Fungal Biofilms, 2nd Edition

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungal Cell Biology, Metabolism and Physiology".

Deadline for manuscript submissions: 15 July 2024 | Viewed by 4066

Special Issue Editors


E-Mail Website
Guest Editor
Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
Interests: biofilm; Candida; MRSA; virulence; resistance; farnesol; photodynamic inactivation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fungal infections are an important and increasing global threat, carrying not only high morbidity and mortality rates, but also high healthcare costs. Without an effective response, it is predicted that 10 million people will die per year as a result of multidrug-resistant pathogens. A high percentage of the mortalities caused by fungi are known to be biofilm-related.

This Special Issue, "Fungal Biofilms", is intended to cover the state of fungal biofilm research, from virulence and pathogenicity, to new compounds with antibiofilm and antifungal activity. We welcome reviews and original research articles covering the development/evaluation/validation of recent studies, especially those regarding multidrug resistance.

Dr. Célia F. Rodrigues
Dr. Lucia Černáková
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fungi
  • infection
  • biofilm
  • Candida
  • Aspergillus
  • Cryptococcus
  • antifungal
  • resistance
  • matrix

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2389 KiB  
Article
Died or Not Dyed: Assessment of Viability and Vitality Dyes on Planktonic Cells and Biofilms from Candida parapsilosis
by Betsy Verónica Arévalo-Jaimes and Eduard Torrents
J. Fungi 2024, 10(3), 209; https://doi.org/10.3390/jof10030209 - 11 Mar 2024
Viewed by 1094
Abstract
Viability and vitality assays play a crucial role in assessing the effectiveness of novel therapeutic approaches, with stain-based methods providing speed and objectivity. However, their application in yeast research lacks consensus. This study aimed to assess the performance of four common dyes on [...] Read more.
Viability and vitality assays play a crucial role in assessing the effectiveness of novel therapeutic approaches, with stain-based methods providing speed and objectivity. However, their application in yeast research lacks consensus. This study aimed to assess the performance of four common dyes on C. parapsilosis planktonic cells as well as sessile cells that form well-structured biofilms (treated and not treated with amphotericin B). Viability assessment employed Syto-9 (S9), thiazole orange (TO), and propidium iodide (PI). Metabolic activity was determined using fluorescein diacetate (FDA) and FUN-1. Calcofluor white (CW) served as the cell visualization control. Viability/vitality percentage of treated samples were calculated for each dye from confocal images and compared to crystal violet and PrestoBlue results. Heterogeneity in fluorescence intensity and permeability issues were observed with S9, TO, and FDA in planktonic cells and biofilms. This variability, influenced by cell morphology, resulted in dye-dependent viability/vitality percentages. Notably, PI and FUN-1 exhibited robust C. parapsilosis staining, with FUN-1 vitality results comparable to PrestoBlue. Our finding emphasizes the importance of evaluating dye permeability in yeast species beforehand, incorporating cell visualization controls. An improper dye selection may lead to misinterpreting treatment efficacy. Full article
(This article belongs to the Special Issue Fungal Biofilms, 2nd Edition)
Show Figures

Figure 1

17 pages, 1447 KiB  
Article
High-Throughput Screening of the Repurposing Hub Library to Identify Drugs with Novel Inhibitory Activity against Candida albicans and Candida auris Biofilms
by Olabayo H. Ajetunmobi, Gina Wall, Bruna Vidal Bonifacio, Lucero A. Martinez Delgado, Ashok K. Chaturvedi, Laura K. Najvar, Floyd L. Wormley, Jr., Hoja P. Patterson, Nathan P. Wiederhold, Thomas F. Patterson and Jose L. Lopez-Ribot
J. Fungi 2023, 9(9), 879; https://doi.org/10.3390/jof9090879 - 27 Aug 2023
Cited by 2 | Viewed by 1333
Abstract
Candidiasis is one of the most frequent nosocomial infections affecting an increasing number of at-risk patients. Candida albicans remains the most frequent causative agent of candidiasis, but, in the last decade, C. auris has emerged as a formidable multi-drug-resistant pathogen. Both species are [...] Read more.
Candidiasis is one of the most frequent nosocomial infections affecting an increasing number of at-risk patients. Candida albicans remains the most frequent causative agent of candidiasis, but, in the last decade, C. auris has emerged as a formidable multi-drug-resistant pathogen. Both species are fully capable of forming biofilms, which contribute to resistance, increasing the urgency for new effective antifungal therapies. Repurposing existing drugs could significantly accelerate the development of novel therapies against candidiasis. Here, we have screened the Repurposing Hub library from the Broad Institute, containing over 6000 compounds, in search for inhibitors of C. albicans and C. auris biofilm formation. The primary screen identified 57 initial hits against C. albicans and 33 against C. auris. Confirmatory concentration-dependent assays were used to validate the activity of the initial hits and, at the same time, establish their anti-biofilm potency. Based on these results, ebselen, temsirolimus, and compound BAY 11-7082 emerged as the leading repositionable compounds. Subsequent experiments established their spectrum of antifungal activity against yeasts and filamentous fungi. In addition, their in vivo activity was examined in the murine models of hematogenously disseminated C. albicans and C. auris infections. Although promising, further in vitro and in vivo studies are needed to confirm their potential use for the therapy of candidiasis and possibly other fungal infections. Full article
(This article belongs to the Special Issue Fungal Biofilms, 2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 3605 KiB  
Review
Interactions between Bacteria and Aspergillus fumigatus in Airways: From the Mycobiome to Molecular Interactions
by Anne Debourgogne, Lorra Monpierre, Khadeeja Adam Sy, Isabel Valsecchi, Jean-Winoc Decousser and Françoise Botterel
J. Fungi 2023, 9(9), 900; https://doi.org/10.3390/jof9090900 - 01 Sep 2023
Viewed by 1205
Abstract
Interactions between different kingdoms of microorganisms in humans are common but not well described. A recent analysis of the mycobiome has described the presence of different fungi and their positive and/or negative interactions with bacteria and other fungi. In chronic respiratory diseases, these [...] Read more.
Interactions between different kingdoms of microorganisms in humans are common but not well described. A recent analysis of the mycobiome has described the presence of different fungi and their positive and/or negative interactions with bacteria and other fungi. In chronic respiratory diseases, these different microorganisms form mixed biofilms to live inside. The interactions between Gram-negative bacteria and filamentous fungi in these biofilms have attracted more attention recently. In this review, we analyse the microbiota of the respiratory tract of healthy individuals and patients with chronic respiratory disease. Additionally, we describe the regulatory mechanisms that rule the mixed biofilms of Aspergillus fumigatus and Gram-negative bacteria and the effects of this biofilm on clinical presentations. Full article
(This article belongs to the Special Issue Fungal Biofilms, 2nd Edition)
Show Figures

Figure 1

Back to TopTop