirmed by monosaccharide composition analysis and the lowest fucoidan content and sulfation degree at 0.09 mg/mg extract and 0.13, respectively. Moreover, these findings were confirmed by tentative structural elucidation based on Fourier-transform infrared spectrometry which also showed a different spectrum. However, the MAE enhanced melanoidins formation in products, which was confirmed by the intense band at 1420 cm−1. Interestingly, the results of monomeric composition showed that fucoidan extract by MAE from F. vesiculosus belonged to sulfated galactofucans which are known for their potential bioactivities. Furthermore, the cytotoxic activity of the four fucoidans in concentrations ranging from 4.9 µg/mL to 2500 µg/mL was investigated and correlated with the chemical characterization showing that F. vesiculosus_MAE fucoidan was the most potent and safest. The current research revealed the chemical heterogeneity of fucoidans regarding taxonomical class and used greener extraction method of fucoidans toward the achievement of the UN sustainability goals. Full article
Show Figures

Figure 1

19 pages, 4524 KiB  
Article
Gold Nanoparticles Synthesized by an Aqueous Extract of Codium tomentosum as Potential Antitumoral Enhancers of Gemcitabine
by Noelia González-Ballesteros, Immacolata Maietta, Raquel Rey-Méndez, M. Carmen Rodríguez-Argüelles, Mariano Lastra-Valdor, Antonella Cavazza, Maria Grimaldi, Franca Bigi and Rosana Simón-Vázquez
Mar. Drugs 2023, 21(1), 20; https://doi.org/10.3390/md21010020 - 27 Dec 2022
Cited by 4 | Viewed by 1816
Abstract
Cancer still poses a global threat, since a lot of tumors remain untreatable despite all the available chemotherapeutic drugs, whose side effects, it must also be noted, still raise concerns. The antitumoral properties of marine seaweeds make them a potential source of new, [...] Read more.
Cancer still poses a global threat, since a lot of tumors remain untreatable despite all the available chemotherapeutic drugs, whose side effects, it must also be noted, still raise concerns. The antitumoral properties of marine seaweeds make them a potential source of new, less toxic, and more active antitumoral agents. Furthermore, these natural extracts can be combined with nanotechnology to increase their efficacy and improve targeting. In this work, a Codium tomentosum (CT) aqueous extract was employed for the green synthesis of gold nanoparticles (Au@CT). The complete characterization of Au@CT was performed by UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Zeta potential, electron microscopy, X-ray powder diffraction (XRD), high-performance steric exclusion chromatography (HPSEC), and by the determination of their antioxidant capacity. The antiproliferative activity of Au@CT was then tested in hepatic (HEPG-2) and pancreatic (BxPC-3) cell lines. Their potential capacity as enhancers of gemcitabine, a drug frequently used to treat both types of tumors, was also tested. The activity of Au@CT was compared to the activity of the CT extract alone. A synergistic effect with gemcitabine was proven for HEPG-2. Our results showed that gold nanoparticles synthesized from seaweed extracts with antitumoral activity could be a good gemcitabine enhancer. Full article
Show Figures

Graphical abstract

21 pages, 1339 KiB  
Article
Brown Macroalgae (Phaeophyceae): A Valuable Reservoir of Antimicrobial Compounds on Northern Coast of Spain
by Susana Rubiño, César Peteiro, Teresa Aymerich and Maria Hortós
Mar. Drugs 2022, 20(12), 775; https://doi.org/10.3390/md20120775 - 12 Dec 2022
Cited by 10 | Viewed by 2460
Abstract
The search for new sources of antimicrobial compounds has become an urgent need, due to the threat that the spread of bacterial resistance represents for global health and food safety. Brown macroalgae have been proposed as a great reservoir in the search for [...] Read more.
The search for new sources of antimicrobial compounds has become an urgent need, due to the threat that the spread of bacterial resistance represents for global health and food safety. Brown macroalgae have been proposed as a great reservoir in the search for novel antimicrobial compounds. In this study, mid-polarity extracts were performed with a selection of 20 brown macroalgae species from northern Spain. The total polyphenol, carbohydrate and protein contents were quantified by spectrophotometry. The volatile organic compounds (VOCs) of whole macroalgae were also studied as a biomarker of their metabolic state in the representative species of the tested families by gas chromatography-mass spectrometry (GC-MS). The antimicrobial potential of the extracts was assessed by a disk diffusion assay against 20 target bacteria and further determinations of the minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) were performed by a microdilution assay for the active extracts. Ericaria selaginoides, Bifurcaria bifurcata and Dictyota dichotoma showed an antimicrobial effect against six Gram-positive strains: Bacillus cereus, Bacillus subtilis, Geobacillus stearothermophilus, Listeria monocytogenes, Staphylococcus aureus and Staphylococcus haemolyticus. The phenolic content was generally higher in the extracts that showed antimicrobial activity, followed by carbohydrates and low contents of proteins. The results obtained in this study reveal the potential of brown macroalgae as a promising alternative source of antimicrobial compounds as functional ingredients for the application in industrial fields. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

24 pages, 1874 KiB  
Review
A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae
by Hui Teng Tan, Fatimah Md. Yusoff, Yam Sim Khaw, Nur Amirah Izyan Noor Mazli, Muhammad Farhan Nazarudin, Noor Azmi Shaharuddin, Tomoyo Katayama and Siti Aqlima Ahmad
Mar. Drugs 2023, 21(1), 28; https://doi.org/10.3390/md21010028 - 29 Dec 2022
Cited by 6 | Viewed by 3029
Abstract
Phycoerythrin (PE) is a pink/red-colored pigment found in rhodophytes, cryptophytes, and blue-green algae (cyanobacteria). The interest in PE is emerging from its role in delivering health benefits. Unfortunately, the current cyanobacterial-PE (C-PE) knowledge is still in the infant stage. It is essential to [...] Read more.
Phycoerythrin (PE) is a pink/red-colored pigment found in rhodophytes, cryptophytes, and blue-green algae (cyanobacteria). The interest in PE is emerging from its role in delivering health benefits. Unfortunately, the current cyanobacterial-PE (C-PE) knowledge is still in the infant stage. It is essential to acquire a more comprehensive understanding of C-PE. This study aimed to review the C-PE structure, up and downstream processes of C-PE, application of C-PE, and strategies to enhance its stability and market value. In addition, this study also presented a strengths, weaknesses, opportunities, and threats (SWOT) analysis on C-PE. Cyanobacteria appeared to be the more promising PE producers compared to rhodophytes, cryptophytes, and macroalgae. Green/blue light is preferred to accumulate higher PE content in cyanobacteria. Currently, the prominent C-PE extraction method is repeated freezing–thawing. A combination of precipitation and chromatography approaches is proposed to obtain greater purity of C-PE. C-PE has been widely exploited in various fields, such as nutraceuticals, pharmaceuticals, therapeutics, cosmetics, biotechnology, food, and feed, owing to its bioactivities and fluorescent properties. This review provides insight into the state-of-art nature of C-PE and advances a step further in commercializing this prospective pigment. Full article
Show Figures

Figure 1

Back to TopTop