Environmental Applications of Magnetic Nanoparticles and Nanocomposites

A special issue of Magnetochemistry (ISSN 2312-7481). This special issue belongs to the section "Applications of Magnetism and Magnetic Materials".

Deadline for manuscript submissions: closed (20 November 2023) | Viewed by 10644

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
Interests: ferrite based nanocomposites; water remediation; photocatalysis; sensing

E-Mail Website
Guest Editor
Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
Interests: metal oxygen frameworks; nanochemistry; water remediation

Special Issue Information

Dear Colleagues,

In the recent years there has been surge of interest in research elaborating the potential of nanoparticles and nanocomposites for environmental remediation. Their applications envisage adsorptive removal of contaminants, photocatalytic degradation of organic pollutants including dyes, pesticides, pharmaceuticals and personal care products and sensing of pollutants. High surface area coupled with diverse functionalization in the nanocomposites provide a platform for enhanced interaction with pollutants. A major challenge in this field is upscaling lab scale research in real life conditions and reuse of spent nanoparticles and nanocomposites.

This Special Issue is aimed at bringing together the articles on this forefront area of research We invite colleagues to submit original research articles and reviews pertaining to the topics listed below.

Dr. Manpreet Kaur
Dr. Meenu Arora
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Magnetochemistry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ferrite/metal oxide nanoparticles
  • nanocomposites
  • antimicrobial potential
  • water decontamination
  • photocatalytic degradation
  • sensors
  • adsorption of heavy metals and metalloids

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3909 KiB  
Article
Modi-Red Mud Loaded CoCatalyst Activated Persulfate Degradation of Ofloxacin
by Qu Wu, Wenquan Sun, Kinjal J. Shah and Yongjun Sun
Magnetochemistry 2023, 9(8), 203; https://doi.org/10.3390/magnetochemistry9080203 - 11 Aug 2023
Cited by 1 | Viewed by 988
Abstract
As an abundant potentially dangerous waste, red mud (RM) requires a straightforward method of resource management. In this paper, an RM catalyst loaded with cobalt (Co-RM) was prepared by the coprecipitation method for the efficient activation of persulfate (PS). Its degradation performance and [...] Read more.
As an abundant potentially dangerous waste, red mud (RM) requires a straightforward method of resource management. In this paper, an RM catalyst loaded with cobalt (Co-RM) was prepared by the coprecipitation method for the efficient activation of persulfate (PS). Its degradation performance and mechanism of ofloxacin (OFL) were investigated. The characterization results of scanning electron microscopy, X-ray diffractometer, and energy dispersive spectrometer showed cobalt was successfully loaded onto the surface of RM, and the catalyst produced could effectively activate PS. Under the conditions of 15 mg/L OFL, 0.4 g/L Co-RM, 4 g/L PDS, 3.0 pH, and 40 °C temperature, the maximum removal rate of OFL by the Co-RM/PDS system was 80.06%. Free radical scavenging experiments confirmed sulfate radicals were the main active substances in the reaction system. The intermediates in OFL degradation were further identified by gas chromatography-mass spectrometry, and a possible degradation pathway was proposed. Finally, the relationship between defluorination rate and time in the Co-RM/PDS degradation OFL system was described by the first-order kinetic equation. This work reports an economical, environmental solution to the use of waste RM and provides a research basis for the further exploration of RM-based catalysts. Full article
Show Figures

Figure 1

22 pages, 12620 KiB  
Article
Green Magnetic Nanoparticles CoFe2O4@Nb5O2 Applied in Paracetamol Removal
by Jessica R. P. Oliveira, Laura S. Ribas, Jose S. Napoli, Eduardo Abreu, Jose L. Diaz de Tuesta, Helder T. Gomes, Angelo M. Tusset and Giane G. Lenzi
Magnetochemistry 2023, 9(8), 200; https://doi.org/10.3390/magnetochemistry9080200 - 05 Aug 2023
Cited by 5 | Viewed by 1947
Abstract
This study describes the synthesis of an innovative nanomaterial (patent application number BR 1020210000317) composed of cobalt ferrite functionalized in niobium pentoxide CoFe2O4@Nb5O2 (CFNb), synthesized via green synthesis using tangerine peel extract. The material emphasizes the [...] Read more.
This study describes the synthesis of an innovative nanomaterial (patent application number BR 1020210000317) composed of cobalt ferrite functionalized in niobium pentoxide CoFe2O4@Nb5O2 (CFNb), synthesized via green synthesis using tangerine peel extract. The material emphasizes the combination of a magnetic material (which allows for easy recovery after application) with niobium pentoxide (a metal which is abundant in Brazil). CFNb was applied as a catalyst for the paracetamol (PCT) degradation by photocatalysis. The new materials were characterized through surface and pore analysis (SBET, SEXT, Smic, Vmic, and VTOTAL), photoacoustic spectroscopy (PAS), zero charge point (pHPZC, scanning electron microscopy (SEM/EDS), and X-ray diffraction (XRD). The reaction parameters studied included pH and catalyst concentration. The results indicated that the CFNb nanocatalysts were efficient in the paracetamol degradation, presenting better results in conditions of low pH (close to 2) and low catalyst concentration under irradiation of the 250 W mercury vapor lamp (greater than 28 mW·cm−2) at 60 min of reaction. Full article
Show Figures

Figure 1

14 pages, 4801 KiB  
Article
Facile Fabrication of PANI/Fe2.85Ni0.15O4 Nanocomposites and Their Application for the Effective Degradation of Rhodamine B Dye
by Do Hung Manh, Tran Minh Thi, Nguyen Thi Ngoc Anh, Vu Hong Ky, Nguyen Manh Nghia and Tran Dang Thanh
Magnetochemistry 2023, 9(8), 195; https://doi.org/10.3390/magnetochemistry9080195 - 29 Jul 2023
Viewed by 952
Abstract
Nanocomposites of polyaniline (PANI)/Fe2.85Ni0.15O4 (PFN) were successfully prepared using the co-precipitation method combined with an in-situ polymerization process. The FN and PFN nanocatalysts were characterized using various methods for the photocatalytic degradation of Rhodamine B (RhB). The XRD, [...] Read more.
Nanocomposites of polyaniline (PANI)/Fe2.85Ni0.15O4 (PFN) were successfully prepared using the co-precipitation method combined with an in-situ polymerization process. The FN and PFN nanocatalysts were characterized using various methods for the photocatalytic degradation of Rhodamine B (RhB). The XRD, Raman, TEM, and DTA-DTG analyses suggest that the FN nanoparticles (NPs) were effectively coated by PANI and that there were interactions between FN and PANI. Magnetic measurements indicated that PFN nanocomposites exhibited good superparamagnetic behavior and high saturation magnetization (39.5–57.6 emu/g), which are suitable for separating photocatalysts from solution for reuse. Adsorption-desorption analysis showed that the specific surface area of PFN was higher than that of FN. The UV-vis absorption spectra of FN and PFN nanocomposites exhibited strong absorption of visible light, attributed to the doping of Ni, which resulted in the reduction of the band-gap energy (Eg) of Fe3O4 to 2.4 eV. PFN nanocomposites with different mass ratios of PANI demonstrated superior photocatalytic activity compared to FN NPs. Furthermore, it was observed that PFN with a 10% mass ratio of PANI exhibited the highest RhB degradation efficiency, achieving a rate of approximately 98% after 300 min of irradiation. Finally, the possible photocatalytic degradation mechanisms of the PFN nanocomposites on RhB were discussed. PFN photocatalysts with good photocatalytic activity, inexpensive materials, and easy preparation could be potential candidates for wastewater purification applications. Full article
Show Figures

Figure 1

Review

Jump to: Research

39 pages, 15083 KiB  
Review
Ferrite Nanoparticles as Catalysts in Organic Reactions: A Mini Review
by Nilima Maji and Harmanjit Singh Dosanjh
Magnetochemistry 2023, 9(6), 156; https://doi.org/10.3390/magnetochemistry9060156 - 14 Jun 2023
Cited by 4 | Viewed by 3185
Abstract
Ferrites have excellent magnetic, electric, and optical properties that make them an indispensable choice of material for a plethora of applications, such as in various biomedical fields, magneto–optical displays, rechargeable lithium batteries, microwave devices, internet technology, transformer cores, humidity sensors, high-frequency media, magnetic [...] Read more.
Ferrites have excellent magnetic, electric, and optical properties that make them an indispensable choice of material for a plethora of applications, such as in various biomedical fields, magneto–optical displays, rechargeable lithium batteries, microwave devices, internet technology, transformer cores, humidity sensors, high-frequency media, magnetic recordings, solar energy devices, and magnetic fluids. Recently, magnetically recoverable nanocatalysts are one of the most prominent fields of research as they can act both as homogeneous and heterogenous catalysts. Nano-ferrites provide a large surface area for organic groups to anchor, increase the product and decrease reaction time, providing a cost-effective method of transformation. Various organic reactions were reported, such as the photocatalytic decomposition of a different dye, alkylation, dehydrogenation, oxidation, C–C coupling, etc., with nano-ferrites as a catalyst. Metal-doped ferrites with Co, Ni, Mn, Cu, and Zn, along with the metal ferrites doped with Mn, Cr, Cd, Ag, Au, Pt, Pd, or lanthanides and surface modified with silica and titania, are used as catalysts in various organic reactions. Metal ferrites (MFe2O4) act as a Lewis acid and increase the electrophilicity of specific groups of the reactants by accepting electrons in order to form covalent bonds. Ferrite nanocatalysts are easily recoverable by applying an external magnetic field for their reuse without significantly losing their catalytic activities. The use of different metal ferrites in different organic transformations reduces the catalyst overloading and, at the same time, reduces the use of harmful solvents and the production of poisonous byproducts, hence, serving as a green method of chemical synthesis. This review provides insight into the application of different ferrites as magnetically recoverable nanocatalysts in different organic reactions and transformations. Full article
Show Figures

Figure 1

36 pages, 6819 KiB  
Review
Nanocomposites of Ferrites with TiO2, SiO2 and Carbon Quantum Dots as Photocatalysts for Degradation of Organic Pollutants and Microbes
by Ajaypal Kaur, Manpreet Kaur, Vasundhara Singh and Pratibha Vyas
Magnetochemistry 2023, 9(5), 127; https://doi.org/10.3390/magnetochemistry9050127 - 09 May 2023
Cited by 5 | Viewed by 2855
Abstract
Ferrites are important magnetic materials used in electronic devices. Nanocomposites of ferrites with TiO2, SiO2 and carbon quantum dots have gained recent interest due to their unique advantages, such as high chemical stability, surface-active sites, high specific surface area, non-toxicity, [...] Read more.
Ferrites are important magnetic materials used in electronic devices. Nanocomposites of ferrites with TiO2, SiO2 and carbon quantum dots have gained recent interest due to their unique advantages, such as high chemical stability, surface-active sites, high specific surface area, non-toxicity, excellent optical properties, and tunable porosity. In the present review, general and adaptable coprecipitation, sol–gel, hydrothermal, solvothermal, and Stöber methods for the fabrication of nanocomposites are discussed. These materials offer the advantage of magnetic recovery and superior photocatalytic performance. The potential of nanocomposites to act as photocatalysts to eliminate organic pollutants and microbes from water is discussed. Mechanisms involved in these applications are also elaborated upon. The review provides a detailed study of recent applications and future perspectives of nanocomposites in sustainable water treatment. Full article
Show Figures

Graphical abstract

Back to TopTop